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Abstract

Rheumatoid arthritis (RA) is a complex, chronic inflammatory disease implicated to have several
plausible candidate loci; however, these may not account for all the genetic variations underlying
RA. Common disorders are hypothesized to be highly complex with interaction among genes and
other risk factors playing a major role in the disease process. This complexity is further magnified
because such interactions may be with or without a strong independent effect and are thus difficult
to detect using traditional statistical methodologies. The main challenge to analyze such gene × gene
and gene × environment interaction is attributed to a phenomenon referred to as the “curse of
dimensionality.” Several combinatorial methodologies have been proposed to tackle this analytical
challenge. Because quantitative traits underlie complex phenotypes and contain more information
on the trait variation within genotypes than qualitative dichotomy, analyzing quantitative traits
correlated with the affection status is a more powerful tool for mapping such trait genes. Recently,
a generalized multifactor dimensionality reduction method was proposed that allows for
adjustment for discrete and quantitative traits and can be used to analyze qualitative and
quantitative phenotypes in a population based study design.

In this report, we evaluate the efficiency of the generalized multifactor dimensionality reduction
statistical suite to decipher small interacting factors that contribute to RA disease pathogenesis.

Introduction
Rheumatoid arthritis (RA) is a complex chronic inflam-
matory disease implicated to have several plausible
candidate loci. Many genetic studies have been undertaken

and only two genes, HLA-DRB1 and PTPN22, have been
reported to be associated with disease [1-4]. Although these
findings are encouraging, they may not account for all the
genetic variations in RA because no direct pathogenic role
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of these molecules have been established in the develop-
ment of the disease pathogenesis. Common disorders like
RA are hypothesized to be highly complex, with interaction
among genes and other risk factors playing a major role in
the disease process. This complexity is further magnified
because such interactions may be with or without strong
independent main effect, and thus difficult to detect using
traditional statistical methodologies [5]. The main chal-
lenge to analyzing epistatic interactions is attributed to a
phenomenon referred to as the “curse of dimensionality,”
which is a problem caused by the exponential increase in
volume associated with adding extra dimensions to a
mathematical space. Thus, while analyzing interactions
among several loci for a complex phenotype, contingency
tables in higher dimensions suffer from the problem of
sparse data, leading to unreliable risk estimates. Several
combinatorial methodologies have been proposed to
overcome this analytical challenge: multifactor dimension-
ality reduction (MDR) [6]; combinatorial partitioning
method (CPM) [7] and restricted partition method
(RPM) [8]. Although these methods have been used by
several research groups, there exist some limitations in their
current form: a) inability to adjust for covariates’ MDR,
b) inability to use quantitative phenotypes, and c)
computationally intense algorithms.

Thus, there is a need to develop and evaluate more
powerful statistical methodology so as to decipher small
interacting factors that contribute to disease pathogen-
esis. Because quantitative traits underlie complex phe-
notypes and contain more information on the trait
variation within genotypes than qualitative dichotomy,
analyzing quantitative traits correlated with the affection
status is a more powerful tool for mapping complex trait
genes. Recently, a generalized MDR (GMDR) method
was proposed that allows for adjustment for discrete and
quantitative traits and can be used to analyze qualitative
and quantative phenotypes in a population based study
design [9].

In this report, we use the GMDR statistical suit to
evaluate its efficiency to decipher small interacting
factors that contribute to RA disease pathogenesis,
using the two quantitative traits [anti-CCP (anti-cyclic
citrullinated peptide) and RFUW (rheumatoid factor)] as
covariates for classifying the data into high and low risk
groups.

Data analysis
An initial screen of data for quality control was
performed for the markers selected for the current
study. Hardy-Weinberg equilibrium (HWE) was esti-
mated in the case, control, and combined groups using
the Haploview program (version 3.32). To understand

the degree of correlation between the SNPs, linkage
disequilibrium (LD) was estimated using the Haploview
program (version 3.32). The D’ statistics for the same is
presented in Figure 1. Such information is essential when
analyzing data employing cross-validation steps because
it is possible that the algorithm might identify different
SNPs (but in tight LD) for each of its cross-validation
intervals [2]. This was followed by the GMDR analysis
for detecting epistatic interactions.

Methods
Sample and marker selection
In the current study, we used the Genetic Analysis
Workshop 16 (GAW16) RA case-control data set
(Problem 1) comprising a total of 2062 sample (case =
868, control = 1194), typed on the 550 k Illumina chip.
To evaluate the efficiency of the GMDR algorithm to
detect small epistatic interactions involved in RA
pathogenesis, analysis was performed on chromosomes
1, 2, 5, and 6, which have shown strong positive
association earlier with the phenotype [1-4,10]. Because
quantitative trait information was available for only
cases, interaction analysis using GMDR was performed
on the RA cases (n = 867).

Interaction studies
The GMDR is a score-based algorithm based on the MDR
framework. Briefly, the MDR uses a novel constructive
induction algorithm to facilitate the detection of non-
linear interactions among multiple discrete genetic and/
or environmental factors that are predictive of a discrete
clinical endpoint [11]. Multi-locus genotype combina-
tions are classified as high-risk or low-risk genotype
combinations using a threshold that is equal to the ratio
of cases and controls. The best model is selected as the
combination of marker with maximum cross-validation
consistency and minimum prediction error. GMDR
works on the same framework of MDR, but is a score-
based algorithm. Improving on the original MDR, it can
be used on both qualitative and quantitative traits, it
allows adjustment for covariates and better handles
unbalanced population based data. For the current
study, we employed two methods to compute the scores
(described below) for GMDR using the QTL information
provided in the data set:

1. The GMDR scoring method: The GMDR method
uses the original MDR data reduction method, with
the ratio of cases to control being replaced by scores
in each cell to discriminate between high risk and
low risk followed by determining classification
accuracy and prediction error. A detailed description
of the methodology can be found elsewhere [9]. This
generalization of the original MDR algorithm a)
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allows increased flexibility to use covariates, b) is
able to handle both dichotomous and continuous
phenotypes, c) can be applied to a variety of
population-based study designs (e.g., unbalanced
case control samples.)
2. We formulated a detailed scoring methodology by
using the expression S = exp(y)/1+exp(y), where y is
the standardized quantitative trait. In brief, this was
done by computing the mean and standard deviation
(SD) of the quantitative trait. Scores where then
assigned by subtracting the mean from the indivi-
dual’s quantitative trait value and then dividing it by
the SD.

Results
Marker selection
In the current study we used GMDR algorithm to
evaluate its efficiency in detecting gene-gene interactions
in the complex RA phenotype. For this we used markers
information from the GAW16 data set from regions that
have been previously implicated in RA. Additional file 1
lists the markers and their chromosomal position used

in this analysis. All the markers selected were in HWE
(data not shown). None of the regions selected showed
extensive LD between the markers (Figure 1).

Interaction studies
While the MDR software is designed to classify indivi-
duals into high risk and low risk groups, GMDR is a
score-based method in which the ratio of cases to control
is replaced by scores in each cell to discriminate between
high risk and low risk cells and then assessing classifica-
tion accuracy and prediction error. GMDR was per-
formed on the genotype data (cases only) from the
GAW16 Problem 1 data set with the computed scores.
The phenotype scores used in the analysis were generated
using the built-in GMDR scoring method and a detailed
scoring method (described above in the Methods
section). Analysis was performed individually for the
separate chromosomal regions. An exhaustive search was
performed to identify all possible one- to five-locus
models. We report the prediction accuracy and cross-
validation consistency for the most significant models
identified by GMDR, the results of which are

Figure 1
LD block structure across the chromosomal regions used in this study. The figures show the output of Haploview
(version 3.32) LD Plot where each square (with D’ values written within the box) represents a pair-wise LD relationship
between the two SNPs. Red squares indicate statistically significant LD between the pair of SNPs as measured by the D’
statistic. Darker colors of red indicate higher values of D’, up to a maximum of 1. White squares indicate pair-wise D’ values
<1 with no statistically significant evidence of LD.
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summarized in Table 1. GMDR was able to identify small
interacting factors in the regions analyzed in this study.
This substantiates the efficiency of the GMDR and the
candidate loci for harboring disease-associated markers.

Discussion
Rheumatoid factor (RFUW) has been widely used as a
screening test for patients with RA. RFUW is prognos-
tically useful because it correlates with functional and
radiographic outcomes in RA [12]. More recently, the
anti-cyclic citrullinated peptide (anti-CCP) antibody has
been developed, with a sensitivity of ~68% and
specificity of 97% [13,14]. Together, these clinical values
serve as important indicators of the disease status and are
routinely used in clinical setting to aid in diagnosis.
Common disorders like RA are hypothesized to be
highly complex, with interaction among genes and other
risk factors playing a major role in the disease process.
Powerful statistical methodology has been developed to
overcome these challenges to decipher small epistatic
interactions that are characteristic of such phenotypes.
Because quantitative traits underlie complex phenotypes
and contain more information on the trait variation
within genotypes than qualitative dichotomy, we used
the anti-CCP value and the RFUW values provided in the
GAW16 Problem 1 data set to evaluate the recently
developed GMDR algorithm to detect small interacting
markers for RA disease status.

In this study we used the GMDR methodology to
evaluate its efficiency to detect gene-gene interactions
in putative regions for RA using the anti-CCP and RFUW
(IgM) values as covariates. Three out of the four models
predicted reached statistical significance (Table 1). None
of the high-order interactions were between correlated
markers, suggesting that there might be more than one
signal in these genes. For this study we had used both the
anti-CCP and the RFUW values to generate scores for the
GMDR analysis. Scoring based on anti-CCP value did
not result in significant interaction models. Our results

show that RFUW values are better predictor of high-risk
and low-risk classes and further strengthen the role of
RFUW (IgM) antibody as a strong prognostic factor.
Detailed biological characterization of this quantitative
trait are warranted.

List of abbreviations used
anti-CCP: Anti-cyclic citrullinated peptide; CPM: Com-
binatorial partitioning method; GAW16: Genetic Analy-
sis Workshop 16; GMDR: Generalized multifactor
dimensionality reduction; HWE: Hardy-Weinberg equi-
librium; IgM: Immunoglobulin M; LD: Linkage disequi-
librium; MDR: Multifactor dimensionality reduction; RA:
Rheumatoid arthritis; RFUW: Rheumatoid factor; RPM:
Restricted partition method; SD: Standard deviation;
SNP: Single-nucleotide polymorphism.
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Table 1: Summary of the best models obtained using GMDR algorithm for the quantitative trait RFUW (IgM)a

No. loci

1 2 3 4

SNPs in best model rs2156875 rs1517352 rs11203368 rs3024912
rs3024896 rs6683201 rs1517352

rs3789607 rs4555370
rs231726

Chromosome 6 6 1 2
Gene HLA-B CTLA4 PADI4, PTPN22 STAT4, CTLA4
Predictive accuracy 0.5739 0.5577 0.5069 0.5396
Cross-validation consistency 10 6 5 7
Sign test p-value 0.017 0.001 0.377 0.0547

aAll models used the GDMR scoring method.
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