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Abstract

In genome-wide association studies, new schemes are needed to incorporate multiple-locus
information. In this article, we proposed a two-stage sliding-window approach to detect
associations between a disease and multiple genetic polymorphisms. In the proposed approach,
we measured the genetic association between a disease and a single-nucleotide polymorphism
window by the newly developed likelihood ratio test-principal components statistic, and performed
a sliding-window technique to detect disease susceptibility windows. We split the whole sample
into two sub-samples, each of which contained a portion of cases and controls. In the first stage, we
selected the top R windows by the statistics based on the first sub-sample, and in the second stage,
we claimed significant windows by false-discovery rate correction on the p-values of the statistics
based on the second sub-sample. By applying the new approach to the Genetic Analysis Workshop
16 Problem 1 data set, we detected 212 out of 531,601 windows to be responsible for rheumatoid
arthritis. Except for chromosomes 4 and 18, each of the other 20 autosomes was found to harbor
risk windows. Our results supported the findings of some rheumatoid arthritis susceptibility genes
identified in the literature. In addition, we identified several new single-nucleotide polymorphism
windows for follow-up studies.

Background
Rheumatoid arthritis (RA) is a common chronic destruc-
tive disease of an unknown complex etiology. Both
genetic and environmental bases are thought to con-
tribute to this disease. The human leukocyte antigen
(HLA) region major histocompatibility complex (MHC)
on chromosome 6 (6p21.3) is known to be associated
with RA. This region is the only one that has been

consistently shown to be both linked and associated
with RA across all populations. It extends over 3.6 Mb
and is divided into three sub-regions (classes I, II, and
III). It is a highly dense area containing about 220 genes,
many of which are thought to have immunoregulatory
functions [1]. Recently, matured genotyping technology
and availability of large case-control collections have
made it possible to detect mild risk loci. The Genetic
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Analysis Workshop 16 (GAW16) Problem 1 data set is
such a large scale case-control study which contains
genotypes at 531,689 single-nucleotide polymorphisms
(SNPs) on chromosomes 1-22 for 868 cases and 1194
controls.

Recently, many approaches, e.g., Hotelling’s T2 test [2,3]
and the linkage disequilibrium (LD) contrast tests [4,5],
have been proposed to detect multiple-marker associa-
tion. The Hotelling’s T2 test and the LD contrast test
compare the means and the variance-covariance matrices
of genotype scores between cases and controls, respec-
tively. More recently, we proposed a likelihood ratio test-
principal component (LRT_PC) to compare the means
and the variance-covariance matrices of genotype scores
simultaneously [6]. However, all of these approaches
only allow a SNP region of several to tens of markers.

In this article, we report a novel genome-wide sliding-
window approach to detect genetic association between
a trait and SNP regions. This approach integrated the
LRT_PC with the concept of sliding window [7] and
the basic idea of two-stage approaches [8]. Applied to the
GAW16 Problem 1 data set, our approach yielded results
that support the findings in the literature of some RA
susceptibility genes on chromosomes 1, 2, and 6 and
detected more SNP windows for follow-up studies.

Methods
LRT_PC statistic
We recently proposed a LRT_PC approach to test
the association between a given SNP window and a
disease status [6]. To calculate the test statistic, we
first perform principal component (PC) analysis to
the genotype scores of the sampled individuals.
Then, the LRT_PC test s tat is t ic is given by
LRT PC m n n mpool pc case pc control_ ( ) log | | log | | log |_ _ _= + − −Σ Σ Σ ppc | ,
where n and m are the numbers of cases and controls,
respectively, and the Σ values are the sample variance-
covariance matrices of the first K PCs in cases, controls,
and the pooled sample, respectively. Wang et al. [6]
showed that the LRT_PC test is more powerful than the
Hotelling’s T2 test and the LD contrast test [2-5] in most
cases. The power of the LRT_PC test is perhaps due to its
ability to capture the differences of the means and the
variance-covariance matrices of genotype scores in cases
and controls simultaneously.

Two-stage sliding-window approach
Because the LRT_PC test may be more powerful than
other multi-marker tests, we wanted to use it to analyze
the data set of GAW16 Problem 1. However, the LRT_PC
can only be applied to a small chromosome region. To
apply the LRT_PC to genome-wide association studies,

we propose a sliding-window approach [7]. To use
sliding windows, we divide all SNPs into contiguous
overlapping windows and apply the LRT_PC in each
window. Suppose that we use windows with a window
size of S, then, all the SNPs can be divided into windows
1 to S, 2 to S + 1, 3 to S + 2, and so on.

Because we do not know the distribution or asymptotic
distribution of the test statistic LRT_PC, we need to use a
permutation approach to estimate the p-value of the test.
For a genome-wide association study, the number of
windows usually is more than 500,000 and the number
of permutations usually is no less than 1000 (100,000
permutations were used in this study). The computation
is not feasible for the sliding-window approach dis-
cussed above. Thus, we propose a two-stage approach. In
the two-stage approach, we split all individuals into two
sub-samples. In the first stage, by assuming that all
individuals are genotyped at all SNPs, we use the first
sub-sample to select R most promising SNP windows
with the largest values of the LRT_PC statistic calculated
via the first sub-sample. In the second stage, only the
genotypes at SNPs within the R most promising
windows are used. In this stage, we use the second
sub-sample to assess P values for the R selected windows
by permutations and claim significance by the false-
discovery rate (FDR) correction in Benjamini and
Hochberg [9]. For the two-stage approach, we only
need to do permutations in the second stage. Thus, the
two-stage approach is computationally much more
efficient than one-stage approach.

To analyze the data set of GAW16 Problem 1 using
LRT_PC based two-stage sliding-window approach, we
use the following settings: window size is 5; the number
of windows selected in the first-stage, R, is 1000; the
sample size of the first sub-sample is 15% of the total
sample (15% cases and 15% controls). In the first stage,
the number of PCs used in the LRT_PC test in each
window is 5, i.e., we do not perform PC analysis. In the
second-stage, the number of PCs used in the LRT_PC test
in each window, K, is decided by the fact that the first K
PCs can explain 85% of the total variability.

To choose the sample size of the first sub-sample, we did
a power analysis based on a single-marker test similar to
that of Wang et al. [8]. Our results showed that the
optimal value of the sample size of the first sub-sample
is between 10% and 30% of the total sample. We use the
results based on a single-marker test as a reference to
choose the sample size of the first sub-sample in this
study (15% of the total sample).

As pointed by Skol et al. [10], our proposed two-stage
approach may be not as powerful as joint analysis.
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However, the results of Skol et al. also showed that when
the sample size of the first sub-sample is small (15% of
the total sample), the power difference between the two-
stage approach and joint analysis is also small. To
compare the power of the two-stage and one-stage
approaches, we have done a small scale simulation
study (10,000 SNPs and 1000 permutations). The
simulation results showed that when the first sub-
sample is 15% of the total sample, the power difference
between the two approaches is also small. In summary,
compared with the joint analysis and one-stage
approach, our proposed two-stage approach has a
small power loss in exchange for a big increase in
computational efficiency.

Results
We applied the proposed two-stage sliding-window
approach to analyze the RA data set from GAW16
Problem 1. After removing duplicated and contaminated
samples, this data set contained genotypes at 531,689
SNPs on chromosomes 1-22 for 868 cases and 1194
controls. The missing genotypes were imputed using the
method of Browning and Browning [11]. First, we used
the first sub-sample to calculate the LRT_PC statistic for
each of the 531,601 windows and selected 1000 of the
most promising windows with the largest values of the
LRT_PC test statistic. Then, we used the second sub-
sample to calculate the LRT_PC test statistic for each of
the 1,000 selected windows and used 100,000 permuta-
tions to evaluate the p-values. In total, we discovered 212
significant windows by the FDR correction at a nominal
level 0.05, among which 126 windows are on chromo-
some 6. Many of the 212 windows are overlapped,
especially for the windows on chromosome 6. After
merging the overlapped windows, there were 68 non-
overlapped windows left. Among the 68 windows, 26 of
them were on chromosome 6. The 26 windows on
chromosome 6 were in a region (28,292,350 to
33,349,147 bp) in high LD with HLA-DRB1, a factor
known to have a strong association with RA. The details
of these non-overlapped windows (except those on
chromosome 6) are summarized in Table 1.

For validation purposes, we used the SNP Search Engine
to find genes which contain or are near to SNPs that were
discovered. We found rs2357135 nesting at “2q32”,
which is near to gene “STAT 4” and thus supported the
finding in Remmers et al. [12]. In addition, our
discoveries supported the findings of FCRL3 on chromo-
some 1 [13] and HLA region (MHC) on chromosome 6
[1]. Additionally, we detected many novel risk windows
for follow-up studies. Except for chromosomes 4 and 18,
each of the other autosomes was found to carry risk
windows. For example, we detected SNP rs2047465
which nests in gene SDK2 on chromosome 17.

Discussion
In this article, we proposed a two-stage sliding-window
approach and, in each window, our recently proposed
LRT_PC test was applied to test the association between a
window and a disease. Then, we applied the method to
GAW16 Problem 1 to detect risk windows for RA. Different
existing RA association studies discovered diverse suscept-
ibility genes on all chromosomes except for MHC candidate

Table 1: The details of non-overlapped significant windows

Window
ID

Chr Physical Location Genes References

1 1 792429, 1071463 FAM87B,
C1orf159

2 1 149769454, 149786537 FCRL3 [13]
3 2 139347733, 139370993 NXPH2
4 2 158103376, 158124755 CYTIP
5 2 192062916, 192117323 MYO1B
6 2 193087360, 193117091 STAT4 [12]
7 2 204487030, 204527849
8 2 217410540, 217413523
9 3 61980695, 61998337 PTPRG
10 3 112000554, 112031324
11 5 25934777, 25967191
12 5 111055309, 111062116
13 5 137614229, 137669929 GFRA3
14 5 175278829, 175508504
15 7 35309745, 35321578
16 8 20380853, 20411350
17 9 34654488, 34675940 CCL27
18 9 84179401, 84220779 SLC28A3
19 9 91845119, 91920813
20 10 5016096, 5053944
21 10 49685217, 49698112 WDFY4
22 10 87994785, 88004329 GRID1
23 11 67868248, 67886182 LRP5
24 11 68807443, 68825321
25 12 130500249, 130524477 hypothetical

LOC116437

26 13 73411181, 73419864 KLF12
27 13 113652806, 113781019 FAM70B
28 14 31921536, 31942503 AKAP6
29 14 80898925, 80930993 STON2
30 15 72678184, 72721493
31 16 2452524, 2582219 C16orf59
32 16 9214168, 9232588
33 16 12651732, 12676977
34 16 64715655, 64730155
34 16 64715655, 64730155
35 16 64735494, 64764278
36 16 67451454, 67514126 TMCO7
37 17 34194598, 34251205 PIP4K2B
38 17 68919134, 68930918 SDK2
39 19 41254897, 41282169 WDR62
40 22 24746347, 24757608 MYO18B
41 22 24760841, 24782942
42 22 43076969, 43084289

Note: There are 26 significant non-overlapped windows on chromo-
some 6 which are in a region (28,292,350 to 33,349,147 bp) in high LD
with HLA-DRB1, a factor known to have a strong association with RA.
We did not list those 26 non-overlapped significant windows due to
space limitations.
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genes on chromosome 6. Our analysis supported the
findings of some RA susceptibility genes that have been
identified to be associated with RA in the literature.

It is intractable to formulate the null distribution of the
LRT_PC statistic and thus the permutation approach
must be applied to evaluate the p-values of top R
promising windows (R = 1000 was used in this study).
For a given R, the number of permutations must be large
enough to obtain accurate p-values. Thus, the choice of R
partially depends on computational capacity. Further
efforts are needed to determine the optimal value of R.

In this study, we used 5 PCs, i.e., we did not perform PC
analysis in LRT_PC test for each window of size 5 in the
first stage. We did not perform PC analysis (or use 5 PCs)
in the first stage for two reasons. One is that we have to
use the same number of PCs in different windows so that
the values of the test statistic in different windows are
comparable. The other is that in the first stage, we only
use the test statistic to rank the SNP windows and the
results are similar when using different numbers of PCs
(results not shown). Another remaining question regard-
ing the proposed method is how to choose the window
size. Most often, researchers use windows of size 3. In the
LRT_PC test, we use PC analysis to reduce the dimen-
sion, and thus we can use a larger window size (i.e.,
window size of 5).

Conclusion
In this article, we proposed a two-stage sliding-window
approach to detect the association between SNP win-
dows and a disease status. Application to GAW16
Problem 1 data set illustrated its practical advantages.
Our results supported the findings of several genes which
were identified to be responsible for RA in the literature.
We also discovered several additional SNP windows for
follow-up studies.
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