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Abstract

Background: Elucidation of protein-protein interaction (PPI) networks is important for understanding disease
mechanisms and for drug discovery. Tertiary-structure-based in silico PPI prediction methods have been developed
with two typical approaches: a method based on template matching with known protein structures and a method
based on de novo protein docking. However, the template-based method has a narrow applicable range because
of its use of template information, and the de novo docking based method does not have good prediction
performance. In addition, both of these in silico prediction methods have insufficient precision, and require
validation of the predicted PPIs by biological experiments, leading to considerable expenditure; therefore, PPI
prediction methods with greater precision are needed.

Results: We have proposed a new structure-based PPI prediction method by combining template-based prediction
and de novo docking prediction. When we applied the method to the human apoptosis signaling pathway, we
obtained a precision value of 0.333, which is higher than that achieved using conventional methods (0.231 for
PRISM, a template-based method, and 0.145 for MEGADOCK, a non-template-based method), while maintaining an
F-measure value (0.285) comparable to that obtained using conventional methods (0.296 for PRISM, and 0.220 for
MEGADOCK).

Conclusions: Our consensus method successfully predicted a PPI network with greater precision than conventional
template/non-template methods, which may thus reduce the cost of validation by laboratory experiments for
confirming novel PPIs from predicted PPIs. Therefore, our method may serve as an aid for promoting interactome
analysis.

Introduction
Elucidation of regulatory relationships among the tens
of thousands of protein species that function in a
human cell is crucial for understanding the mechanisms
underlying diseases and for the development of medi-
cines [1]. Predicting protein-protein interaction (PPI)
networks at the genome scale is one of the main topics
in systems biology.

The methods used for PPI network prediction include
primary-structure-based searching [2,3], evolutionary
information-based methods [4], and tertiary-structure-
based methods [5-7]. Tertiary-structure-based methods
are attracting attention because they provide predicted
protein complex structures and because they do not
depend on homologous proteins. Tertiary structural
information also provides powerful features for recogni-
tion [8,9] and is therefore useful for predicting binding
affinity [10] in protein-protein complexes.
There are two typical approaches for tertiary-struc-

ture-based PPI predictions: a method based on template
matching with known protein structures and another
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method based on de novo protein docking. The tem-
plate-based method is based on the hypothesis that
known complex structures or interface architectures can
be used to model the complex formed between two tar-
get proteins. The hypothesis is logical, and this method
provides good prediction performance when complex
structural information is available as a template; how-
ever, if the template structure information is not avail-
able, performance is poor. In addition, because the
interface architecture is not always similar for similar
interactions, the template-based method has a narrow
applicable range. In contrast, the de novo docking based
method has a wide applicable range because it uses only
tertiary structural information. However, because the
advantage provided by existing template information is
not utilized, the prediction performance is poor.
Tuncbag et al. developed a template-based PPI predic-

tion method called PRISM [5], which is based on infor-
mation regarding the interaction surface of crystalline
complex structures. PRISM has been applied for predict-
ing PPIs in a human apoptosis pathway [11] and a p53-
protein-related pathway [12], and has contributed to the
understanding of the structural mechanisms underlying
some types of signal transduction. Ohue et al. developed
a PPI prediction method called MEGADOCK [6] and
Wass et al. developed a method [13] based on protein-
protein docking without interaction surface information.
MEGADOCK has been applied for PPI prediction for a
bacterial chemotaxis pathway [7,14] and has contributed
to the identification of protein pairs that may interact.
However, the prediction results of both template-based

and de novo docking-based methods in these studies con-
tained many false-positive predictions. PRISM obtained a
precision value of 0.231 when applied to a human apop-
tosis pathway that consisted of 57 proteins, which was
higher than the precision obtained with random predic-
tion (precision value of 0.086), and MEGADOCK
obtained a precision value of 0.400 when applied to a
bacterial chemotaxis pathway that consisted of 13 pro-
teins, which was higher than the precision obtained with
random prediction (precision value of 0.253). To identify
new PPIs, the prediction results need to be validated
using biological experiments. For this purpose, obtaining
a low number of predicted interaction candidates with
high reliability is more important than obtaining a high
number of predictions with low reliability. Thus, this
paper aims to improve the reliability of the method used
to obtain PPI predictions.
In this study, we combined two different PPI prediction

methods to improve the precision of PPI prediction.
Because PRISM is a template-based method, its prediction
accuracy depends on the template dataset prepared. Only
PPIs whose interaction surface structures are conserved
are expected to be predicted. In contrast, MEGADOCK is

a non-template-based method (also called de novo predic-
tion), which has the demerit of generating false-positives
for the cases in which no similar structures are seen in
known complex structure databases; thus, template-based
method would be ruled out from the prediction. However,
in situations where template structures are not present in
databases, MEGADOCK can still predict PPIs. This quali-
tative difference between the two methods typically makes
their output different. Thus, the combination of both pre-
diction methods may improve prediction accuracy, as the
intersection set (AND set) of both results may contain
fewer false-positives; this improvement in precision would
also contribute to improvement in the prediction reliability
provided by the use of just one method.
Such an approach is called a “meta” approach. Meta

approaches have already been used in the field of protein
tertiary structure prediction [15], and critical experiments
have demonstrated improved performance of meta predic-
tors when compared with the individual methods used in
the meta predictors. The meta approach has also provided
favorable results in protein domain prediction [16] and the
prediction of disordered regions in proteins [17]. We have
therefore proposed a new PPI prediction method based on
the consensus between template-based and de novo dock-
ing methods. Generally, a meta prediction method may
have low applicability because meta approaches require
applicable conditions for every method in the approach.
However, if structural information is available, the de novo
docking method introduced in this study is always applic-
able with or without template information. Thus, the
applicability of the consensus method is not narrower
than that of a template-based method.

Materials and methods
Template-based PPI prediction
We used PRISM for template-based PPI prediction.
PRISM uses two input datasets: the template set and the
target set. The template set consists of interfaces extracted
from protein pairs that are known to interact. The target
set consists of protein chains whose interactions need to
be predicted. The two sides of a template interface are
compared with the surfaces of two target monomers by
structural alignment. If regions of the target surfaces are
similar to the complementary sides of the template inter-
face, then these two targets are predicted to interact with
each other through the template interface architecture.
The prediction algorithm consists of four steps:

(1) interacting surface residues of target chains are
extracted using Naccess [18]; (2) complementary chains
of template interfaces are separated and structurally
compared with each of the target surfaces by using
MultiProt [19]; (3) the structural alignment results are
filtered according to threshold values, and the resulting set
of target surfaces is transformed onto the corresponding
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template interfaces to form a complex; and (4) the Fiber-
Dock [20] algorithm is used to refine the interactions to
introduce flexibility, resolve steric clashes of side chains,
compute the global energy of the complex, and rank the
solutions according to their energies. When the computed
energy of a protein pair is less than −10 kcal/mol, the pair
is determined to “interact” (personal communication with
Ms. Saliha Ece Acuner Ozbabacan, July 12, 2013). This
prediction protocol has been described in detail in a
previous study [5,11].

PPI prediction based on the de novo docking method
For de novo protein docking-based PPI prediction, we
used MEGADOCK version 2.6.2 [7]. MEGADOCK does
not require template structures for prediction. The PPI
prediction scheme used in this study consists of two
steps. First, we conducted rigid-body docking calcula-
tions based on a simplified energy function considering
shape complementarity, electrostatics, and hydrophobic
interactions for all possible binary combinations of pro-
teins in the target set. Using this process, we obtained a
group of high-scoring docking complexes for each pair
of proteins. Next, we applied ZRANK [21] to the pre-
dicted complex structures for more advanced binding
energy calculation and re-ranked the docking results
based on ZRANK energy scores. The deviation of the
selected docking scores from the score distribution of
high-ranked complexes was determined as a standar-
dized score (Z-score) and was used to assess possible
interactions. This prediction protocol has been described
in previous studies [22,23]. Potential complexes that had
no other high-scoring interactions nearby were rejected
using structural differences. Thus, we considered likely
binding pairs that had at least one populated area of
high-scoring structures, one of which may be the true
binding site.

Consensus prediction method
In this study, we proposed a new meta-prediction method
by evaluating the consensus between both previously used
prediction methods. The proposed method consists of two
steps: (1) prediction from the same target set by PRISM
and MEGADOCK and (2) consideration that the method
provides a prediction regarding target protein pair interac-
tion only when both PRISM and MEGADOCK predict
that the target protein pair interacts. Although some true-
positives may be dropped by this method, the remaining
predicted pairs are expected to have higher reliability
because of the consensus between two prediction methods
that have different characteristics.

Dataset
In this study, we focused on the human apoptosis sig-
naling pathway previously analyzed by PRISM because

our prediction results can thus be compared directly to
the results of the previous study. PRISM and MEGA-
DOCK are based on three-dimensional protein struc-
tures and therefore can only be applied to proteins whose
tertiary structures are available. Therefore, we searched
among proteins involved in the human apoptosis path-
way that were present in the Protein Data Bank (PDB)
(accessed on July 28, 2012). We selected several proteins
that had the highest resolution for the structural group
that had high sequence similarity (>0.9) with the other
proteins in the dataset [11]. After filtering according to
resolution and sequence similarity, we obtained 158 PDB
structures that corresponded to 57 proteins in the
human apoptosis pathway described in KEGG (KEGG
pathway ID: hsa04210) [24]. The PDB IDs in this struc-
ture dataset were the same as those used by Ozbabacan
et al. [11]. Table 1 shows the list of PDB IDs and chains
of this dataset.
Known PPIs were collected from the STRING database

[25]. We used only experimental data in the literature
obtained from STRING with a confidence score >0.5. The
number of known PPIs was 137. Because the database
does not contain existing self-interactions, we did not pre-
dict self-interactions. Thus, the number of target pairs
was 57C2 = 1,596.

Evaluation of prediction performance
Here, we have defined #TP, #FP, #FN, #TN, precision,
recall, and the F-measure, which we used to evaluate the
prediction results: #TP is the number of predicted PPIs
that were also found in STRING (true-positive), #FP is
the number of predicted PPIs that were not in STRING
(false-positive), #FN is the number of PPIs not predicted
by the system even though the pair was found to interact
in STRING (false-negative), and #TN is the number of
negative predictions that were also not found in STRING
(true-negative). Precision, recall, and the F-measure are
represented as follows:

precision =
#TP

#TP + #FP
, recall =

#TP
#TP + #FN

, F −measure =
2 · #TP

2 · #TP + #FP + #FN
,

where the F-measure is the harmonic mean of precision
and recall. To identify new PPIs in biological experiments
after in silico screening, precision is more important than
recall to reduce the cost of validation.

Results and Discussion
Comparison of template- and non-template-based
methods
Figure 1(a) and 1(b) show the prediction results for PRISM
and MEGADOCK, respectively, as applied to a human
apoptosis pathway. The threshold used for MEGADOCK
prediction yielded the best value of the F-measure for this
dataset. The diagonal line (black cells) in Figure 1 indicates
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Table 1 Protein and PDB ID list of human apoptosis pathway dataset

Protein Name PDB ID (_Chain)

AIF 1M6I_A

AKT1 1UNQ_A 3CQW_A 3O96_A

AKT2 1MRV_A 1O6K_A 1O6L_A 1P6S_A

AKT3 2X18_A

APAF1 1CY5_A 1Z6T_A 2YGS_A 3IZA_A 3YGS_C

BCL-2 2W3L_A 2XA0_A

BCL-XL 2B48_A 3FDL_A

BID 2BID_A 2KBW_B

Bax 1F16_A 2G5B_I 2XA0_C 3PK1_B

CASP3 1RHQ_A 1RHQ_B 2DKO_A 2DKO_B 2J32_A

CASP6 2WDP_A

CASP7 1F1J_A 1I4O_A 1I51_A 1I51_B 2QL9_A 2QL9_B

CASP8 1QTN_A 1QTN_B 2FUN_B 3H11_B

CASP9 1JXQ_A 1NW9_B 3D9T_C 3YGS_P

Calpain1 1ZCM_A

Calpain2 1KFU_L 2NQA_A

Cn(CHP) 2E30_A

Cn(CHP2) 2BEC_A

Cn(PPP3CA) 1AUI_A 1MF8_A 2R28_C 3LL8_A

Cn(PPP3R1) 1AUI_B 1MF8_B 3LL8_B

CytC 1J3S_A

DFF40 1IBX_A

DFF45 1IBX_B 1IYR_A

FADD 1A1W_A 2GF5_A 3EZQ_B

FLIP 3H11_A

Fas 3EWT_E 3EZQ_A

IAP(BIRC2) 3D9T_A 3M1D_A 3MUP_A

IAP(BIRC3) 2UVL_A 3EB5_A 3EB6_A 3M0A_D 3M0D_D

IAP(BIRC4) 1G73_C 1I4O_C 1I51_E 1NW9_A 2ECG_A 2KNA_A

2POI_A 3CM7_C

I�Ba 1IKN_D 1NFI_E

IKK 2JVX_A 3BRT_B 3BRV_B 3CL3_D 3FX0_A

IL-1(A) 2ILA_A

IL-1(B) 1ITB_A 2NVH_A 3O4O_A

IL-1R(1) 1ITB_B

IL-1R(RAP) 3O4O_B

IL-3 1JLI_A

IL-3R 1EGJ_A

IRAK2 3MOP_K

IRAK4 2NRU_A 3MOP_G

MyD88 2JS7_A 3MOP_A

NF-�B(NFKB1) 1IKN_C 1NFI_B 1SVC_P 2DBF_A

NF-�B(RELA) 1IKN_A 1NFI_A

NGF 1WWW_V 2IFG_E

PI3K(PIK3CA) 2ENQ_A 2V1Y_A 3HHM_A

PI3K(PIK3CG) 1E8Y_A

PI3K(PIK3R1) 1A0N_A 1H9O_A 1PBW_A 2IUG_A 2V1Y_B 3HHM_B

3I5R_A

PI3K(PIK3R2) 2KT1_A 2XS6_A 3MTT_A

PRKACA 3AGM_A

PRKAR2A 2IZX_A

TNFa 1A8M_A 4TSV_A

TNF-R1 1EXT_A 1ICH_A
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self-interactions that were not considered as prediction
targets. As shown in Figure 1, PRISM was performed with
fewer FPs than MEGADOCK. Table 2 shows the evalua-
tion of prediction results. With MEGADOCK, we
obtained a lower value of precision and a higher value of
recall relative to PRISM. When the F-measure was evalu-
ated as a measure of overall performance, MEGADOCK
showed lower values than PRISM. Predictions by MEGA-
DOCK contained more FPs because, in contrast to
PRISM, MEGADOCK does not restrict interface struc-
tures to those found in template structures. In contrast,
PRISM obtained lower recall values than MEGADOCK
because it only searched interactions whose interface
structures could be found in the template set.

Results of the consensus prediction
Figure 2 shows the Venn diagram of the number of TPs
and FPs of the results of PRISM and MEGADOCK. A
large difference was observed in the results obtained by
the two methods. Thus, combining the prediction results
of PRISM and MEGADOCK may provide better perfor-
mance in PPI prediction. All of the predicted pairs of TPs
and FPs are shown in Table S1 in Additional File 1.
Figure 1(c) shows the prediction obtained on consensus

between PRISM (a) and MEGADOCK (b); notably, the
number of FP samples greatly decreased. The first row of
Table 2 shows that the consensus method obtained an
F-measure value of 0.285, which was comparable to the
PRISM result (F-measure = 0.296). The consensus predic-
tion indicated a higher value of precision for the consensus
method (0.333) than for PRISM (0.231). The consensus
method yielded the highest precision value in the method

shown in Table 2. This method is useful when validating
unknown PPI predictions using biological experiments. In
contrast, OR prediction demonstrated high recall (Table
2). Thus, the OR method will be useful when prediction
with high sensitivity, e.g., in the initial construction of the
draft PPI network from the relevant proteins, is required.

An example of a false-positive pair and its predicted
complex structure
The caspase-3 and caspase-7 pair is shown as an exam-
ple of FP predictions in both PRISM and MEGADOCK
with a particularly high evaluation value. Both caspase-3
and caspase-7 are effector caspases, which belong to a
family of cysteine proteases that play essential roles in
apoptosis. Effector caspases are activated by initiator
caspases (e.g., caspase-2, 8, and 9), and then induce
apoptotic cell death. Although the initiator and effector
caspase cascade is well known, interactions among effec-
tor caspases are disputed [26].
The interaction of caspase-3 and caspase-7 was pre-

dicted with a high affinity score; the PRISM energy value
was less than −190 kcal/mol and the MEGADOCK dock-
ing score was higher than 10,000. These values indicate a
powerful affinity interaction. Figure 3 shows the predicted
complex structure for caspase-3 and caspase-7. The pre-
dicted complex consists of 2DKO chain A (caspase-3, p17
subunit) and 2QL9 chain B (caspase-7, p10 subunit).
Additionally, 2DKO chain B (caspase-3, p12 subunit) and

2QL9 chain B, and 2QL9 chain A (caspase-7, p20 subunit)
and 2DKO chain A, respectively, have similar structures.
Thus, the predicted complex with each subunit swapped,
as shown in Figure 3, is similar to the original heterodimer

Table 1 Protein and PDB ID list of human apoptosis pathway dataset (Continued)

TP53 1AIE_A 1OLG_A 1XQH_B 1YC5_B 2B3G_B 2FOO_B

2GS0_B 2K8F_B 2VUK_A 3D06_A 3DAB_B 3LW1_P

TRADD 1F3V_A

TRAF2 1CZZ_A 1D00_A 1F3V_B 3KNV_A 3M0A_A 3M0D_A

TRAIL 1D4V_B 1DG6_A 1DU3_D

TRAIL-R 1D4V_A 1DU3_A

TrkA 1HE7_A 1SHC_B 1WWW_X 2IFG_A

The abbreviations used are: AIF, apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1); AKT1, RAC-alpha serine/threonine-protein kinase; AKT2, RAC-beta
serine/threonine-protein kinase; AKT3, RAC-gamma serine/threonine-protein kinase; APAF1, apoptotic peptidase activating factor 1; BCL-2, B-cell lymphoma 2;
BCL-XL, BCL extra-large; BID, BH3 interacting domain death agonist; Bax, BCL-2-associated × protein; CASP3/6/7/8/9, caspase-3/6/7/8/9; Cn(CHP), calcineurin B
homologous protein 1; Cn(CHP2), calcineurin B homologous protein 2; Cn(PPP3CA), protein phosphatase 3 catalytic subunit alpha isoform; Cn(PPP3R1), protein
phosphatase 3 regulatory subunit 1; CytC, cytochrome C; DFF40, DNA fragmentation factor, 40kDa, beta polypeptide; DFF45, DNA fragmentation factor, 45kDa,
alpha polypeptide; FADD, Fas-associated via death domain; FLIP, FLICE/CASP8 inhibitory protein (CASP8 and FADD-like apoptosis regulator, CFLAR); Fas, tumor
necrosis factor receptor (TNF) superfamily member 6; IAP, inhibitor of apoptosis; BIRC2/3/4, baculoviral IAP repeat-containing protein 2/3/4; I�Ba, nuclear factor of
kappa light polypeptide gene enhancer in B-cells inhibitor alpha; IKK, inhibitor of nuclear factor kappa-B kinase; IL-1(A), interleukin-1 alpha; IL-1(B), interleukin-1
beta; IL-1R(1), type 1 interleukin-1 receptor; IL-1R(RAP), interleukin-1 receptor accessory protein; IL-3, interleukin-3; IL-3R, interleukin-3 receptor; IRAK2/4,
interleukin-1 receptor-associated kinase 2/4; MyD88, myeloid differentiation primary response protein MyD88; NF-�B(NFKB1), nuclear factor of kappa light
polypeptide gene enhancer in B-cells; NF-�B(RELA), nuclear factor of kappa light polypeptide gene enhancer in B-cells 3; NGF, nerve growth factor (beta
polypeptide); PI3K, phosphatidylinositide 3-kinase; PIK3CA, PI3K subunit alpha; PIK3CG, PI3K subunit gamma; PIK3R1, PI3K regulatory subunit alpha; PIK3R2, PI3K
regulatory subunit beta; PRKACA, cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit alpha; PRKAR2A, cAMP-dependent protein
kinase type II-alpha regulatory subunit; TNFa, tumor necrosis factor; TNF-R1, TNF receptor superfamily member 1A; TP53, cellular tumor antigen p53; TRADD, TNF
receptor type 1-associated death domain protein; TRAF2, TNF receptor-associated factor 2; TRAIL, TNF receptor superfamily member 10; TRAIL-R, TNF receptor
superfamily member 10B; TrkA, neurotrophic tyrosine kinase receptor type 1.
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Figure 1 Apoptosis prediction by the (a) PRISM, (b) MEGADOCK, and (c) consensus methods. The green cells are true-positives, the red
cells are false-positives, and the purple cells are false-negatives. The diagonal cells (black cells) have no PPI information in the STRING database
and are excluded from the prediction targets.

Table 2 Accuracy of human apoptosis pathway prediction

Method #TP #FP #FN #TN Precision Recall F-measure

Consensus(AND) 34 68 103 1,391 0.333 0.248 0.285

OR 84 483 53 976 0.148 0.613 0.239

PRISM 56 186 81 1,273 0.231 0.409 0.296

MEGADOCK 62 365 75 1,094 0.145 0.453 0.220
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and possibly predicted to occur with a high score. The
interaction among effector caspases, as in this case, has not
been examined by biological experiments. In fact, another
PPI prediction tool based on template structure and data-
base information, PrePPI [28,29] (version 1.2.0), predicted
the pair of caspase-3 and caspase-7 with a high score (the
final probability value was 0.99). This situation is difficult
to avoid in large-scale prediction problems. However,
efforts such as the Negatome project [30] will help to
improve this difficulty in the future.

Relationship between the number of predicted positives
and the number of structures
The structure-based PPI prediction method may generate
positives with some bias regarding the type of proteins
(rows and columns of Figure 1). From Table 1 and
Figure 1, predictions with a large number of protein struc-
tures tend to generate more positive pairs. To verify this
tendency, the number of PDB chain structures used for
PPI prediction and the number of positive predicted pairs
containing its protein are plotted in Figure 4. The #TPs
are shown in Figure 4(a) and the #FPs are shown in
Figure 4(b). Pearson’s correlation coefficient R and the
P-value for the correlation coefficient t-test are shown in
Table 3.
From the results of the t-tests, the number of chains

and the number of positive predictions were clearly cor-
related with P < 0.05 in all cases, which suggests that the
structure-based PPI prediction method should address
the number of used protein structures without bias. For
example, in a template matching-based method such as
PRISM, a protein pair with more conformations of struc-
tures will have more matches in template complexes and
a higher possibility of predicted interaction. In Table 3,
the correlation coefficient values are particularly high in
FP predictions. Therefore, for more precise prediction,
we should consider one of the two ways: (i) how to gen-
erate the target set without multiple conformations in
each protein and (ii) develop a correction method when
the target set contains multiple conformations.

Performance evaluation with various sensitivity
parameters
In this study, we used a fixed threshold value for MEGA-
DOCK that provided the best F-measure value for
the target dataset. Figure 5 shows a plot of precision vs.
F-measure value for prediction results with various thresh-
old values for MEGADOCK. Figure 5 also plots the per-
formance of the consensus method with various threshold
values for MEGADOCK prediction while the threshold
value for PRISM prediction was fixed. When the threshold
value was changed in MEGADOCK, the plotted values
remained in the region of low precision (0.0-0.2), and
lower F-measure values were observed in the region of
higher precision because of the decreased recall value.
The consensus prediction method maintained a stable
F-measure value when the value of precision was approxi-
mately 0.2-0.3, although the performance in the high-pre-
cision region (> 0.4) was inferior to that of MEGADOCK.
In this region, the consensus prediction provides a better
precision value than PRISM while maintaining the same
F-measure value. Figure 5 clearly shows that the perfor-
mance obtained by using the consensus method is better

Figure 2 Venn diagram of apoptosis pathway prediction
results. The common set (#TP = 34, #FP = 68) is denoted as
“Consensus”.

Figure 3 Predicted complex structure of caspase-3 and
caspase-7. The red colored chain is caspase-3 protein (p17 subunit,
PDB ID: 2QL9, chain B) and the green colored chain is caspase-7
(p10 subunit, PDB ID: 2DKO, chain A). The complex structure is
predicted by MEGADOCK with the highest rank. This image was
produced using PyMOL software [27].
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over a wide range of threshold values than the prediction
obtained using only MEGADOCK.
The AUC, i.e., the area under the ROC curve [31], is a

more general and effective statistical measure. The
ROC0.1 curves, which include the ROC curves up to an
FP rate of 0.1, are shown in Figure 6. ROC curves were
created by plotting the TP rate (#TP/(#TP+#FN)) against
the FP rate (#FP/(#FP+#TN)). Regions with high FP rates
are not useful for prediction because many FPs are gener-
ated, e.g., an FP rate of 0.2 represents #FP = 292. The
ROC0.1 curve was thus considered to favor methods that
produce a high TP rate at low FP rates, and the asso-
ciated area under the curve is referred to as AUC0.1. A
perfect prediction will produce an AUC0.1 of (0.1 × 1 =)
0.1, whereas a random prediction will result in an AUC0.1

of (0.1 × 0.1/2 =) 0.005. Figure 6 shows that the consen-
sus prediction (AUC0.1 = 0.023) is better than the
MEGADOCK (AUC0.1 = 0.014) and random predictions
(AUC0.1 = 0.005).

Conclusions
In this study, we propose a new PPI network prediction
method based on the consensus between template-based

prediction and non-template-based prediction. The con-
sensus method successfully predicted the PPI network
more accurately than the conventional single template/
non-template method. Because such precise prediction
can reduce biological screening costs, it will promote
interactome analysis. For further improvement of pre-
diction performance, it is necessary to further improve
the combination of the two techniques, e.g., by using a
strategy other than taking a simple AND/OR consensus.
For example, biological information such as biochemical
function and subcellular localization information could
be used.

Figure 4 Number of PDB chains vs. positive predictions. (a) Shows the number of true-positives and (b) shows the number of false-positives.
The horizontal axis is the number of PDB chains used in the interaction prediction, and the vertical axis is the number of positives predicted by
using protein structures.

Table 3 Correlation coefficient R and P-value of
correlation test on Figure 4

Method (a) #TPs (b) #FPs

R P-value R P-value

Consensus 0.477 1.784 × 10-4 0.594 1.121 × 10-6

PRISM 0.342 9.259 × 10-3 0.415 1.316 × 10-3

MEGADOCK 0.488 1.167 × 10-4 0.864 4.602 × 10-18

Figure 5 F-measure vs. precision for predictions when the
MEGADOCK threshold parameter is changed in the apoptosis
pathway prediction. The green triangle indicates the results of the
PRISM prediction (Table 2).
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