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Abstract

Sequence kernel association test (SKAT) has become one of the most commonly used nonburden tests for
analyzing rare variants. Performance of burden tests depends on the weighting of rare and common variants when
collapsing them in a genomic region. Using the systolic and diastolic blood pressure phenotypes of 142 unrelated
individuals in the Genetic Analysis Workshop 18 data, we investigated whether performance of SKAT also depends
on the weighting scheme. We analyzed the entire sequencing data for all 200 replications using 3 weighting
schemes: equal weighting, Madsen-Browning weighting, and SKAT default linear weighting. We considered two
options: all single-nucleotide polymorphisms (SNPs) and only low-frequency SNPs. A SKAT default weighting
scheme (which heavily downweights common variants) performed better for the genes in which causal SNPs are
mostly rare. This SKAT default weighting scheme behaved similarly to other weighting schemes after eliminating all
common SNPs. In contrast, the equal weighting scheme performed the best for MAP4 and FLT3, both of which
included a common variant with a large effect. However, SKAT with all 3 weighting schemes performed poorly.
Overall power across all causal genes was about 0.05, which was almost identical to the type I error rate. This poor
performance is partly due to a small sample size because of the need to analyze only unrelated individuals.
Because a half of causal SNPs were not found in the annotation file based on the 1000 Genomes Project, we
suspect that performance was also affected by our use of incomplete annotation information.

Background
Common variants have long been thought to have a
major role in common phenotypes; however, genome-
wide association studies (GWAS) that focused on com-
mon variants have explained only a small proportion of
heritability. Because rare variants are expected to have
larger effect sizes than common variants, they may
explain a proportion of the missing heritability [1]. As
reviewed by Bansal et al [2], because of limited power
for detecting the individual effects of rare variants,
several approaches for identifying them have used

collapsing methods (called burden tests) that assess the
combined effect of multiple rare variants in a genomic
region.
Because these burden tests implicitly assume that all

variants influence the trait in the same direction and
with the same magnitude of effect (after incorporating
known weights), their power is reduced if certain var-
iants confer increased risk while others are protective
[3]. Several methods have been developed recently that
are less sensitive to this mixture of rare-variant effects.
Two one-sided statistics by Ionita-Laza et al [4] quantify
enrichment in risk variants and protective variants,
respectively. The C-alpha test by Neale et al [5] uses the
distribution of genetic variation observed in cases and
controls to detect the presence of a mixture, thus
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implicating genes as risk factors for disease. By testing
the variance rather than the mean, the C-alpha test
maintains consistent power when the target set contains
both risk and protective variants [5]. The sequence kernel
association test (SKAT) by Wu et al [6] is a score-based
variance component test for association of variants in a
region for continuous and discrete traits, which easily
adjusts for covariates.
Performance of burden tests has been shown to depend

on how rare and common variants are weighted when
collapsing them in a genomic region [2,7]. In this article,
using the Genetic Analysis Workshop 18 (GAW18)
sequence data, we investigated whether performance of
the most commonly used nonburden test, SKAT, also
depends on the weighting scheme. In particular, we evalu-
ated 3 weighting schemes: equal weighting, Madsen-
Browning weighting, and SKAT default linear weighting.
Analyses were performed without knowledge of the under-
lying simulation model. However, we used the GAW18
answers in presenting the results below.

Methods
Sequence and phenotypic data
GAW18 provided whole genome sequencing (WGS) data
and longitudinal phenotype data for related individuals of
Mexican American heritage. Because SKAT can only
handle unrelated individuals, we used both sequence and
phenotype data on a subset of 142 unrelated individuals.
Using PLINK [8], we extracted the data and created
input files for SKAT. We used the first-visit measure-
ments for diastolic blood pressure (DBP) and systolic
blood pressure (SBP) for all 200 simulated data and the
most likely genotype data based on sequencing (geno.csv
files). For covariates of both DBP and SBP, we used age,
sex, blood pressure medication, and smoking.

Annotation files
To obtain a gene list to run SKAT, we used the annotation
file that was constructed based on the 1000 Genomes
Project (http://www.sph.umich.edu/csg/abecasis/MACH/
download/1000G-2010-06.html). Of the 8,348,674 single-
nucleotide polymorphisms (SNPs) in the data set,
2,652,577 were located in genes, with a total of 10,922
genes. Some of these SNPs belonged to multiple overlap-
ping genes and were used for multiple genes in which they
were contained. Because 1,856,005 SNPs in the genotype
files were not found in the 1000 Genomes annotation file,
not all genes were available for testing. For the SBP pheno-
type, we were missing 4 causal genes, and for the DBP
phenotype, we were missing 3 causal genes.

Statistical analysis
We applied SKAT to the analysis of all 200 replicates of
simulated DBP and SBP phenotypes for 2,652,577 SNPs

that are located in genes, spanning all odd-numbered
chromosomes provided by GAW18. Because our analy-
sis was based on 142 unrelated individuals, instead of
using minor allele frequency (MAF) provided by
GAW18 (which is based on 959 related individuals), we
computed MAF based on these 142 individuals using
PLINK [8]. We also constructed a data set including
low-frequency SNPs (with our computed MAF <0.05).
For a continuous trait Y, SKAT uses a linear model

Yi = γ0 + γ1 Xi + βGi with genotype values Gi and cov-
ariates Xi for subject i. As described by Wu et al [6],
SKAT assumes that the genetic effect bj of an individual
variant j follows an arbitrary distribution with mean 0
and variance wjτ, where τ is a variance component and
wj is a prespecified weight for variant j. SKAT further
assumes that

√
wj follows Beta (MAFj; a1,a2). Weighting

with a1 = a2 = 1 corresponds to equally weighting all
variants regardless of their MAF, which was shown to
be equivalent to the C-alpha test by Neale at al [5].
Weighting with a1 = a2 = 0.5 is the same as the weight
used by Madsen and Browning [7]. Default linear
weighting by SKAT uses a1 = 1 and a2 = 25, which puts
more weight on rare variants than Madsen-Browning
(M-B) weighting, as shown in Figure 1.
For both data sets (one with all SNPs and another with

only low-frequency SNPs), we ran SKAT using these 3
weighting schemes: equal weighting, Madsen-Browning
weighting, and SKAT default linear weighting. For each
scenario, we obtained p-values for the 10,922 genes in 200
replications. To evaluate performance, we computed
power (true-positive) and type I error (false-positive) rates

Figure 1 Weighting schemes used in sequence kernel
association test analysis. MAF, minor allele frequency.
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at level 0.05. For each gene, power was computed by the
proportion of replicates with p < 0.05 over 200 replicates.
The overall power was computed by averaging these
values across all causal genes. Type I error was computed
by averaging these values across all null genes.

Results
Overall empirical power and type I error
Table 1 presents type I error and overall power using
3 weighting schemes for both data sets. All 3 weighting
schemes performed poorly. No causal gene met the
threshold for genome-wide significance, and the lowest
p-value for a true positive occurred at 1.0 × 10−5 for ana-
lyses of SBP and 1.0 × 10−4 for analyses of DBP. The type
I error was slightly below 0.05, roughly keeping the level
0.05. Overall power across all causal genes was about 0.05,
which was almost identical to the type I error rate. The
equal weighting scheme using all SNPs performed slightly
better for both DBP and SBP phenotypes.

Empirical power at causal genes
Although overall power was similar across the 3 weighting
schemes, power at each causal gene varied greatly and
depended on the weighting scheme. When using all SNPs,
results were considerably different across 3 weighting
schemes, as shown in the left plot of Figure 2. In particu-
lar, the correlation between power using equal weighting
and power using default weighting was 0.17 (shown in
Table 2). In contrast, when using rare SNPs, results were
more consistent across different weighting schemes, as
shown in the right plot of Figure 2. Results using default
weighting were very similar when using all SNPs and
when using only rare SNPs (with correlation 0.97).
To understand how power depended on the weighting

scheme, we selected causal genes that show power over
0.2 from at least one of weighting schemes from Figure
2; these selected causal genes are presented in Table 3.
For genes TXNIP, GLUL, PDCD6IP, DGKE, and SCAP,
the SKAT default weighting gave much higher power
than equal weighting. Except for PDCD6IP, all causal
SNPs were low frequency (with MAF <0.05). Using only
low-frequency SNPs provided similar performance.
However, for genes MAP4, FLNB, DHX8, FGR,

S100A6, and KRT23, the equal weighting scheme gave

much higher power than the SKAT default weighting
(0.32 vs. 0.04 at MAP4 for DBP). Looking within the top
20 causal variants, we found that MAP4 has 6 of the top
10 variants with the greatest effect on SBP and DBP.
For all of these variants, one was common with a MAF
of 0.38, and the other 5 were low frequency (with MAF
<0.05). Similarly, gene FLT3 had 2 variants that fell
within the top 20 causal variants, one common with a
MAF of 0.42 and one rare with a MAF of 0.0016. No
other causal gene had more than one variant in the top
20 causal variants. Because of this, we suspect that equal
weighting performed better than SKAT default weight-
ing, which gives a much higher weight to rarer variants.
We also considered whether performance would depend

on the signal-to-noise ratio, defined as the number of cau-
sal variants divided by the total number of variants in the
gene, for each of the top 15 genes. For DBP, MAP4 had
the 10th lowest sig signal-to-noise ratio, and FLT3 had the
13th lowest. For the SBP phenotype, they were 7th and
10th, respectively. Therefore, we found that signal-to-noise
ratio could not account for the relatively high performance
on MAP4 and FLT3.

Discussion and conclusions
SKAT has become one of the most commonly used non-
burden tests for analyzing rare variants because it is fast
and because nonburden tests are shown to be more
powerful when most variants are noncausal or the effects
of causal variants are in different directions. Using SKAT,
we were able to analyze the entire sequencing data for all
200 replications of both DBP and SBP simulated pheno-
types under six different cases (3 weighting schemes times
two data sets: one with all SNPs another with only low-
frequency SNPs). Performance of burden tests has been
shown to depend on how to weigh rare and common var-
iants when collapsing them in a genomic region. In this
article, using the GAW 18 sequence data, we found that
performance of the nonburden test SKAT also depended
on the weighting scheme.
In this article, we focused on the ability of SKAT to

detect genes with various MAF-based weighting
schemes. When causal SNPs within a gene are mostly
rare, then MAF-based weighting by upweighting rare
variants and downweighting common variants would be

Table 1 Empirical power and type I error at a = 0.05 for diastolic blood pressure and systolic blood pressure phenotypes

Phenotype DBP SBP

SNPs All Rare All Rare

Weight Equal M-B Default Equal M-B Default Equal M-B Default Equal M-B Default

Type I Error 0.047 0.043 0.043 0.044 0.042 0.043 0.048 0.048 0.049 0.048 0.050 0.049

Power 0.053 0.050 0.048 0.048 0.050 0.048 0.054 0.053 0.053 0.049 0.052 0.052

Bolded text indicates the highest power across 6 analysis options for each phenotype.

DBP, diastolic blood pressure; M-B, Madsen-Browning; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism.
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Figure 2 Power comparison using 3 weighting schemes. (A) All single-nucleotide polymorphisms (SNPs). (B) Rare SNPs. DBP, diastolic blood
pressure M-B, Madsen-Browning; SBP, systolic blood pressure.

Table 2 Spearman correlation across empirical powers at all causal genes

Correlation All Rare

Equal M-B Default Equal M-B Default

All Equal 0.69 0.17 0.13 0.11 0.11

M-B 0.61 0.47 0.55 0.54

Default 0.79 0.87 0.95

Rare Equal 0.70 0.80

M-B 0.91

Default

Bolded text indicates the correlation greater than 0.8.

M-B, Madsen-Browning

Table 3 Causal genes with empirical power over 0.2 using any weighting scheme

Causal Genes Number of SNPs Number of causal SNPs1 Total % variance explained2 All Rare

All Rare All Rare Equal M-B Default Equal M-B Default

DBP

MAP4 542 392 6 5 0.04826 0.30 0.27 0.07 0.09 0.06 0.07

FLT3 639 308 4 2 0.01053 0.33 0.26 0.04 0.06 0.04 0.04

DHX8 142 89 2 2 0.00007 0.25 0.23 0.06 0.09 0.04 0.05

FGR 92 78 2 1 0.00006 0.33 0.12 0.16 0.18 0.11 0.16

TXNIP 9 6 1 1 <1.0E-5 0.09 0.16 0.25 0.33 0.21 0.29

GLUL 44 24 2 2 0.00012 0.07 0.12 0.28 0.12 0.24 0.28

PDCD6IP 359 215 4 2 0.00058 0.04 0.06 0.29 0.15 0.33 0.30

DGKE 136 71 1 0 0.00005 0.02 0.05 0.23 0.05 0.28 0.25

PTTG1IP 174 116 2 2 0.00005 0.04 0.09 0.15 0.20 0.13 0.15

EPHA2 133 93 1 1 0.00021 0.03 0.17 0.11 0.03 0.20 0.10
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more desirable. Indeed we found that the SKAT default
weighting scheme (which heavily downweights common
variants) performed better for such genes. We also
found that this SKAT default weighting scheme behaved
similarly to other weighting schemes after eliminating
all common SNPs. In contrast, we observed that an
equal weighting scheme performed the best for MAP4
and FLT3, both of which included a common variant
with a large effect.
However, we found that SKAT with all 3 weighting

schemes performed poorly. Overall power across all cau-
sal genes was about 0.05, which was almost identical to
the type I error rate. We suspect that this poor perfor-
mance is partly due to a small sample size. Wu et al [6]
previously demonstrated that SKAT, as with other rare
variant methods, is severely hindered by small sample
sizes, and this data set was no exception. Lin and Tang
[9] had previously compared several rare variant meth-
ods and found that SKAT is very conservative when
sample size and the level a for calculating power are
small. Our results were also consistent with a study per-
formed by Daye et al [10] that showed at a sample size
of 200, SKAT performs at or around the a = 0.05 level
regardless of coverage.
Many GAW18 investigators that analyzed only unrelated

individuals (with a sample size of 142) have also observed
poor performance. Because of high sequencing costs,
small sample sizes will continue to be a problem with rare
variant analysis. We observed that analysis using all related
individuals (with a sample size of 847) performed much
better [11]. For example, results based on a burden test
using all related individuals provided an empirical power
of 0.99 for MAP4. SKAT was recently extended to handle
related individuals for continuous phenotypes [12]. We
expect that if the extended SKAT were applied to all
related individuals in GAW18 data, it would provide better
performance for detecting rare variants.

To apply both burden and nonburden tests for a
gene, it is necessary to know which SNPs are contained
in the gene. GAW18 performed WGS of 1043 indivi-
duals of Mexican American heritage with an average
60x sequencing depth, with a goal of finding novel
SNPs. However, this creates a problem for applying
these rare variant approaches because available annota-
tion information does not contain these novel variants.
In particular, among 1458 causal SNPs in the Answers,
only 731 SNPs were contained in the annotation file
that was constructed based on the 1000 Genomes Pro-
ject. In addition to a small sample size, we suspect that
our results were also affected by our use of incomplete
annotation information. Although the results and
issues presented in this article were based on GAW18
data, they may be shared with other sequencing
studies.
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Table 3 Causal genes with empirical power over 0.2 using any weighting scheme (Continued)

SBP

MAP4 542 392 7 5 0.05824 0.27 0.27 0.14 0.17 0.09 0.14

FLT3 639 308 4 2 0.00841 0.20 0.18 0.04 0.04 0.03 0.03

DHX8 142 89 2 2 0.00002 0.25 0.25 0.02 0.10 0.03 0.03

S100A6 14 11 2 2 0.00003 0.27 0.09 0.06 0.05 0.05 0.05

KRT23 79 31 2 1 0.00016 0.24 0.24 0.04 0.03 0.02 0.02

TXNIP 9 6 1 1 <1.0E-5 0.09 0.14 0.20 0.26 0.14 0.22

GLUL 44 24 2 2 0.00006 0.04 0.09 0.27 0.11 0.22 0.28

PDCD6IP 359 215 4 2 0.00027 0.04 0.08 0.33 0.17 0.36 0.33

SCAP 114 83 1 1 0.00003 0.06 0.17 0.40 0.39 0.24 0.36

EPHA2 133 93 1 1 0.00018 0.04 0.27 0.21 0.10 0.34 0.22
1Number of causal single-nucleotide polymorphisms (SNPs) is computed based on the used annotation file (not based on the answers).
2Total % variance explained is computed by adding the percent variance explained by each SNP based on the used annotation file (not based on the answers).

Bolded text indicates the empirical power greater than 0.2.

DBP, diastolic blood pressure; M-B, Madsen-Browning; SBP, systolic blood pressure.
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