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Abstract

We are now well into the sequencing era of genetic analysis, and methods to investigate rare variants associated
with disease remain in high demand. Currently, the more common rare variant analysis methods are burden tests
and variance component tests. This report introduces a burden test known as the modified replication based sum
statistic and evaluates its performance, and the performance of other common burden and variance component
tests under the setting of a small sample size (103 total cases and controls) using the Genetic Analysis Workshop
18 simulated data with complete knowledge of the simulation model. Specifically we look at the variable threshold
sum statistic, replication-based sum statistics, the C-alpha, and sequence kernel association test. Using minor allele
frequency thresholds of less than 0.05, we find that the modified replication based sum statistic is competitive with
all methods and that using 103 individuals leads to all methods being vastly underpowered. Much larger sample
sizes are needed to confidently find truly associated genes.

Background

We are now well into the sequencing era of genetic analy-
sis, and methods to investigate rare variants associated
with disease remain in high demand. The typical methods
for detecting single variants associated with disease are not
suited for the rare variants, owing to the low minor allele
frequency (MAF) of rare variants. Most rare variant analy-
sis methods fall into two categories, burden tests [1] and
variance component tests [2]. Both of these classes of tests
find association between rare variants and disease by pool-
ing rare variants in a defined region in some sense.
Whereas burden tests pool the change in risk (positive or
negative) caused by total rare variants in a region, variance
component methods compare the distribution of rare
variant counts with that expected under the null.

We begin by briefly summarizing some of the more
common and more recent methods for rare variant ana-
lyses and give their primary references. We consider the
following burden tests: the variable threshold sum statistic
(VT) [3] and the replication-based weighted sum statistic
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(RBS) [4] and the following variance component tests:
C-alpha [5] and the sequence kernel association test
(SKAT) for rare variants [2]. The variable threshold sum
statistic computes a score for each region or gene based
on a weighted sum of variant counts. The weights are
defined by a combination of variant importance score, or
frequency weight, and allow the minor allele threshold to
vary according to locus to define the rare variant [3]. The
VT method assumes the variants in each gene affect risk
in the same direction. RBS constructs a weighted sum of
rare variant scores, defining weights as a function of the
minor allele being more frequent in the cases or controls
and constructing the appropriate weighted sum score of
those variants overrepresented in the controls (S,) or
cases (S.) to accommodate both protective or deleterious
rare variants within the same gene [4]. Then the final sta-
tistic to assess the association of rare variants to disease
can be constructed in one of two ways. Take the maxi-
mum of the weighted sum of the variants more frequent
in the cases and the weighted sum in the controls (S, =
max[S_,S,]) or sum the weighted sums (Scomp = S. + S)
[4]. In this paper, we propose an additional RBS that com-
bines S_and S, based on the data. The C-alpha statistic is
a variance component method that compares the
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distribution of the rare variants in the sample with that
expected under the null, assuming a binomial distribution
of each rare variant [5]. And finally, SKAT uses a linear
model type approach to construct an aggregate weighted
score test statistic for variants in a given region of interest
[2]. Both C-alpha and SKAT can accommodate both risk
and protective variants in the same gene.

Additionally, a major issue faced with researchers
investigating rare variants, beyond the low MAF, is sam-
ple size considerations. Although some consortia exist,
providing larger sample sizes for rare variant analyses,
many researchers following up genome-wide association
studies (GWAS) do not have the resources to sequence
the full GWAS sample, leading to sample sizes on the
order of only a few hundred for rare variant analysis.
One recent study used 40 individuals in total [6].

As with all methods, larger samples give more power,
and limited sample size limits the power. With rare var-
iants, this is compounded because only a few individuals
in the sample will exhibit a rare variant. For smaller
samples, the MAF of the rare variant must be larger to
even have a chance of appearing in the sample. But
would a rare variant analysis still be useful for the rare
variants that do appear in the sample? And which
method would be effective in detecting the rare variants
with smaller sample size? In addition to examining our
new method, we investigate these questions using the
simulated data of the Genetic Analysis Workshop 18
(GAW18) (see [7] for full details).

Methods
In our study, we propose a modified RBS. We compare
its performance and that of the burden and variance

component tests mentioned earlier. The details of our
modified RBS follow.

The modified replication-based weighted sum statistic:
Stau

We follow the notation from [4]. Let nii denote the

number of variants in group (k’,k) where k’ denotes
copies of the minor allele that appear in the cases and k
denotes copies of the minor alleles that appear in the
controls, and k’ > k. Let nZ_ be defined as a similar
count, except k’ < k. We define S, and S_ as in [4],
which are the two statistics for variants with k’ > k and
k' < k, respectively. Then we can define S, as the
weighted sum of weighted sums: Sy, = ©S, + (1 — 7)S_,

>

K>k

k/ /
Z Hk+ + Z nk,
k'>k k' <k
bines the concepts touched on in the S, .« and S¢omp.
Smax Models the scenario of extremes, either all the rare

where 1 = . Defining t in this way com-
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variants are risk or all are protective, while the S .omp
assumes equal risk and protective rare variants. Si,,
allows the data to weight the impact of risk and protec-
tive variants according to the data, modeling unequal
protective and risk variants in the combined statistic.

Data preparation and phenotype definition

Because the methods detailed are designed for case-
control data, we focus on the unrelated individuals.
Using all of the longitudinal data, we define as a case
any individual who became hypertensive over the course
of observation, and we define as a control any individual
who did not exhibit signs of hypertension. Across the
200 replicates, we have an average of 48 controls and 55
cases for a total of 103 unrelated individuals. (Of the
total 159 unrelated individuals, 103 had all the informa-
tion needed for this analysis.) Because we are comparing
the performance of methods on the same data, we
focused on genes on chromosome 3 that were used in
the simulation model. We used NCBI dbSNP to identify
all the single-nucleotide polymorphisms (SNPs) belong-
ing to each gene on chromosome 3 involved in the
simulation model.

We evaluated type 1 error, based on a resampling
approach, specifically, we simulated a dichotomous phe-
notype to be independent of the genotype following the
method in [8]. We simulate a Bernoulli random variable
with event probability 0.5. If the variable = 1, we change
the original phenotype to the alternate group, and if the
variable =0, we keep the original phenotype status.

Data analysis

For the burden tests, we computed a burden statistic for
each gene. We computed S, .0 Scomb Staw C-alpha, and
VT for chromosome 3 for each replicate using the simu-
lated phenotype. We also used the freely available
R-package for computing SKAT using the default values
with the small sample size option [2]. For each replicate,
we recorded whether each method declared one of the
solution genes as significant and reported the power for
each method as the proportion of the 200 replicates
where each method identified the gene as associated
with the disease. We focused our analysis on rarer SNPs
with MAFs less than 5%.

Results

The signal strength for each gene on chromosome
3 ranged from 0% to 4.5% (the number of causal rare var-
iants divided by the total rare variants). The actual raw
number of causal variants per gene ranged from 0 to 9,
and the number of total variants per gene ranged from 5
to 2531. Thus, the total number of rare variants (denomi-
nator) controlled the signal to noise ratio (see Figure 1,
horizontal axis). To compare the performance of each
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Figure 1 Power for analysis with minor allele frequency (MAF) less than 0.05. This figure shows the power of each method to detect each
gene as causal for the 200 replicates of the simulation data when including only rarer variants with empirical MAF less than 0.05. The methods
perform similarly within each gene. Especially note the performance of the modified replication based sum statistic Stay (solid black bar) relative
to its predecessors Scomb aNd Smax. For these data, all 3 methods are very competitive. Below the horizontal axis is the percent signal for each

gene (percent of causal rare variants divided by the total number of rare variants multiplied by 100).

method on the nongenetic dichotomous phenotype, the
type 1 error was controlled at the 0.05 level. Across all 200
simulated replicates, the average proportion of significance
for all genes for each method was 0.05.

The modified replication based sum statistic, Sy,
performs competitively, especially compared with the

methods across genes, when averaging each method’s
power across all genes, the averages were close to 0.05
(Table 1).

Table 1 Mean power for each method across all genes

other replication based statistics, Spax and Scomp, Method Hypertension Nongenetic
within 5% power of each other. In fact, most of the 6  Suu 0.056 0.048
methods performed similarly for each gene, (within  Scomo 0083 0049
5%). Power exceeded 10% for only 9 of the 30 causal  Smax 0.055 0.046
genes: ARHGEF3, FBLN2, GPR160, PAK2, PTPLB  C-alpha 0.043 0.050
(SKAT only), RADI8 (VT only), RYBP (VT only) VI 0.069 0.050
SERPI, TFDP2, and TUSC2 (Figure 1). Additionally,  SKAT 0.051 0.055

for some genes (GRP160, SERP1, TFDP2, TUSC2), the
VT method is substantially more powerful than the
other methods, but for others (e.g., SEMAS3FE), it is less
powerful. Regardless of the variance in power across

This table reports the mean power for each of the 6 methods investigated for
those variants with minor allele frequencies less than 0.05. We report the
power for the simulated hypertension phenotype as well as for a nongenetic
phenotype for type 1 error.

SKAT, sequence kernel association test; VT, variable threshold.
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Discussion

The new method we introduced in this paper, S, per-
forms competitively with other popular methods for
rare variant analysis. It does not exhibit false positives
much higher than the other methods, nor does it stand
alone in its detecting or failing to detect the causal var-
iants. However, given the small sample size, it is difficult
to identify any new advantages or disadvantages of this
modified replication-based method.

In fact, all methods investigated here are underpow-
ered for this case-control study with a sample size of
103 individuals. These methods fail to detect the causal
rare variants most of the time (Figure 1). Even more
complex, there is not an easily identified pattern or
rationale to when these methods do well for this sample
size. For instance, all methods exhibited poor power
(<0.05) to detect MAP4, which was simulated to be one
of the top 15 genes with the largest effect sizes for any
gene on chromosome 3. And yet TUSC2 has only one
causal variant according to the simulation model para-
meters, whose minor allele was not present in our sam-
ple. As a gene, it is much smaller with only 19 rare
variants compared with MAP4 with more than 400 var-
iants. Yet it only has a few variants analyzed, and 2 of
them are in linkage disequilibrium (LD) (R* >0.25) with
a causal variant in MAP4 that has a large effect size for
both diastolic blood pressure (DBP) and systolic blood
pressure (SBP). Because this is a gene detected by all
methods with power greater than 0.2, the power could
be driven through the LD with the large effect size com-
bined with the small number of total variants included
in the weighted sum. Beyond gene size and LD, using a
dichotomous hypertension variable rather than the con-
tinuous trait could have cost power and added complex-
ity to determine the efficacies of these methods with
such a small sample size versus using SBP or DBP as a
continuous trait.

Conclusions

The main conclusion of this paper is that for all meth-
ods, 103 individuals are not enough for a rare variant
analysis of a complex qualitative disease such as hyper-
tension. Perhaps power can be increased using blood
pressure as a continuous trait rather than treating
hypertension status as a qualitative trait. A secondary
conclusion from this report is that the new method S,
performs similar to its predecessors (S¢omp and Spa). It
is worth further investigation to more clearly determine
any advantages for using Sia,.
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