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Abstract

Background: Genomic selection (GS) involves estimating breeding values using molecular markers spanning the
entire genome. Accurate prediction of genomic breeding values (GEBVs) presents a central challenge to
contemporary plant and animal breeders. The existence of a wide array of marker-based approaches for predicting
breeding values makes it essential to evaluate and compare their relative predictive performances to identify
approaches able to accurately predict breeding values. We evaluated the predictive accuracy of random forests
(RF), stochastic gradient boosting (boosting) and support vector machines (SVMs) for predicting genomic breeding
values using dense SNP markers and explored the utility of RF for ranking the predictive importance of markers for
pre-screening markers or discovering chromosomal locations of QTLs.

Methods: We predicted GEBVs for one quantitative trait in a dataset simulated for the QTLMAS 2010 workshop.
Predictive accuracy was measured as the Pearson correlation between GEBVs and observed values using 5-fold
cross-validation and between predicted and true breeding values. The importance of each marker was ranked
using RF and plotted against the position of the marker and associated QTLs on one of five simulated
chromosomes.

Results: The correlations between the predicted and true breeding values were 0.547 for boosting, 0.497 for SVMs,
and 0.483 for RF, indicating better performance for boosting than for SVMs and RF.

Conclusions: Accuracy was highest for boosting, intermediate for SVMs and lowest for RF but differed little among
the three methods and relative to ridge regression BLUP (RR-BLUP).

Background
Genomic selection is a method for estimating GEBVs
using dense molecular markers spanning the entire gen-
ome [1]. Given the wide range of approaches for pre-
dicting GEBVs, it is important to evaluate their
performance, pros and cons to identify those able to
accurately predict GEBVs. Here, we compare predictive
performances among three of the most powerful
machine learning methods with demonstrated high pre-
dictive accuracies in many application domains, namely
RF [2,3]; boosting [5] and SVMs [5,6] and with RR-

BLUP [7] for predicting breeding values for quantitative
traits.
RF has several appealing properties that make it

potentially attractive for GS [2,4]: (i) the number of
markers can far exceed that of observations, (ii) all
markers, including those with weak effects, highly cor-
related and interacting markers have a chance to con-
tribute to the model fit, (iii) complex interactions
between markers can be easily accommodated, (iv)
they can perform both simple and complex classifica-
tion and regression accurately, (v) they often require
modest fine-tuning of parameters and the default para-
meterization often performs well [2,3], and (vi) they
make no distributional assumptions about the predic-
tor variables. Boosting is a stagewise additive model
fitting procedure that can enhance the predictive
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performance of weak learning algorithms [5]. SVMs
perform robustified regression using kernel functions
of inner products of predictors [5].
We comparatively evaluated the predictive perfor-

mance of the three machine learning methods and RR-
BLUP for estimating GEBVs using the common dataset
simulated for the QTLMAS 2010 workshop. RF regres-
sion was used to rank the SNPs in terms of their predic-
tive importance.

Methods
Data
The simulated data set contained 3226 individuals span-
ning five generations out of which 2326, constituting the
first four generations, were phenotyped and genotyped
for 10031 biallelic SNPs arrayed on a genome encom-
passing five chromosomes. The remaining 900 indivi-
duals, representing the fifth generation, had genomic
but lacked phenotypic records on the single quantitative
trait. The covariate for each genotype with alleles A1

and A2 was set to 1 for A1A1, -1 for A2A2 and 0 for
A1A2 orA2A1.

Random forests
RF regression uses an ensemble of unpruned decision
trees, each grown using a bootstrap sample of the train-
ing data, and randomly selected subsets of predictor
variables as candidates for splitting tree nodes. The RF
regression prediction for a new observation x ( ˆ ( )f xrf

B ) is
made by averaging the output of the ensemble of B
trees { ( , )}T x b

BΨ 1 as [5]:
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where Ψb characterizes the bth RF tree in terms of
split variables, cutpoints at each node, and terminal
node values.
We implemented RF in the R package randomForest

with decision trees as base learners [3]. Following var-
ious recommendations [2,3], we evaluated different com-
binations of the values of the number of trees to grow,
ntree = {500, 1000, 2000}, the number of SNPs randomly
selected at each tree node, mtry = {0.5, 1, 2} × the
default value of mtry of sample size/3 for regression,
and the minimum size of terminal nodes of trees, below
which no split is attempted, nodesize = 1. The parameter
configuration with the highest prediction accuracy was
ntree =1000, mtry = 3000 and nodesize =1. We ranked
SNPs by the relative importance of their contributions
to predictive accuracy, quantified by how much predic-
tion error increased when the observations left out of
the bootstrap samples, the out-of-bag data for a SNP,

were randomly permuted while data for all the other
SNPs were left unchanged [2,3].

Stochastic Gradient Boosting
Boosting is an ensemble learning method for improving
the predictive performance of classification or regression
procedures, such as decision trees [5]. Gradient-boosted
models can also handle interactions, automatically select
variables, are robust to outliers, missing data and
numerous correlated and irrelevant variables and can
construct variable importance in exactly the same way
as RF [5]. Boosting iteratively adds basis functions in a
greedy fashion such that each additional basis function
further reduces the selected loss (error) function [5,9]:

f x b xm
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M
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=
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where bm, m =1,2,…, M are the basis expansion coeffi-
cients, and b(x, g) are simple functions of the multivari-
ate argument x, with a set of parameters g=(g1,g2,…,gM).
We used regression trees as basis functions. Boosting

regression trees involves generating a sequence of trees,
each grown on the residuals of the previous tree [5,9].
Prediction is accomplished by weighting the ensemble
outputs of all the regression trees. We used stochastic
gradient boosting, assuming the Gaussian distribution
for minimizing squared-error loss in the R package gbm
[9]. We determined the main tuning parameter, the
optimal number of iterations (or trees), using an out-of-
bag estimate of the improvement in predictive perfor-
mance. This evaluates the reduction in deviance based
on observations not used in selecting the next regression
tree. The minimum number of observations in the trees’
terminal nodes was set to 1, the shrinkage factor applied
to each tree in the expansion to 0.001 and the fraction
of the training set observations randomly selected to
propose the next tree in the expansion to 0.5. With
these settings boosting regression trees with at most 8-
way interactions between SNPs required 3656 iterations
for the training dataset based on inspecting graphical
plots of the out-of-bag change in squared error loss
against the number of iterations [9].

Support Vector Machines (SVMs)
SVMs perform robustified regression for quantitative
responses by exploiting the relationships between obser-
vations by arraying predictors in observation space using
a set of inner products. For regression with a quantita-
tive response, SVM uses the model

f x h x T( ) ( )= +b b0 (3)
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where the basis functions, h(x)T, which can be linear
(or nonlinear) transformations of one (or more) predic-
tors (x), are additively combined with the vector of
weights (b). We used the “ε-insensitive” SVM regression
that uses only residuals smaller in absolute value than
some constant (ε) and a linear loss function for larger
residuals. This is a robustified regression for which the
minimization exercise can be written in regularized sum
of squares form [5,6] as:
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is an “ε-insensitive” error measure, ignoring errors less
than ε, l is a positive constant that controls the trade-
off between the approximation error and the amount up
to which deviations larger than ε are tolerated to get
solutions for the SVM regression problem, y is a quanti-
tative response and •

2 denotes the norm under a Hil-
bert space. The SVM optimization procedure produces
solution functions of the form [5,6]:
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where ˆ , ˆ *a ai i are positive weights given to each obser-
vation and estimated from the data and the inner pro-
duct kernel K(xi,xj) is a N × N symmetric and positive
definite matrix [5]. Typically only a subset of ( )*a ai i−
are nonzero, and the associated observations are called
support vectors, hence the name support vector
machines. Since the solution depends on the input
values only through the inner products K(xi,xj), a flexible
fitting is achieved by transforming the cross-products
using the kernel function (K(xi,xj)) that alters how two
observations are related to each other.

We used the ε-insensitive SVM regression with a linear
kernel to predict GEBVs in the R package e1071[8] with
an insensitivity zone of ε = 10 and a regularization (cost)
parameter (l > 0) of l = 0.001 determined by grid search.

Assessing prediction performance
We used 5-fold cross-validation and the Pearson corre-
lation between the simulated values and predicted
GEBVs from the validation set and between the pre-
dicted and true breeding values (TBVs) for the non-phe-
notyped individuals constituting the fifth generation to
quantify the predictive accuracy of each method. The
training and validation sets respectively contained 60
and 15 crosses and encompassed all phenotyped indivi-
duals except the 20 founders.

Results and discussion
The correlations between the simulated values and pre-
dicted GEBVs indicated better performance for boosting
and SVMs than for RF (Table 1). The correlations
between the predicted and true breeding values (TBVs)
for the non-phenotyped individuals were also highest for
boosting. These accuracies were comparable with that
for RR-BLUP (Table 1). Although boosting and SVMs
apparently outperformed RF, SVMs was computationally
intensive, especially the grid search for tuning its
parameters.
-Table 1-
RF produced reasonable importance rankings of the

SNPs (Figure 1 and Figure 2), which can be used to pre-
screen promising markers for further testing.
The two ensemble methods can accommodate com-

plex relationships and interactions (epistasis), which is a
potential advantage, but the simulated data did not dis-
play many such interactions. A few simulated interacting
SNPs with large effects were ranked highly but not top-
ranked by RF possibly because RF and boosting had to
randomly subsample the 10031 predictors. Thus, it may
happen that the SNPs closest to a QTL are not suffi-
ciently frequently sampled, so that the signal of the
QTL is captured by other more distant SNPs. Conse-
quently, the signal of a QTL gets blurred relative to
classical QTL mapping approaches, which always scan
all the markers. This may be one reason that these
methods may not perform as well as some other much

Table 1

CV/TBV Sample size Random Forests Boosting Support Vector Machines Ridge Regression BLUP

Mean Range Mean Range Mean Range Mean Range Mean Range

CV 439 416-514 0.466 0.392-0.534 0.503 0.431-0.567 0.503 0.432-0.567 0.530 0.451-0.620

TBV 900 0.483 0.547 0.497 0.607

Predictive accuracies of random forests, boosted regression trees, epsilon support vector machines and RR-BLUP, expressed as the Pearson correlation between
GEBVs and observed values from the 5-fold cross-validation (CV) and between GEBVs and TBV for non-phenotyped individuals (TBV).
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simpler competitors (e.g., RR-BLUP, BayesB). Neverthe-
less, for data with complex traits controlled by many
genes that show epistatic interactions, the machine
learning methods hold much promise and perhaps may
even outperform BLUP. Not surprisingly, Moser et al.
[10] found the accuracy of SVMs to be the highest
among five methods (including BLUP) used to predict
GEBVs of dairy bulls from empirical data.

Conclusions
Predictive accuracies of all three methods were remark-
ably similar, but boosting and SVMs performed some-
what better than RF. Although boosting was only
slightly better than the other methods, it holds perhaps
the greatest promise for GS because of its wide versati-
lity, allowing it to assume simpler, faster and more
interpretable forms, such as componentwise boosting,
able to incorporate automatic predictor selection.
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