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Abstract

Genome-wide associations between single-nucleotide polymorphisms and clinical traits were
simultaneously conducted using penalized orthogonal-components regression. This method was
developed to identify the genetic variants controlling phenotypes from a massive number of
candidate variants. By investigating the association between all single-nucleotide polymorphisms to
the phenotype of antibodies against cyclic citrullinated peptide using the rheumatoid arthritis data
provided by Genetic Analysis Workshop |6, we identified genetic regions which may contribute to
the pathogenesis of rheumatoid arthritis. Bioinformatic analysis of these genomic regions showed

most of them harbor protein-coding gene(s).

Background

Most of the available statistical approaches for genome-
wide association study (GWAS) have focused on study-
ing one single-nucleotide polymorphism (SNP) at a
time [1], thereby ignoring the multigenic nature of
complex diseases [2,3] and the strong correlation
between some SNPs due to linkage disquilibrium (i.e.,
some SNPs are inherited together in blocks of DNA). As
pointed out by Waldron et al. [4], association studies
using multiple SNPs have substantial advantages over
those based on SNP associations. To capture the

correlation between SNPs in regions of low recombina-
tion, haplotype-based methods that recognize the
existence of linkage disequilibrium between genetic
markers have been employed for multi-SNP analyses.
However, such methods introduce additional problems,
including the need to infer haplotypes, the impact of
including (or excluding) rare haplotypes, and the need
to define haplotype block boundaries. Even with
haplotype-based association methods, high false-posi-
tive rates and a lack of reproducibility remain major
concerns.
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Because hopes remain high for the value of GWAS, other
approaches need to be pursued that account for the
correlation structure among SNPs. Here we have devel-
oped a method for GWAS that incorporates regression of
a phenotype simultaneously on all available SNPs, i.e.,
considering a multiple linear regression,

p

Y=p+) BX;+z (1)

=

where Y is the phenotypic value, X; counts one of the two
alleles at the j SNP, and f; is the additive effect of that
allele, j = 1,..., p. To account for the issues raised by large
p, such as lack of independence between SNPs due to
linkage disequilibrium, we will conduct the GWAS using
the penalized orthogonal-components regression
(POCRE) [5]. POCRE offers a fast and efficient way to
identify significant SNPs simultaneously from a large
number of candidates.

Methods

GWAS usually entails the collection of a massive amount
of SNPs (i.e, large p) for only a small number of
biological individuals (i.e., small n). Therefore, identify-
ing the few genetic variants underlying disease risk is
equivalent to the task of finding “a very few needles in a
haystack”, and poses a challenging statistical issue.
Zhang et al. [5] recently described the POCRE approach,
which sequentially constructs sparsely loaded orthogo-
nal components with proper regularization. They
demonstrate this approach works well when fitting
regression models with n <<p data.

Let Y be an n-dimensional column phenotype vector, and
X be an n x p genotype matrix, where n and p are the
number of individuals and number of SNPs, respectively.
Further assume both Y and X are centralized, and
accordingly assume y = 0 in Eq. (1). POCRE sequentially
constructs orthogonal components X,w,,X,0,, -,
where X, =X and X,, k > 2 is iteratively built to be
orthogonal to {X,w,,..., X;_,0,_;} - Theloading w,, k> 1,
is obtained as ¥/||7||, which minimizes

~27"XYY X0 + |7 |* + 8,(7), subjectto |a] =1,
(2)

where g,(7) is a penalty function defined by a proper
regularization on y with tuning parameter A.

When g,(y) = 0, the optimal y solving Eq. (2) is
proportional to the leading eigenvector of X1YY'X, .
Zhang et al. [5] employed empirical Bayes thresholding
methods proposed by Johnstone and Silverman [6] to
introduce proper penalty g,(7). Such penalty benefits
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estimating covariance between phenotype and geno-
types, and provides adaptively sparse loadings of
orthogonal components. The empirical Bayes implemen-
tation is also computationally efficient. The tuning
parameter A also accounts for possible dependence
structure among different SNPs, and 10-fold cross-
validation was employed to elicit its optimal values
ranging from 0.8 to 1, i.e., considering candidate values
A e {0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96,
0.98, 1}.

The sequential construction of the orthogonal compo-
nents stops when the optimal y solving Eq. (2) is zero,
which implies X is hardly correlated to Y Then, regressing
Y on the orthogonal components, i.e., X 0, X,0,,
provides an estimate of f3,..., B, in Eq. (1). Because non-
zero loadings in w;, j = 1,2,..., are sparse, most of estimated
Bi..... B, are therefore zero, reflecting the fact that most
SNPs are insignificantly associated or are even completely
uncorrelated to the phenotype of interest.

Results

Using our novel method (POCRE), the rheumatoid
arthritis data from Genetic Analysis Workshop 16 were
investigated for associations between SNPs and a serum
biomarker for rheumatoid arthritis, i.e., antibodies anti-
cyclic citrullinated peptide (anti-CCP). In this dataset,
only 867 samples were positive for anti-CCP. The data
set was preprocessed with the computer program PLINK
[7] to control data quality, and with the computer
program EIGENSTRAT [8] to control potential popula-
tion structures. After preprocessing there were 490,613
SNPs remaining for the GWAS. POCRE was applied
individually to each chromosome for the simultaneous
association of the SNPs in that chromosome with the
anti-CCP phenotype. The effects of the 10 principal
components constructed by EIGENSTRAT were consid-
ered as covariates for the POCRE. Nonzero effects of
SNPs were reported on seven chromosomes where the
positive ﬁ indicates that the minor allele will increase
the level of anti-CCP (Table 1).

Of the 12 SNPs identified to be associated with anti-CCP
level, 5 SNPs are from chromosome 6, 2 SNPs from
chromosome 12, and 1 SNP each is from chromosomes
7, 11, 13, 17, and 21, respectively. The location of each
significant SNP was mapped to the human genome using
the Ensembl database http://www.ensembl.org. Based
on this analysis, eight of the SNPs were found to reside
in seven genes (Table 1). For the other four SNPs, the
nearest neighboring genes are listed in the table. None of
these genes we identified have previously been linked to
rheumatoid arthritis, but several of them encode
proteins whose biological roles may be involved in the
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Table I: SNPs identified with nonzero coefficients in Eq. (1)

http://www.biomedcentral.com/1753-6561/3/S7/S20

SNP ﬁj Chromosome SNP Location (bp) Gene Gene Location (bp)
rs233492 149.7514 6p23 14,910,666 JARID2? 14,754,745-14,754,848
rs17068819 109.0095 6q21 108,246,263 SCML4 108,130,060-108,252,214
rs922898 56.7294 6q25.1 149,155,750 usT 149,110,165-149,439,818
rs6929401 83.7685 6q25.1 149,158,549 UsT 149,110,165-149,439,818
rs17087579 187.2452 6q25.1 149,886,810 PPIL4 149,867,324-149,908,864
rsl 1760836 358.7046 7p21.2 14,903,193 DGKB 14,151,199-14,909,359
rs11029744 300.2939 11pl4.2 26,909,033 AC016450.10 26,972,204-26,975,206
rs10861038 63.7626 12q23.3 102,455,524 STAB2? 102,505,181-102,684,635
rs10507167 117.5381 12q23.3 102,490,212 STAB2* 102,505,181-102,684,635
rs17055893 265.3688 13q13.3 36,961,628 POSTN® 37,034,779-37,070,874
rs2322047 324.3976 17p12 11,556,512 DNAH9 11,442,473-11,813,856
rs9305833 102.7568 21q2l.1 18,238,917 CHODL 18,195,451-18,561,561
*SNP does not reside in any gene. The nearest gene is shown.

pathogenesis of this disease. For example, two SNPs  Conclusion

(rs922898, 156929401) that reside in the uronyl-2-
sulfotransferase (UST) gene were identified by our
method. UST is involved in the chondroitin 3 sulfate
and glycan structure biosynthesis pathways and could
contribute to optimal cartilage development or repair.
PPIL4 is a member of cyclophilin family, a group of
proteins crucial for protein folding and immunosuppres-
sion by cyclosporin A (CsA) [9]. Polymorphisms in this
gene may influence development of inflammation
during rheumatoid arthritis or the response of indivi-
duals with rheumatoid arthritis to treatment. DGKB
encodes diacylglycerol kinase and participates in intra-
cellular signalling processes via several pathways includ-
ing the protein kinase C pathway [10]. Alteration in
intracellular signalling could negatively influence
inflammatory processes. Finally, CHODL encodes a
type 1 transmembrane protein including a single
carbohydrate recognition domain for the C-type lectins
that can worsen inflammation [11].

Discussion

In addition to its diagnostic value for the general risk of
rheumatoid arthritis, a high anti-CCP level is associated
with a high risk of developing joint damage during the
disease. As a result, an anti-CCP-test has been employed
to monitor the progression of the disease. With our
novel approach for GWAS, we identified several candi-
date SNPs associated with the level of anti-CCP in
rheumatoid arthritis patients. Among the candidate
genes identified, only PPIL4 is functionally related to
the immune system. Further investigation will be
necessary to define the potential roles that the other
gene products play in rheumatoid arthritis. Due to the
small sample size available for this study (867) and the
large total number of SNPs measured (490,613), we
expect some of the associations we identified to
constitute false positives. Determining false detection
rates will require development of additional procedures.

Our analyses using the newly developed method POCRE
indicate that the genomic region 6q25.1 may harbor
genes associated with anti-CCP level in rheumatoid
arthritis patients. Further investigation is necessary to
confirm this observation.
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