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Abstract

Genome-wide association studies often involve testing hundreds of thousands of single-nucleotide
polymorphisms (SNPs). These tests may be highly correlated because of linkage disequilibrium
among SNPs. Multiple testing correction ignoring the correlation among markers, as is done in the
Bonferroni procedure, can cause loss of power. Several multiple testing adjustment methods
accounting for correlations among tests have been developed and have shown improved power
compared to the Bonferroni procedure. These methods include a Monte Carlo (MC) method and a
method of computing p-values adjusted for correlated tests. The objective of this study is to apply
these two multiple testing methods to genome-wide association study of the Genetic Analysis
Workshop 16 rheumatoid arthritis data from the North American Rheumatoid Arthritis
Consortium, to compare the performance of these two methods to the Bonferroni procedure
in identifying susceptibility loci underlying rheumatoid arthritis, and to discuss the strengths and
weaknesses of these methods. The results show that both the MC method and p-values adjusted
for correlated tests method identified more significant SNPs, thus potentially have higher power
than the corresponding Bonferroni methods using the same test statistics as in the MC method and
p-values adjusted for correlated tests, respectively. Simulation studies demonstrate that the MC
method may have slightly higher power than the p-values adjusted for correlated tests method.

Background
Genome-wide association studies (GWAS) for complex
diseases involve multiple hypothesis testing. The Bon-
ferroni procedure is commonly used to control family-
wise error rate (FWER) for multiple hypothesis testing.
However, the Bonferroni procedure becomes more

conservative as the number of hypotheses tested
increases and the test statistics are correlated [1,2]. To
handle the correlation among test statistics, a permuta-
tion method [3] was proposed based on estimation of
the joint distribution of test statistics. However, this
approach is computationally intensive and not
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appropriate for GWAS. Therefore, several efficient
methods that can account for the correlation among
test statistics have been developed for multiple testing
[1,2]. Lin [2] proposed a Monte Carlo (MC) sampling
approach based on approximating the joint distribution
of test statistics. This method does not require repeated
analyses of simulated datasets as in the permutation
method, and therefore is much less computationally
demanding. Conneely and Boehnke [1] proposed a
method of computing p-values adjusted for correlated
tests (p_ACT) by numerical integration of the asymptotic
multivariate normal distribution of the test statistics.
This approach is very computationally efficient and
attains even greater speed. In this study we applied three
multiple testing procedures, the Bonferroni procedure,
MC method, and p_ACT method, to GWAS of the
Genetic Analysis Workshop 16 (GAW16) rheumatoid
arthritis (RA) data from the North American Rheumatoid
Arthritis Consortium (NARAC). We compared the
performance of these three procedures by simulation
studies.

Methods
We describe the three multiple hypothesis testing
procedures in the context of association studies. Suppose
there are n individuals with m markers in the observed
case-control data. We test m null hypotheses H1, H2, ...,
Hm for the m markers. The corresponding p-values are p1,
p2, ..., pm. In the Bonferroni procedure, if pi ≤ a/m, then
Hi is rejected (i = 1, ..., m), where a is the pre-set
significance level. While in the Bonferroni procedure all
tests are assumed to be independent, the MC method
and the p_ACT methods described below account for
dependence among test statistics by considering the joint
distribution of test statistics. All the three methods can
control the FWER well.

MC method
The test statistic for the jth marker (corresponding to
hypothesis Hj) is defined as

T U V U j mj j
T

j j= =−1 1 2, , ,..., , (1)
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Xji is the genotypic score of individual i at locus j
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n
ji
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. If the hypo-

thesis Hj is true, the statistic Tj has approximately a c2

distribution with dj degrees of freedom, where dj is the
dimension of Uj. For GWAS of the RA data in this article,
we only consider an additive genetic model with dj = 1,
and Xji = 0, 1, or 2, indicating the number of minor
alleles in the genotype of individual i at locus j.

The test statistics (T1, T2, ..., Tm) may be correlated due to
linkage disequilibrium (LD) among markers. The multi-
ple testing procedure using the actual joint distribution
of (T1, T2, ..., Tm) can be computationally intensive. The
MC method provides an approach to approximate the
actual joint distribution by MC sampling. The MC

method defines T U V Uj j
T

j j= −1 , where U U Gj jii

n
i= =∑ 1

and G1, G2, ..., Gn are independent standard normal
random variables that are independent of the data, and
then the method uses the joint distribution of Tj values
to approximate the joint distribution of Tj values based
on obtaining realizations from distributions of Tj values
by repeatedly generating the normal random samples G1,
G2, ..., Gn. Let t(1) ≥ t(2) ≥ ... ≥ t(m) be the ordered observed
values of the test statistics (T1, T2, ..., Tm), and let H(1),

H(2)..., H(m) be the hypotheses and T T T m( ) ( ) ( ), , ,1 2 are

Tj variables corresponding to (t(1), t(2), ..., t(m)),
respectively. The MC method works as a step-down
procedure as follows: starting with hypothesis H(1), the
method rejects H(j), j = 1, 2, ..., m and removes the
corresponding marker and variable T j( ) from considera-
tion, if Pr(max )( ) ( )j k m k jT t≤ ≤ ≥ < α , provided thatH(1), ...,
H(j-1) have been tested and rejected. This probability is
calculated based on a large number (e.g., 10,000) of
realizations of the Tj values. We have implemented this
method by using the statistical package R [4].

p_ACT method
Suppose the test statistics T = (T1, T2, ..., Tm) for m
markers follow multivariate normal distribution N(0, Σ)
asymptotically when all null hypotheses are true (i.e., no
markers are associated with the disease), where 0 is an m-
dimensional vectors of zeros and Σ is a m × m correlation
matrix. Let pmin ≤ p(2) ≤ ... ≤ p(m) be the ordered p-values
calculated from the observed data. The probability of
observing at least one p-value as small as pmin is

p
P Z Z Z p

ACT
m=

− < − −−1 11 2
1(max( , , , ) ( )),minΦ  for one sided tests;;

 for two sided tests,1 1 21 2
1− < − −
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where Z1, Z2, ..., Zm are random variables from the
multivariate normal distribution N(0, Σ). Computation
of pACT requires integration of the multiple normal
density function. The current version of the p_ACT
method can handle integration of up to 1,000 dimen-
sions (i.e., 1,000 markers) at one time [5]. Although any
test statistics T with asymptotic multivariate normal
distribution can be used for Eq. (2), Conneely and
Boehnke [1] described the test statistic

T U Vj j j= / , (3)
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These test statistics (T1, T1, ..., Tm) asymptotically follow
multivariate normal distribution N(0, R), where R =
{rjk}, j = 1, ..., m, k = 1, ..., m, and r V V Vjk jk j k= / ;
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p_ACT method also works as a step-down procedure:
1) If pACT <a, then reject the null hypothesis associated
with pmin, and remove pmin and the marker associated
with pmin. 2) Let pmin = p(2) in Eq. (2), change m into m-1,
and repeat Step 1. Continuing in this fashion for the
remaining p(j) until for some p(k), pACT = a, then accept
all remaining hypotheses (including that associated with
p(k)). This p_ACT method has been implemented in a
computer program in R [6].

Partitioning of genome-wide single-nucleotide
polymorphism (SNP) data
As stated earlier, the p_ACT method can only handle up
to 1,000 tests at a time, and the MC method can handle
more than 1,000 tests but may become computationally
intensive when the number of tests is very large. To apply
these methods to GWAS of the RA data, we divided the
whole genome into small blocks; each block includes
hundreds or up to one thousand of SNPs. We assume
that tests within each block are dependent, and that tests
from different blocks are independent. To control the
FWER at a for the whole genome, we apply Bonferroni
procedure among blocks, that is, we assign ab to each
block such that the sum of these ab equals a (i.e., ∑ ab =
a), where ab is proportional to the number of SNPs
within the block (i.e., block size). We applied the MC
method and p_ACT method separately to each block and
control FWER at ab for the tests within the block. In this
study, we considered the block sizes of 100, 500, and
1,000 separately to evaluate the effect of block size on
the performance of the MC method and p_ACT method.

Application to RA data
The RA dataset contains 868 cases and 1,194 controls
with 545,080 SNPs after removing duplicated and
contaminated samples. If an individual has missing
genotype at a marker, we imputed the most-frequent
genotype observed in the data at that marker. We
removed SNPs with minor allele frequencies (MAF)
less than 0.01 and SNPs with p-values less than 1 × 10-4

in Hardy-Weinberg equilibrium (HWE) test in controls.
We did not consider SNPs on sex chromosomes. After
these procedures, 515,050 SNPs remained in our
analysis.

We applied the three multiple testing procedures to the
GWAS of the RA dataset. First, we performed the
association analysis on the RA dataset by using the test
statistics in Eqs. (1) and (3) separately and obtained

p-values for each SNP. We call these p-values raw
p-values. For each test statistic, we applied the Bonferroni
procedure to the p-values and set the nominal level of
FWER as 0.05. The raw p-values calculated from statistic
in Eq. (3) were used in the p_ACT method (see below).
The MC method is based on the statistic in Eq. (1), and
we set the number of replicates of the normal random
samples G1, G2, ..., Gn as 25,000. The p_ACT method is
based on the test statistic in Eq. (3), and all tests are two-
sided. In the p_ACT method we set the limit on the
number of simulations or integrand values in R function
“pmvnorm” as maxpts = 25,000.

Simulation studies
To evaluate the performance of the two statistics in Eqs.
(1) and (3) and of three multiple testing methods, we
simulated 10,000 replicated data sets in a manner
similar to Lin [2]; each data set included N1 cases and
N2 controls with 100 SNPs in a chromosomal region (or
one block). We considered two sets of values of N1 and
N2: 1) N1 = N2 = 100, and 2) N1 = 100, and N2 = 150.
For each individual, the simulated chromosomal region
consisted five independent consecutive subregions. Each
subregion has 20 biallelic SNPs in LD with coefficient of
r2 = 0.9 between two successive SNPs. At each SNP, HWE
was assumed and MAF was 0.3. We chose one SNP in the
first subregion as a disease SNP, and determined case/
control status based on an additive disease model with
disease prevalence of 0.1 and genotype relative risk of 2.

Results
Table 1 shows the estimated FWER and power for the
simulated datasets with nominal level of FWER = 0.05
(i.e., a = 0.05). The estimated FWER was calculated
based on whether any SNP in any of the last four
subregions was significant. The power was estimated
based on whether any SNP in the first subregion is
significant. In the situation N1 = N2 = 100, the two test
statistics in Eqs. (1) and (3) with Bonferroni correction
generated almost the same results (on FWER and power),
and the MC method and p_ACT method also had nearly

Table 1: Estimated FWER and power from the simulated 10,000
replicated data sets

Tj in Eq. (1) Tj in Eq. (3)

Sample size Bonferroni MC Bonferroni p_ACT

N1 = N2 = 100a

FWER 0.013 0.036 0.013 0.038
Power 0.418 0.556 0.418 0.554

N1 = 100, N2 = 150
FWER 0.023 0.054 0.022 0.053
Power 0.531 0.648 0.521 0.635

aN1, the number of cases; N2, the number of controls.
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same results. In the situation N1 = 100 and N2 = 150, the
test statistic in Eq. (1) had slightly higher power than
that in Eq. (3), and consequently, the MC method had
slightly higher power than the p_ACT method. In both
situations, the MC method and p_ACT method had
higher power than the Bonferroni methods using
statistics in Eqs. (1) and (3), respectively.

Table 2 reports the number of significant SNPs asso-
ciated with RA on 22 chromosomes detected by the three
procedures, where the overall significant level a across
the whole genome was 0.05. By using the Bonferroni
procedure, we identified 634 and 589 significant SNPs
for the 22 chromosomes based on the statistics defined
in Eqs. (1) and (3), respectively. The test statistic in Eq.
(1) identified more significant SNPs. Table 2 also
describes the number of significant SNPs on chromo-
somes 1, 6, 9, 16, and 22, which had more identified
significant SNPs than other chromosomes. Based on the
statistic in Eq. (1), the MC method identified 667, 679,
and 682 significant SNPs for the 22 chromosomes when
the block sizes are 100, 500, and 1,000, respectively.
These numbers of identified significant SNPs are greater
than the 634 identified by the Bonferroni procedure
using the same statistic. Similarly, based on the statistic
in Eq. (3), the p_ACT method identified 611, 621, and
635 significant SNPs, when the block sizes were 100,
500, and 1,000, respectively. These numbers of identified
significant SNPs are also greater than the 589 identified
by the Bonferroni procedure using the statistic in Eq. (3).
As the block size increased, the numbers of significant
SNP identified by both the MC method and the p_ACT
method increased. The MC method using the statistic in
Eq. (1) identified more significant SNPs than the p_ACT
method using the statistic in Eq. (3).

We compared computing times of the MC method and
p_ACT method. As an example, we only showed the
times for chromosome 9. With block sizes of 100, 500,
and 1,000, the MC method used about 6.24 hr, 2.89 hr,
and 2.48 hr, while the p_ACT method used 0.27 hr,

0.47 hr, and 1.08 hr, respectively. The p_ACT method is
faster than the MC method.

Discussion
We have applied two multiple testing methods (MC and
p_ACT), which account for correlation among tests by
splitting each chromosome into smaller blocks, to the
GWAS of the RA dataset and then compared the results
of these methods to those of the Bonferroni procedure.
Both the MC method and p_ACT method identified
more significant SNPs than the Bonferroni procedure.
The numbers of significant SNPs identified by the MC
and p_ACT methods increased as the block size
increased.

The test statistic in Eq. (3) is transformed from a
traditional score statistic from a generalized linear
model. The essential difference between the statistics in
Eqs. (1) and (3) is that variance Vj is estimated by
different ways. Our simulation studies show that when
the numbers of cases and controls are equal, the two test
statistics have almost the same power, and that when the
numbers of cases and controls are different, the test
statistic in Eq. (1) can have slightly higher power than
that in Eq. (3), and consequently, the power of the MC
method can be slightly higher than that of p_ACT
method. Our simulation studies were only based on
additive model, small sample sizes, and small number of
SNPs. More extensive simulation studies are necessary in
the future research.

In our analysis, we divided the whole genome into
blocks with a fixed number of SNPs. We only accounted
for LD within each block, and we assumed independence
between tests from different blocks by ignoring LD
between blocks. This assumption can cause loss of
power. To avoid losing power, each entire chromosome
may be treated as a block. However, the MC method will
become computationally intensive or infeasible, and the
p_ACT cannot handle more than 1,000 SNPs in each

Table 2: The numbers of identified significant SNPs from the RA data set

Tj in Eq. (1)
MC

Tj in Eq. (3)
p_ACT

Block size Block size

Chromosome Bonferroni 100 500 1,000 Bonferonni 100 500 1,000

1 24 25 25 25 22 24 23 24
6 380 392 393 413 365 372 374 377
9 21 25 21 21 19 22 20 22
16 14 15 15 14 14 14 14 14
22 17 18 19 18 14 14 17 18

1-22 634 667 679 682 589 611 621 635
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block. Another possible solution is to split each
chromosome into blocks according to LD pattern, to
group a set of consecutive SNPs in strong LD into one
block and to ignore weak LD between blocks. As
described earlier, the larger the block size we select, the
higher the power we can obtain. This is an issue we will
pursue in the future. Also we did not consider popula-
tion stratification, which may cause spurious false-
positive results.
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