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Abstract

We demonstrate the flexibility of identity-by-descent (IBD) graphs for genotype imputation and testing
relationships between genotype and phenotype. We analyzed chromosome 3 and the first replicate of simulated
diastolic blood pressure. IBD graphs were obtained from complete pedigrees and full multipoint marker analysis,
facilitating subsequent linkage and other analyses. For rare alleles, pedigree-based imputation using these IBD
graphs had a higher call rate than did population-based imputation. Combining the two approaches improved call
rates for common alleles. We found it advantageous to incorporate known, rather than estimated, pedigree
relationships when testing for association. Replacing missing data with imputed alleles improved association signals
as well. Analyses were performed with knowledge of the underlying model.

Background
Patterns of identity-by-descent (IBD) sharing within and
across pedigrees are fundamental for the understanding
of genetic variation, including its distribution, origin,
and relationship to phenotype. Recent analytical and
computational advances have allowed us to estimate the
distribution of patterns of IBD sharing in large and
complex pedigrees using the program gl_auto in the
MORGAN v3.1 package (http://www.stat.washington.
edu/thompson/Genepi/pangaea.shtml). These estimates
are computationally intense: for example, 727 cpu min-
utes for family 10 (83 members) on an Intel L5427
Xeon 2.50-Gz processor. However, the resulting sampled
IBD graphs can be quickly reused for several types of
analysis, including genotype imputation in pedigrees [1],
or obtaining [2] and refining a linkage signal [3]. At
Genetic Analysis Workshop 18 (GAW18), we used these
sampled IBD graphs for (a) imputation of genotypes in
pedigrees compared with a “population-based” method

that uses an external reference panel, (b) linkage analyses
using both parametric and variance components models,
and (c) association testing of both observed and imputed
genotypes using two strategies to incorporate relation-
ships between subjects.

Methods
Genetic map and markers
We analyzed GAW18 marker data for chromosome 3. We
did not use the GAW18 sequence data because it included
imputed variants, although our methods would work for
sequence data as well. We obtained genetic map positions
(cM) for the genome-wide association studies (GWAS)
markers from the Rutgers sex-averaged interpolated posi-
tions of dbSNP Build 134 (http://compgen.rutgers.edu/
maps), excluding the 116 loci missing values. Kosambi posi-
tions were converted to Haldane positions to suit assump-
tions made by the Lander-Green algorithm [4]. We found
no Mendelian inconsistencies using Loki v2.4.7 [5] in the
65,403 markers. For linkage and association analyses, we
removed markers with minor allele frequency (MAF) less
than 0.05 (13,139 markers) and/or greater than 5% missing
data (4,939 markers), leaving 48,892 markers for analysis.
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Phenotype and families
We began with the simulated diastolic blood pressure at
time point 1 from SIMPHEN.1.csv. Given the contents
of the answer key to the simulated data, we included
age, sex, age*sex, and treatment in a linear regression
model. The residuals are our adjusted phenotype values.
We analyzed 7 families showing evidence of cryptic

relatedness in the hope of reducing genetic and allelic
heterogeneity in our trait. Using all available GWAS data,
we estimated kinship coefficients between all pairs of indi-
viduals in the data set using both the KING-robust [6] and
REAP [7] methods to accommodate admixture, explained
in detail elsewhere [8]. As is standard quality control in
pedigree studies, pedigree relationships were validated by
empirical estimates of kinship. Pairwise kinship coefficients
exceeding those for second cousins were observed for
subject pairs across families 5 to 8, 10, 21, and 25. These
families were used in BEAGLE [9] imputation and SOLAR
[10] association analyses described later. Family 10 was
chosen for further analyses because it was the family with
the strongest evidence of association to our trait [8].

Estimation of identity-by-descent sharing
A single set of IBD graphs was used for all pedigree-based
analyses. We used a subset of 351 markers with an average
spacing of one marker per 0.65 cM, choosing the marker
at each targeted region with the highest value of hetero-
zygosity multiplied by the number of observed genotypes
to generate IBD graphs with the program gl_auto.
Markov-chain Monte Carlo sampling with a state-of-the-
art hybrid sampler [11,12] allowed us to use both large
pedigrees and many markers. We saved every 50th [12] of
50,000 sampled realizations of IBD graphs for chromo-
some 3, conditional on all observed genotypes, the genetic
map, and pedigree structure [13].

Imputation
We used the program GIGI to impute genotypes depen-
dent on the sampled IBD graphs [1]. Imputation markers

were not in the framework set used to produce IBD
graphs. For each imputation marker, a set of genotypes for
all subjects was sampled from the genotype probability
distribution, given observed data at the imputation marker
in some subjects, the sampled IBD graphs, allele frequen-
cies, and the meiotic map. Genotype and allele probabil-
ities were then averaged across the sampled IBD graphs.
We called both alleles of a missing genotype if Pr(geno-
type) greater than 0.8, and otherwise called one allele if Pr
(allele) greater than 0.9. Genotypes failing to meet these
criteria were not called.
For comparison, we also used BEAGLE [9], which uses

an outside reference panel of genotypes and population-
level linkage disequilibrium to impute marker informa-
tion among unrelated individuals. We compared results
using three reference panels: the genotyped subjects
from family 10 and the other families (experiment F10
+ FO), only samples from family 10 (experiment F10),
and the other families without family 10 (experiment
FO). BEAGLE’s 3,621 scaffold markers were chosen to
be common (MAF >0.3) and evenly spaced (at least 0.05
cM apart). As with GIGI, we called both alleles of a
missing genotype if Pr(genotype) greater than 0.8 and
otherwise called one allele if Pr(allele) greater than 0.9.
We imputed genotypes on family 10. We masked most

genotypes in a subset of subjects for evaluation of imputa-
tion metrics (Figure 1, Table 1): 20 subjects in design
1 and 49 subjects in design 2. Masked subjects were
selected to preserve some “observed” genotypes in each
branch of the pedigree. Imputation metrics were estimated
at all imputation markers, which excluded both GIGI fra-
mework markers and BEAGLE scaffold markers. Metrics
for evaluation were (a) call rate, which is the percent of
alleles called, and (b) accuracy, which is the percent of
alleles called correctly among called alleles. We averaged
these metrics across masked variants and subjects. We
define rare variants as those with MAF less than 0.05.
Intrigued by the complementary data used by BEAGLE

and GIGI, we evaluated a combination of their results.

Figure 1 Pedigree structure of family 10. Filled: genotyped. Open: m
issing genotype data. Filled black: masked in design 1. Outlined in bold black: additional people masked in design 2.
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Using design 2 data, we first used GIGI to call both
alleles if Pr(genotype) greater than 0.99 or to call one
allele if Pr(allele) greater than 0.995, thus only calling
alleles if essentially forced by the pedigree data. For loci
with uncalled genotypes, we then used results from BEA-
GLE F10 + FO with call thresholds Pr(genotype) greater
than 0.8 and Pr(allele) greater than 0.9. For loci with one
uncalled allele by GIGI, we accepted the BEAGLE geno-
type if it included the single allele called by GIGI.

Linkage analysis
We computed lod scores for family 10 and all cryptically
related families at a subset of 44 positions from the IBD
graphs, yielding a spacing of approximately 1 lod score
per 5 cM. To obtain multipoint lod scores, we (a) used
the program IBDgraph [13,14] to identify equivalence
classes among the realized IBD graphs at each position
[2], (b) computed likelihoods for one representative of
each equivalence class at each position with the mlink
program [15], and (c) computed a weighted average
from the sampled IBD graphs to obtain an estimate
of the multipoint lod score for the trait at each
position [16].
We tested three parametric models. Model 1 is a

quantitative trait locus (QTL) model with parameters
defined by the single-nucleotide polymorphism (SNP)
with the biggest contribution to the simulated trait var-
iance. Because this SNP explains only 0.0229% of the
simulated trait variance, model 1 tests whether we can
detect a locus with a small effect size if it is modeled
perfectly. Model 2 is a QTL that is the weighted average
for all functional SNPs within the gene bearing the
“biggest” SNP. The result is a common allele with small
effect sizes and is an attempt to model the cumulative
effects of several functional variants within a single
gene. Model 3 is a perfectly penetrant additive locus,
where affectation status indicates the subject carries the
risk allele at the biggest SNP, and tests whether
we could detect the SNP locus if it perfectly explained
the trait variance. We compare results from the same
IBD graphs with a typical variance components (VCs)
lod score, as implemented by SOLAR [10].

Association testing
We used VC analyses to investigate association with the
trait of candidate covariate SNPs while accounting for
correlations among related subjects. We analyzed family
10 alone, as well as all 7 families jointly. Each of the top
5 SNPs, ranked by p-value, identified from a half gen-
ome scan [8], was tested for association with a linear
mixed model using dose of the minor allele as the fixed
effect and the kinship matrix and a polygenic model as
a random effect. Whereas SOLAR [10] uses the pedi-
gree-based kinship matrix to account for relatedness,
EMMAX [8] estimates the kinship matrix from the
genome-wide genotype correlations. These two programs
fit the same model, differing only in the source of the
kinship matrix.
We also performed VC analyses with SOLAR with

various combinations of imputed and observed genotype
data within family 10 to evaluate the usefulness of
imputed genotype data. For these analyses, we used the
weighted average of genotype probabilities obtained
from GIGI to provide an expected dose of the minor
allele, given the observed data.

Results
Imputation
Both GIGI and BEAGLE (F10 + FO) achieved similarly
high overall call rate (96.1% and 91.8%, respectively) and
accuracy (99.8% and 99.1%, respectively) on the masked
subjects in design 1. As demonstrated elsewhere [1,17],
accuracy was high regardless of MAF. Accuracy for rare
variants (MAF <0.05) was greater than 99.9% for GIGI
and 99.4% for BEAGLE, and accuracy at the most com-
mon variants (MAF ≥0.45) was greater than 99.9% for
GIGI and 98.9% for BEAGLE. GIGI also could impute
alleles for subjects with completely missing genotype
data at a call rate of 82.9%. As shown in Figure 2 for
design 1 data, (a) GIGI calls more rare alleles than does
BEAGLE, (b) performance differences between GIGI
and BEAGLE shrank with increasing numbers of
observed rare alleles within the pedigree (c) use of only
an outside reference sample for BEAGLE was ineffective
for imputation of rare alleles that may be family specific,

Table 1 Design of imputation experiments

Subjects with observed marker data1 GIGI BEAGLE

Family Subject status Design 1 Design 2 F10 + FO F10 FO

Number of subjects Number of variants observed per subject

Family 10 Typed 44 15 65,403 65,403 65,403 0

Masked 20 49 3512 36213 36213 36213

Others Typed 308 308 0 65,403 0 65,403
1Original genome-wide association studies genotypes are observed or masked for the imputation markers as per subject status.
2Framework markers on chromosome 3 used to sample identity-by-descent (IBD) graphs.
3Dense scaffold markers used by BEAGLE to infer IBD. Scaffold markers include the framework markers.
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and (d) BEAGLE was able to call a small fraction (<20%)
of rare alleles that were not observed in the genotyped
subjects in family 10, but only when BEAGLE had
access to reference samples from other families.
Not surprisingly, both GIGI and BEAGLE called fewer

genotypes starting with the design 2 data than the more
complete design 1 (call rates of 77.1% and 85.3%,
respectively), with high accuracy (98.1% and 97.8%,
respectively). Accuracy for rare variants was 99.5% for
GIGI and 99.0% for BEAGLE, and accuracy at the most
common variants was 99.9% for GIGI and 97.1% for
BEAGLE. Combining GIGI and BEAGLE boosted both
call rate (89.5%) and accuracy (98.6%) over the use of

either alone, but only for more common variants. GIGI
+ BEAGLE continued to have high accuracy across
MAF, with an accuracy of 99.3% for rare alleles and
98.6% for the most common alleles. Figure 3A shows
little gain in call rate for the combined approach over
the use of GIGI alone when imputing variants with rare
alleles. In contrast, Figure 3B shows a markedly
improved call rate resulting from the combined
approach for SNPs with higher MAF.

Linkage analysis
Although enough copies of the risk allele segregate
within the family to generate a linkage signal if the risk
allele was indeed causal (model 3, lodmax = 5.36), this
locus does not explain enough phenotypic variation
within this family to provide measurable evidence of
linkage (lodmax <0.5 for models 1 and 2). VC lod score
analyses [10] provided comparable results: no evidence
of linkage in family 10 and an all-families’ lod score
near 0.2.

Family-based association testing
Significant associations were readily detectable in both the
total sample and in individual families regardless of the
absence of strong positive linkage evidence (Table 2).
Broadly speaking, the association tests carried out with
SOLAR and EMMAX were similar to each other, with
SOLAR providing somewhat stronger evidence of associa-
tion. The differences between the two programs are larger
for the most significant results, with the most extreme
difference obtained at the causal SNP rs11711953 in
family 10.
As expected, Table 3 shows that the strength of asso-

ciation dropped when we only used genotypes for 15
subjects providing dense marker data for imputation
and strengthened when we imputed genotypes into

Figure 2 Call rates of minor alleles for design 1 data with
different imputation approaches for single-nucleotide
polymorphisms with rare minor allele frequency. Pink circles:
GIGI; blue triangles: BEAGLE F10 + FO; purple crosses: BEAGLE F10;
green diamonds: BEAGLE FO.

Figure 3 Call rate of minor alleles for design 2 data, for single-nucleotide polymorphisms with rare (A) and common (B) minor allele
frequency. Pink circles: GIGI; blue triangles: BEAGLE F10 + FO; black squares: GIGI + BEAGLE. X-axis fixed to the maximum for rare, for
consistency.
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other subjects with trait data. In this data set, there was
just a slight gain in the p-value obtained by imputing
genotypes into the 20 unsampled subjects, explained by
one subject who had a trait value but no observed geno-
type data for the 10 tested SNPs.

Conclusions
IBD graphs provided ample opportunity to investigate
relationships between individuals and between genotypes
and phenotypes. Pedigree-based imputation that
exploited these graphs outperformed population-based
imputation for rare variants, even when the latter
included family members of the subjects being imputed.
We also showed that the two approaches may be com-
bined to improve call rate and accuracy for some uses.
Both parametric and VC linkage analysis failed to detect
a linkage signal. Further examination revealed no cose-
gregation of phenotypes and genotypes at the functional
variants on chromosome 3 in these families in SIM-
PHEN.1.csv (John Blangero, personal communication),
although this was not true of the other simulated repli-
cates. In contrast, family-based association testing with a
mixed model was still able to detect association with the
functional variants. We found that using the known
pedigree structure in SOLAR provided similar but
slightly stronger evidence for association than EMMAX,
which treats subjects as unrelated but accounts for relat-
edness through an empirical covariance matrix. Finally,
use of observed genotype data provides a stronger asso-
ciation signal than imputed data, although the difference

between the two sets of p-values can be negligible. This
suggests that when direct genotyping is not possible,
pedigree-based imputation provides a practical and use-
ful alternative.
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