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Abstract

We developed a general framework for family-based imputation using single-nucleotide polymorphism data and
sequence data distributed by Genetic Analysis Workshop 18. By using PedIBD, we first inferred haplotypes and
inheritance patterns of each family from SNP data. Then new variants in unsequenced family members can be
obtained from sequenced relatives through their shared haplotypes. We then compared the results of our method
against the imputation results provided by Genetic Analysis Workshop organizers. The results showed that our
strategy uncovered more variants for more unsequenced relatives. We also showed that recombination breakpoints
inferred by PedIBD have much higher resolution than those inferred from previous studies.

Background
Next-generation sequencing (NGS) technologies have pro-
foundly changed the landscape of genetic studies [1].
Although the cost of sequencing is becoming more afford-
able, increasingly more studies are choosing NGS as the
primary platform to collect data, either at the whole gen-
ome level or for targeted regions. However, costs of
sequencing thousands of individuals and the downstream
analysis are still prohibitively high. On the other hand,
many projects have already accumulated single-nucleotide
polymorphism (SNP) data from previous studies. In such
cases, researchers only need to sequence a small subset of
family members (e.g., proband and parents) to reduce the
costs. By jointly analyzing sequence data from a subset of
family members together with SNP data from the families,
computational approaches may fully recover variant infor-
mation in unsequenced members. The data distributed by
Genetic Analysis Workshop 18 (GAW18) provide an
excellent example based on this design strategy. Many of
the pedigrees are very large, and all of them have a signifi-
cant number of members without SNP genotypes, which

makes the imputation computationally very challenging.
Our laboratory has recently developed an efficient haplo-
type inference algorithm called PedIBD, which is designed
specifically for large pedigrees with many untyped indivi-
duals [2]. By taking advantage of haplotypes inferred by
PedIBD using SNP data, we developed a procedure to
computationally impute variants for unsequenced indivi-
duals based on haplotype sharing between them and their
sequenced relatives. The advantage of our approach over
the imputation provided by GAW lies in the fact that
whereas our approach can take each pedigree as a whole
when inferring haplotype or inheritance, GAW had to par-
tition big pedigrees into smaller families. Our approach
thus will provide more complete and more accurate
results. In addition, based on the provided SNP data, we
can also provide inferred recombination breakpoints with
high resolution within each pedigree.

Methods
Data
We focused our analysis on chromosome 3 of the GAW18
dataset. The dataset consists of 1389 individuals from 20
families. Among them, 959 individuals were genotyped
using SNP chips. In addition, a subset of 464 genotyped
individuals were also sequenced. The total number of SNPs
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from the chip data is 65,519. Because only rs numbers of
these SNPs were provided, we obtained their map positions
from the NCBI dbSNP database (Build 37). Nineteen SNPs
were removed because they either had no matched rs num-
bers or the SNPs with the same rs numbers were mapped
to a different chromosome. Sequence data was converted
to A/C/G/T format using VCFtools [3]. The total number
of SNPs called from sequence data is approximately 1.75
million per individual. After removing SNPs with a high
missing rate (>5%), the total number of sequence variants
that used in our analysis is approximately 1.69 million.

Analysis
Our family-based imputation approach works in several
steps. First, recombination breakpoints are inferred and
haplotypes are assigned at each recombination-free
segment for each individual with SNP chip data using
PedIBD. Some individuals without chip data may also be
assigned some unique haplotypes based on the inferred
inheritance (e.g., untyped parents with typed children).
Then, for newly discovered SNPs from sequenced indivi-
duals, at each individual locus, the allele on a haplotype
can be determined if a sequenced individual sharing the
same haplotype is homozygous at this locus. After all
homozygous SNPs have been processed, the information
can be propagated to heterozygous SNPs if the allele on

one haplotype has already been assigned. Genotypes of
unsequenced individuals can then be imputed based on
their assigned haplotypes (see Figure 1 for the frame-
work and an example). Conflicts may occur when the
algorithm tries to assign different allele types to the
same haplotype. Conflicts reflect inconsistency between
inferred inheritance from chip data and observed SNPs
from sequence data. Although there is a possibility that
the inferred inheritance could be wrong, a significant
majority of conflicts are actually due to high genotype
calling errors from sequence data. One should notice
that under the assumption that genotyping errors are
randomly distributed among all SNPs in sequenced
individuals, the total number of loci with conflicts will
be proportional to the number of SNPs as well as the
number of individuals with genotyping errors even when
the typing error rate is a constant. Therefore, the total
number of loci with conflicts increases with the size of a
pedigree and can thus be substantial in large pedigrees.
Figure 2 shows the pedigree structure of family 21 and

one haplotype segment inferred by PedIBD. There are sev-
eral characteristics of the proposed algorithm. First,
because information from the whole pedigree has been
used, it is possible that haplotypes for individuals with no
data at all can be recovered (e.g., individual 949). It is also
possible that only one of the two haplotypes of an

Figure 1 The imputation framework (left) and an example illustrating the imputation procedure (right). In the example, individuals with
grey color have single-nucleotide polymorphism (SNP) chip data from genome-wide association studies (GWAS), and individuals with black color
have both chip data and sequence data. The haplotypes in this segment are labelled using different colors and they are inferred based on
GWAS data. Notice that both haplotypes of individual 949 and one haplotype of individual 957 can be recovered based on the information of
their children (the missed haplotype is illustrated using a thin black bar). However, only one haplotype can be recovered for 957 because he
only has one child. The two variants are from sequence data (1 and 2 are alleles, and 0 is missing). For the first variant, because member 974 is
homozygous genotype (1, 1), the alleles on its two haplotypes (pink and dark blue) can be assigned. Subsequently, the alleles on the light blue
haplotype of member 940, the yellow haplotype of member 956, and the green haplotype of member 939 can be resolved (all three have
sequence data). For all the other members, their alleles can be imputed based on the color of their haplotypes. However, haplotype light green
(in members 949, 959, and 960) cannot be imputed because it has not occurred in any sequenced individual, thus showing missing one allele.
For the second variant, our algorithm will identify a conflict because member 974 assigns allele 2 to the pink haplotype, and member 939
assigns allele 1 to the pink haplotype.
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individual with no data can be recovered (e.g., individual
957). Second, loci with inconsistent genotypes called from
sequence data can be identified (e.g., locus 2 in Figure 1,
right). Third, at a variant locus identified from sequence
data, if there are no sequenced individuals with homozy-
gous genotypes, the phase at this position cannot be
determined.
However, because most new variants from sequence

data are rare, the probability of having no homozygous
genotypes is extremely low.
For each offspring in a family, a switch on its haplotype

assignment indicates a recombination event. We collected
all recombination events on chromosome 3 and examined
the resolution of recombination breakpoints.

Results
Inconsistency between single-nucleotide polymorphism
chip data from genome-wide association studies and
sequence data
Among 65,500 SNPs from genome-wide association stu-
dies (GWAS) data, 63,803 of them were rediscovered
from prefiltered whole genome sequencing (WGS) data.
Because of high accuracy of chip data, we treated the
genotypes from GWAS data as ground truth and first
examined the SNP-calling accuracy of WGS data on this
subset. Families 14, 15, 23, and 25 were excluded from
our analysis because they did not have any sequenced
individuals. The inconsistency rate is about 5.50% on
average (Table 1). After eliminating families 7, 9, and 11,
which had unusual high rates of missing in GWAS data,
the inconsistency rate is about 2.25%. We anticipated the
issue that the allele types from GWAS data and from

sequence data may be encoded differently (i.e., different
strands) and did not include discrepancies when alleles
are A and T (or G and C). Among the inconsistent geno-
types (excluding families 7, 9, and 11), 34.26% were
caused by missing genotypes in GWAS, 60.17% were
caused by missing in WGS, and the remaining (5.57%)
were mismatches. The very high inconsistency for
families 7, 9, and 11 was mainly caused by high missing
rates of GWAS data in these families. The average miss-
ing rate was 2.0% for WGS and 0.72% for GWAS data
(excluding families 7, 9, and 11). Both measures indicate
that for joint analysis of SNP and sequence data, one
should not only impute variants in unsequenced or
untyped individuals but also impute these missed or
incorrectly called SNPs. For the remaining analysis, we
have replaced the incorrect genotypes from sequence
data using the genotypes from GWAS data.

Comparison of imputation results between Genetic
Analysis Workshop and our approach
We compared our imputation results with the GENO
dataset provided by GAW, which recovered 1.2 million
variants for 813 individuals (including sequenced indivi-
duals themselves). GAW took a 2-step procedure for
imputation: a preliminary imputation based on popula-
tion level information alone in the first step and an
additional imputation procedure using pedigree informa-
tion in the second step using SimWalk2 and Merlin
[4,5]. Neither program can handle pedigrees as large as
the GAW18 families, so both required large families to
be partitioned into smaller subfamilies. In contrast, by
taking each pedigree as a whole, our method was able

Figure 2 The pedigree structure of family 21. The figure shows the pedigree information of family 21 and one haplotype segment inferred
by PedIBD for each individual. It also shows which individuals have been imputed and 5 masked individuals who selected for imputation
accuracy with asterisks. The legends are the same as those in Figure 1 (right).
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to recover approximately 1.53 million SNPs for 1011
individuals (these include an additional 198 individuals
without sequence data or GWAS data), which accounts
for 90.6% of total 1.69 million variants. Both the number
of imputed SNPs and the number of imputed indivi-
duals by our approach are substantially higher than
those given by the GAW. For the 9.4% remaining
variants, our imputation method found that 7.39% had
conflicts that are similar to the one in Figure 1 (right,
second locus), caused by calling errors from sequence
data. About 2% of them were located between haplotype
segments. For the rest 0.01%, all of the sequenced indi-
viduals in each pedigree were heterozygous; therefore,
genotypes of unsequenced individuals cannot be
imputed. Among 1,070,318 common variants imputed by
both methods for the 813 individuals, we found 0.15% of
genotype mismatch between 2 sets. Our approach has
imputed 467,485 more variants than the GENO dataset
but missed 145,081 SNPs. The majority of the missed
SNPs (>80%) are due to conflicts discovered by our pro-
gram. This is consistent with the genotype-calling error
rate from sequence data. The remaining SNPs were
missed because their positions were out of haplotype
segment regions. The summary of results can be found in
Figure 3.

Imputation accuracy
We further evaluated the imputation accuracy by
assuming sequence data of some individuals were

unknown [6]. We selected 5 individuals from family 21
(Figure 2 and Table 2). For each of them, we masked all
of their genotypes (i.e., all genotypes were set to be
“missing”), performed the imputation procedure, and
then assessed the imputation accuracy as the proportion
of correctly imputed alleles. Table 2 shows the pedigree
relationship information for masked individuals and
imputation accuracy. Each individual represents a
distinct relationship within the family. Results show that
imputation on individual 946 has the highest accuracy.
Four of her close relatives (three children and one half-
sibling) have been sequenced, and the average missing
rate of the sequenced relatives was 2.13%. Most of her
genotypes can be inferred because even if there is a
missing variant in one of sequenced relatives at a locus,
the other relatives may provide enough information to
derive her genotypes. Individual 977 has the lowest
accuracy, although both parents have been sequenced.
Theoretically, one should be able to infer a child’s geno-
types from both parents if the inheritance is given.
However, in this case, not only does she have a smaller
number of sequenced relatives, but the missing rate of
the father (4.17%) is also much higher, both of which
contribute to the low accuracy.

Recombination breakpoints
The haplotypes and recombination breakpoints have been
obtained from all families based only on GWAS data.
Overall, there are a total of 3089 recombination events

Table 1 Missing rate and Inconsistency between whole genome sequencing and genome-wide association studies

Family ID Total number of individuals Missing rate Genotype inconsistency between GWAS and WGS

All GWAS WGS GWAS WGS GWAS and WGS Cause of genotype inconsistency

65,500 1,697,985 63,803 Missing in GWAS Missing in WGS Mismatch

2 107 86 43 1.18% 2.31% 3.20% 67.55% 29.72% 2.73%

3 98 77 38 0.17% 1.66% 0.84% 19.98% 72.31% 7.71%

4 97 64 39 0.17% 2.34% 1.38% 15.80% 73.59% 10.60%

5 91 68 40 0.13% 1.56% 0.82% 20.41% 72.47% 7.12%

6 88 64 39 0.84% 2.06% 2.07% 59.85% 36.38% 3.77%

7 89 36 30 14.59% 1.58% 17.58% 96.60% 2.95% 0.45%

8 84 68 25 3.31% 2.18% 9.23% 89.44% 9.33% 1.23%

9 81 33 27 13.34% 1.50% 16.38% 96.63% 2.90% 0.47%

10 83 64 40 2.42% 1.86% 4.43% 81.79% 16.71% 1.50%

11 76 35 29 20.57% 1.88% 24.81% 96.92% 2.63% 0.45%

16 59 48 26 0.10% 1.62% 0.82% 14.04% 78.04% 7.93%

17 57 42 20 0.30% 2.58% 1.45% 18.22% 75.43% 6.35%

20 51 36 20 0.36% 2.12% 1.43% 28.55% 65.70% 5.76%

21 50 35 19 0.11% 2.49% 1.26% 4.83% 90.21% 4.96%

27 44 35 17 0.16% 2.22% 1.27% 14.98% 77.98% 7.04%

47 27 22 12 0.09% 2.06% 1.04% 9.89% 84.35% 5.76%

1182 813 464 *3.61% *2.00% *5.50% *45.97% *49.42% *4.61%

^0.72% ^2.08% ^2.25% ^34.26% ^60.17% ^5.57%

Asterisks (*) and Carets (^) indicate averaged numbers across families, with (*) and without (^) families 7, 9, and 11.
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identified. Among them, a fraction still cannot be deter-
mined from their parental sources because of missing
genotypes in parents. After filtering out recombination
events with unknown parental origins, our final dataset
had 1361 maternal and 933 paternal recombination
events. Because of homozygous genotypes, recombination
breakpoints cannot always be within two adjacent SNPs.
Still, the resolution of our inferred recombination break-
points is very high, with more than 94% of them within
20-kb range, and the median length is about 8 kb, which
is a great improvement over previous results [7,8].

Discussion
In this study, we have proposed a computational frame-
work to infer haplotypes and recombination breakpoints
and finally impute genotypes based on a subset of
sequenced members in a pedigree. Results on GAW18
data have demonstrated that (a) our approach is efficient
for extremely large pedigrees and (b) we imputed more

variants and more individuals than the one provided by
GAW organizers.
Our approach can be further improved in several

directions. First, data quality, including missing and gen-
otyping errors, can have a substantial effect on the final
results. Many genotyping errors are actually Mendelian
consistent, which makes error detection a challenging
task. With the development of sequencing technologies
as well as SNP calling algorithms, we expect the quality
of genotyping calling from sequence data will improve,
which in turn will improve our imputation results
(e.g., reduce the number of conflicting loci). Second,
given the high density of SNPs, population-level linkage
disequilibrium can be used in imputation even for family
data. Investigating approaches that can jointly consider
information within families and information at the popula-
tion level will be our future work. Third, our haplotype
segments are defined based on all observed recombination
events in a family. Therefore, the haplotype segments of a

Table 2 Pedigree information of masked individual and imputation accuracy.

Masked individual
ID

Pedigree information Accuracy
(%)

First-degree relationship Second-degree relationship

Parents Children Siblings Half-sibling, grandparent, grandchildren, aunt and uncle, niece and
nephew

946 2(U) 3(GS) 0 5(G) + 1(GS) 99.43

950 2(U) 0 1(U) +1(G)+1
(GS)

10(G) + 2(GS) 98.33

968 1(U)+1
(GS)

0 0 3(U) + 1(G) + 1(GS) 96.33

974 1(U)+1
(GS)

0 0 1(U) + 3(G) + 2(GS) 95.72

977 2(GS) 0 4(G) 3(G) + 1(GS) 91.37

G, genotyped only, GS, genotyped + sequenced; U, untyped.

Figure 3 Imputation results from our approach and data provided by Genetic Analysis Workshop (GAW). All numbers are averaged on
individual. A) Imputation results of our method and GAW as the number of imputed variants and individuals. B) Overlaps between two sets. C)
Itemized comparison between two sets.
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particular individual may have been cut short unnecessa-
rily from recombination breakpoints of other individuals,
resulting in some variants between haplotype segments
being dropped. We will define haplotype segmentations of
each individual based on her or his own recombination
breakpoints, which will reduce the number of dropped
variants. Last, our results show that the strategy of sequen-
cing only a small subset of family members and imputing
others is very effective. However, the final imputation
results may depend on many factors, such as number and
type of relationships of sequenced relatives, as well as the
quality (e.g., missing rate) of sequence data. A truly impor-
tant decision is how researchers select individuals to
sequence to optimize the amount of information acquired
within the constraints of a budget.
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