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Abstract

Background: There is wide interest in calculating genomic breeding values (GEBVs) in livestock using dense,
genome-wide SNP data. The general framework for genomic selection assumes all individuals are genotyped at
high-density, which may not be true in practice. Methods to add additional genotypes for individuals not
genotyped at high density have the potential to increase GEBV accuracy with little or no additional cost. In this
study a long haplotype library was created using a long range phasing algorithm and used in combination with
segregation analysis to impute dense genotypes for non-genotyped dams in the training dataset (S1) and for non-
genotyped or low-density genotyped individuals in the prediction dataset (S2), using the 14" QTL-MAS Workshop
dataset. Alternative low-density scenarios were evaluated for accuracy of imputed genotypes and prediction of
GEBVs.

Results: In S1, females in the training population were not genotyped and prediction individuals were either not
genotyped or genotyped at low-density (evenly spaced at 2, 5 or 10 Mb). The proportion of correctly imputed
genotypes for training females did not change when genotypes were added for individuals in the prediction set
whereas the number of correctly imputed genotypes in the prediction set increased slightly (S1). The S2 scenario
assumed the complete training set was genotyped for all SNPs and the prediction set was not genotyped or
genotyped at low-density. The number of correctly imputed genotypes increased with genotyping density in the
prediction set. Accuracy of genomic breeding values for the prediction set in each scenario were the correlation of
GEBVs with true breeding values and were used to evaluate the potential loss in accuracy with reduced
genotyping. For both ST and S2 the GEBV accuracies were similar when the prediction set was not genotyped and
increased with the addition of low-density genotypes, with the increase larger for S2 than S1.

Conclusions: Genotype imputation using a long haplotype library and segregation analysis is promising for
application in sparsely-genotyped pedigrees. The results of this study suggest that dense genotypes can be
imputed for selection candidates with some loss in genomic breeding value accuracy, but with levels of accuracy
higher than traditional BLUP estimated breeding values. Accurate genotype imputation would allow for a single
low-density SNP panel to be used across traits.
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Background

Numerous approaches have been suggested for predict-
ing genomic breeding values (GEBVs) using single
nucleotide polymorphisms (SNPs), generally based on
the framework described by Meuwissen et al.[1]. These
approaches often assume that high-density genotypes
are available for all individuals, both for estimating mar-
ker effects and for predicting the subsequent GEBVs.
This assumption may not be valid in some livestock spe-
cies, such as pigs, where the cost of genotyping selection
candidates for many SNPs is cost prohibitive, but low-
density panels could be used as they are often much less
expensive (A. Mileham, pers. comm.). These panels are
often comprised of SNPs associated with few traits in a
single population, whereas, ideally, they would be applic-
able across multiple traits and populations. Habier et al.
[2] suggested an approach for imputing high-density
genotypes for low-density genotyped individuals, assum-
ing pedigree information is available and ancestors are
genotyped at high density. This type of approach would
obviate the need for multiple SNP panels for genomic
selection, but assumes a level of high-density genotyping
that may be difficult to achieve in practice. An alterna-
tive, termed segregation analysis and long haplotype
library imputation (SALHI, [3]), involves building a
library of long haplotypes for a population by phasing
densely genotyped individuals and then inferring haplo-
types through the remainder of the population using
individual SNP genotype probabilities (e.g., [4]), option-
ally aided by low density genotypes for some individuals.
Meuwissen and Goddard [5] have described a similar
approach to impute genotypes in whole genome
sequence density data that uses segregation analysis but
not the concept of a haplotype library.

This study evaluated an implementation of SALHI in
terms of the accuracy of genotype imputation and the
accuracy of GEBVs calculated from imputed and non-
imputed genotypes, using data simulated for the 14"
QTL-MAS Workshop.

Methods

Description of imputation

SALHI uses segregation analysis [4] to determine geno-
type probabilities for ungenotyped individuals in a pedi-
gree and a long range phasing and long haplotype
imputation algorithm [6] to phase densely genotyped
individuals and build a haplotype library. When low-
density genotypes are available these can be used in
place of genotype probabilities (geneprobs). Hickey et al.
[3] match all possible haplotype pairs to the genotype
probabilities (and low-density genotypes where known)
of each individual and choose the best matching pair of
haplotypes using a product of probabilities across loci.
The current implementation differs in that a pre-
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selection step is included where the most probable gen-
otype for each individual is inferred from genotype
probabilities (and low-density genotypes) with exclusion
of loci without enough information to distinguish
between genotypes. Single haplotypes and then haplo-
type pairs are selected by matching the most probable
genotypes, followed by an approach similar to that
implemented by Hickey et al.[3] if any additional ambi-
guity in the correct selection remains. Each geneprob
has an index (GPI) that indicates its quality of informa-
tion content [7]. The imputation approach described
here combines this information to identify putative hap-
lotypes for each ungenotyped or low-density genotyped
individual using the following algorithm:
Step 1
The most probable genotype is determined at each
locus, based on the geneprob, where the default geno-
type is the heterozygote when a single geneprob is not
more probable than the others (i.e., all genotypes are
equally likely). A minimum GPI threshold is selected so
that loci with low information content are not used in
this step. This threshold is generally set high, but may
change based on previous performance in the target
population. The most probable genotype at each puta-
tive homozygous locus exceeding the GPI minimum is
compared to the corresponding locus in each single hap-
lotype contained in the library. If the number of oppos-
ing loci (i.e., the haplotype allele can not produce the
genotype) exceeds a pre-determined error threshold the
haplotype is excluded from further consideration.
Step 2
A new GPI minimum is selected (which is generally very
high) to determine which loci are used in this step. The
putative haplotypes that remain from Step 1 are paired
in all possible combinations to yield genotypes. Each
locus (homozygous or heterozygous) exceeding the GPI
minimum is compared to the corresponding locus in
each haplotype pair. If the number of conflicting geno-
types exceeds a pre-determined error threshold the hap-
lotype pair is excluded from further consideration. If
more than one putative haplotype pair remains this step
is repeated with a lower GPI minimum until one haplo-
type remains or until a pre-defined lower bound on the
GPI minimum is reached.
Step 3
If more than one haplotype pair remains after Steps 1
and 2, the probability of each haplotype pair is calcu-
lated using the geneprob at each locus as the sum of the
products of the geneprob and putative genotype across
all loci. The pair with the highest probability is retained.
In each of the first two steps no putative haplotypes or
haplotype pairs may be identified but additional func-
tions may identify a proportion of individual genotypes
based on the frequency of a genotype in multiple
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haplotype pairs or when the GPI indicates that there is
no ambiguity in the proposed genotype. Additionally,
the parameters for the GPI minimums or error thresh-
olds are user inputs and can be adjusted to fit the data
to increase the likelihood of identifying putative haplo-

type pairs.

Data

The dataset used to evaluate the imputation was simu-
lated as part of the 14" QTL-MAS Workshop, see [8]
for details. The data consisted of 3226 individuals in five
generations, where each female parent had about 30 off-
spring. The first four generations had phenotypes for a
quantitative trait (N=2326), comprising the training
dataset, while the last generation (N=900) had no phe-
notypes and comprised the prediction dataset for calcu-
lation of GEBVs. All individuals were genotyped for
10031 SNP markers, across five chromosomes of length
~100 Mb each.

Training and prediction sets

The data were partitioned or masked to create three
main scenarios to evaluate alternative genotyping strate-
gies. The first scenario (BASE) assumed the general fra-
mework for calculating GEBVs, where all individuals
were genotyped for all SNPs. In the second scenario
(S1) only the males in the training population were gen-
otyped for all SNPs, whereas the females were not geno-
typed. The individuals in the prediction set were either
not genotyped or genotyped for SNPs spaced 2, 5 or 10
Mb apart. The third scenario (52) had the same training
population as BASE and the same prediction population
as S1.

Imputation, training and GEBV prediction
The prediction of GEBVs for S1 and S2, using imputed
genotypes proceeded as follows:

1. A haplotype library was created using only males
(S1) or all individuals (S2) in the training set. The phas-
ing was performed for 12 sections (or cores) of each
chromosome of approximately 10 Mb and then com-
bined to form one long haplotype for each chromosome,
using the software package AlphaPhase, being developed
based on Hickey et al.[6].

2. Genotype probabilities were calculated for training
females (S1) and all individuals in the prediction set (S1
and S2).

3. All unknown genotypes were imputed using the
procedure described above.

4. Marker effects were estimated using BayesA on the
training dataset.

5. GEBVs were calculated for the prediction set, using
imputed and/or low-density genotypes.
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Results

Imputation accuracy

The percentages of genotypes correctly imputed for each
of the scenarios, considering alternative low-density gen-
otyping strategies, are shown in Table 1. When training
females were not genotyped for any SNPs, 69% of their
genotypes were correctly imputed (S1). In S1, the per-
cent of correctly imputed genotypes for prediction indi-
viduals was lower than that of the training females when
the prediction individuals were not genotyped, but
increased to 68% with the addition of genotyped loci.
The S2 scenario had a minimum percent correctly
imputed of 68% when prediction individuals were not
genotyped but also increased, to 78%, with the inclusion
of actual genotypes. Imputation was more successful for
S2 than S1 at all genotype densities.

Genomic breeding value accuracy

Genomic breeding value accuracy was defined as the
correlation between GEBVs and true breeding values.
Figure 1 depicts a plot of these values for the BASE sce-
nario with sex of the individual identified. A sex differ-
ence in breeding values is apparent, which is assumed to
result from the paternally imprinted QTL simulated in
this dataset [8]. Any correlation derived from the com-
bined data (i.e., including both sexes) would be a biased
estimate of the GEBV accuracy and thus the resulting
individual GEBVs were separated by sex and the correla-
tions averaged to yield the final GEBV accuracy. The
accuracies for each scenario and alternative low-density
genotyping strategies are shown in Table 2. The GEBV
accuracy when all genotypes were imputed was essen-
tially the same for S1 and S2 (r=0.42) and increased in
both scenarios as additional low-density genotypes were
added. The maximum accuracy for S1, when SNP geno-
types were included every 2 Mb, was 0.54, while the
maximum accuracy for S2 was 0.66. These accuracies
were compared to the BASE scenario accuracy (r=0.86),
where all individuals were genotyped (Table 2). The
change in accuracy ranged from -0.44 with all genotypes

Table 1 Percent of genotypes correctly imputed in each
scenario, considering alternative low-density genotyping
strategies®

S1 S2
Training females — all genotypes imputed 69
Prediction - all genotypes imputed 64 68
Prediction - all genotypes imputed, except every 10 Mb 65 73
Prediction - all genotypes imputed, except every 5 Mb 65 75
Prediction — all genotypes imputed, except every 2 Mb 68 78

“The number of SNPs genotyped was 55 for 10 Mb spacing, 105 for 5 Mb
spacing and 251 for 2 Mb spacing.
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Figure 1 Genomic breeding values for prediction individuals when all genotypes are known (BASE scenario) versus true breeding
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imputed to -0.20 for the maximum accuracy in S2 (gen-
otypes every 2 or 5 Mb).

Discussion

As expected SALHI was more successful at identifying
correct genotypes when additional information was
added to distinguish between putative haplotypes. In
prediction individuals the addition of low-density geno-
types improved the ability of the imputation algorithm
to discard incorrect haplotypes, while the addition of
training female genotypes (in S2) improved the reliabil-
ity of the geneprobs for prediction individuals and thus
improved haplotype identification. The improved

Table 2 Accuracy of genomic breeding values (r) for
prediction individuals in each scenario (as the correlation
between genomic breeding values and true breeding
values), considering alternative low-density genotyping
strategies, and change in accuracy (A) compared to the
BASE scenario®

S1 S2
* A r A
all genotypes imputed 042 -044 042 -044
all genotypes imputed, except every 10 Mb 050 -036 061 -025
all genotypes imputed, except every 5 Mb 050 -036 066 -0.20
all genotypes imputed, except every 2 Mb 054 -032 066 -020

“BASE GEBV accuracy = 0.86
PThe correlation was calculated separately for males and females and then
averaged

reliability of geneprobs was more important than the
addition of low-density genotypes, as evidenced by the
higher percent of correctly imputed genotypes in S2
compared to S1, but the combined information
increased the percent of correctly imputed genotypes
from 64% to 78% (Table 1). In contrast, the percent cor-
rectly imputed genotypes for training females (S1) did
not increase with low-density genotyping in the predic-
tion animals (results not shown). It was expected that
the addition of genotypes in the females’ progeny would
improve the reliability of the geneprobs, and thus
improve imputation, but this information did not seem
to be important for imputing genotypes in training indi-
viduals. The architecture of the population, however,
would likely impact imputation success through the
number of haplotypes in the library and reliability of the
geneprobs. Overall computation for the creation of the
haplotype library and imputation (assuming geneprobs
were already calculated) was ~30 minutes per chromo-
some and thus this approach should scale well for larger
datasets (e.g., data from the current 50-60k SNP chips
in livestock).

The comparisons of GEBV accuracy using imputed
genotypes with the BASE scenario provide a context for
evaluating the usefulness of the current imputation
approach. The GEBV accuracy when all genotypes were
imputed was less than half the accuracy when all geno-
types were known (Table 2) indicating that geneprobs
alone were not sufficient to calculate accurate GEBVs,
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even when training females were genotyped. The addi-
tion of low-density genotypes, however, improved the
accuracies, though the densest set (every 2 Mb) was not
notably better than having SNPs every 5 Mb, in S2. The
maximum accuracy using imputed genotypes was more
than 20 percent smaller than the BASE GEBV accuracy,
but comparisons to the accuracies of BLUP EBVs (for
the prediction animals) show that improvement in
breeding value accuracy can be obtained using imputed
genotypes. The accuracy of BLUP EBVs for prediction
individuals was 0.53 (results not shown), which is smal-
ler than all low-density genotyping strategies in S2, indi-
cating that even when using imputed genotypes a faster
rate of genetic progress would be possible over ignoring
genomic information in this dataset. The low-density
panels simulated correspond to SNP densities in cattle
and pigs of approximately 300, 600 or 1500 SNPs and
so the cost of any decrease in GEBV accuracy from
using imputed SNPs would need to be balanced against
the cost of genotyping at lower densities.

Ideally a single panel of low-density SNPs is developed
that has application across traits (and potentially across
breeds/lines), but several issues will impact GEBV accu-
racy when using imputed genotypes, including the
genetic architecture of the trait and the strategy for
selecting SNPs to use in such panels. For traits influ-
enced by a small number of large QTL, such as is the
case in this study [8], a panel selected from SNPs asso-
ciated with the trait will generally result in higher accu-
racy and may be preferable to a panel selected based on
spacing, as done here [9]. Additionally, the GEBV accu-
racy using a panel based on spacing could be somewhat
unpredictable across traits as some selected SNPs could
be associated with a QTL by chance for some traits but
have no association with QTL for others. This unpre-
dictability can be reduced by minimizing the change in
accuracy when using imputed genotypes (compared to
high density) allowing for a low-density panel that
would contain all of the information of a trait-specific
panel of associated SNPs. For most traits in livestock
production large QTL have not been identified and thus
application of a single, general SNP panel is more
straightforward. Results from SALHI are promising and
continued improvement in the algorithm should mini-
mize the decrease in accuracy observed here making a
small SNP panel a cost-effective alternative to high-
density genotyping, especially in cases where the devel-
opment of trait-specific panels is not desirable.

Conclusions

Genotype imputation using segregation analysis and a
long haplotype library has promise for application in
sparsely-genotyped pedigrees where low-density geno-
type panels applicable across traits are desired. The
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results of this study suggest that while genotype imputa-
tion resulted in some lost accuracy of genomic breeding
values compared to a scenario where individuals were
high-density genotyped, its levels of accuracy are still
higher than traditional BLUP estimated breeding values.
The approach presented here is under development and
should scale well to current livestock genomics datasets.
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