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Abstract
Background: With the improvement of genotyping technologies and the exponentially growing
number of available markers, case-control genome-wide association studies promise to be a key
tool for investigation of complex diseases. However new analytical methods have to be developed
to face the problems induced by this data scale-up, such as statistical multiple testing, data quality
control and computational tractability.

Results: We present a novel method to analyze genome-wide association studies results. The
algorithm is based on a Bayesian model that integrates genotyping errors and genomic structure
dependencies. p-values are assigned to genomic regions termed bins, which are defined from a
gene-biased partitioning of the genome, and the false-discovery rate is estimated. We have applied
this algorithm to data coming from three genome-wide association studies of Multiple Sclerosis.

Conclusion: The method practically overcomes the scale-up problems and permits to identify
new putative regions statistically associated with the disease.

Background
The last years have shown a tremendous increase in the
number of markers available for association studies. Pre-
vious studies were dealing either with the whole genome
at a very low resolution (for instance 5 264 microsatellites
in [1]) or with a carefully chosen region of few millions of
base pairs [2,3]. Recent technologies allow the genome-
wide genotyping of hundred of thousands SNPs [4]. This
has arisen the need of new methodological developments
to overcome different issues, such as the multiple-testing

problem, gene biases, data quality analysis and the com-
putational tractability.

Firstly, the multiple testing problem seems to cause asso-
ciation studies ability to detect associations to decrease as
the number of markers increases. The classical analysis
strategy, based on an association test for each marker [5],
encounters increasing difficulties as more than one mil-
lion of markers are available: Increasing the number of
markers prevents from the detection of the mild genetic
effects expected in complex diseases, as only strong effects
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emerges from the huge noise generated by the increased
quantity of data.

Methods like False Discovery Rate (FDR) [6] computation
allow to control the error rigorously, but do not increase
the statistical power. Better strategies based on haplotype
blocks are being developed, the first step being gathering
such block data (see the HapMap project, [7]). The gain of
such strategies is two-folded: (i) the number of tests is
independent of the number of markers (ii) the statistical
power may be increased if markers of the same haplotype
block are not fully correlated.

Secondly, a genetic association of a given SNP is a statisti-
cal feature and does not explain by itself a phenotype. To
biologically interpret an associated marker, its haplotype
block should first be delimited. Then, the association can
be refined by fine-scale genotyping technologies or ideally
by full resequencing. This eventually allows to identify
functional mutations. Most of the time, these mutations
impact relatively close genes. This is a first argument to
bias association analysis towards genes. Moreover, even if
haplotype blocks are unreachable, DNA might be cut into
distinct regions (called bins) on another basis, so as to
limit the multiple-testing problem and make it independ-
ent of the number of markers. Combining these two argu-
ments leads to choose one bin for each gene, and to create
"desert" bins in large unannotated regions. It allows to
associate a list of genes with a test, which simplifies the
analysis of results. The drawbacks are (i) that it makes
more difficult the study of these "deserts", however the
goal is here to maximize, not the chance of finding an
association, but the chance of elucidating a mechanism of
a complex disease given the current knowledge (ii) that a
bin might contain several haplotype blocks, resulting in a
dilution of the association signal if only one block is asso-
ciated. Reciprocally, neighbor bins are not independent
because they may share a haplotype block. However, with
the classical strategy, correlated neighbor SNPs would also
be tested separately.

Thirdly, genome-wide genotyping data are obtained by
high-throughput experiments which encompass limita-
tions requiring careful statistical methodology. Especially,
with Affy. technology, the trade-off between the call rate
(i.e. errors detected by the genotyping process and result-
ing in missing genotypes in the data set) and the error rate
(i.e. errors left in the data) is difficult to adjust. Obtaining
unbiased statistical results is then conditioned to good
pre-processing filters. Indeed spurious markers must be
eliminated and missing data correctly managed.

In addition, for most of SNPs used in this study, some
genotypes are held by less than few percents of patients,
which, given the usual collection size of a few hundreds,

(i) is not enough for good asymptotic approximations
and (ii) should be considered with care given possible
high error rate.

Finally, whatever algorithmic solution is developed,
because the number of markers available will probably
quickly reach a few millions, creating a scalability prob-
lem, it has to be linear in the number of markers.

In this paper we present a novel Bayesian algorithm devel-
oped to easily analyze genome-wide association studies.
This algorithm is based on a gene-based partitioning of
DNA into regions, called bins. A p-value of association is
computed for each bin. The model takes into account gen-
otyping errors and missing data and tries to detect simple
differences in the haplotype block structure between cases
and controls. The study of different collections is allowed.
The multiple testing problem is addressed by estimation
of FDR. The method has been applied to analyze the
results of three genome-wide case-control association
studies of the complex disease Multiple Sclerosis (MS). It
identifies putatively associated bins, containing genes pre-
viously described to be linked to MS (see [8] for review) as
well as new candidate genes.

Materials
Three association studies dealing with Multiple Sclerosis
(MS) in three independent collections have been realized.
Around 600 patients have been recruited for each study,
half of them as cases affected by the disease, half of them
as controls (Table 1). Genotypes of the 116 204 SNPs
have been determined for each patient using Affymetrix
GeneChip® human mapping 100 K technology (Affy. tech-
nology).

Methods
Notations

Stochastic variables are noted with a round letter ( ), a
realization is noted in lower case (v). Indices are noted in
lower case (k), ranging from 1 to the corresponding upper

case letter (K). Unless needed, this range of indices (k ∈ [1,
K]) is omitted. The number of different values is noted
#( ). The n-dimensional table of the number of individ-
uals having the same combination of values for given var-





Table 1: Genome-wide association multiple sclerosis collections.

Coll. Origin #Cases #Controls %Females

A French 314 352 69

B Swedish 279 301 71

C American 289 289 85
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iables , k ∈ [1, K] (the contingency table) is noted

. The marginalization of such a contingency

table over one variable, for example , is noted

. Estima-

tion of a probability distribution P( ) is noted with hat-

ted letter, . Each bin b ∈ [1, B] contains Jb genetic

markers  with j ∈ [1, Jb]. Each patient i ∈ [1, I] has a

phenotype value s(i) (in case-control studies, #( ) = 2),

discrete co-variable values vm(i), m ∈ [1, M] (gender: m =

1, or collection of origin: m = 2), and a genotype value for

each marker  (with SNPs, #( ) = 3). A patient i is

represented by this vector:

The data set is noted D = {i}i ∈ [1, I]. A first level of the
method aggregates predictors at the bin level. The "restric-
tion" of a patient to a bin is noted ib, the corresponding
data set being Db = {ib}i ∈ [1, I]:

Data preprocessing
Due to Affy. technology (the D.M. calling algorithm), errors
on heterozygotic genotypes are more frequent. It can be
detected through the deviation of a SNP from the Hardy-
Weinberg equilibrium, which basically states that, noting
P(a) = P(aa) + P(Aa)/2 and P(A) = P(AA) + P(Aa)/2:

Therefore, the following pre-processing filters are applied:
SNPs are discarded (i) if the number of missing genotypes
is higher than 5% because the genotyping process quality
was low for this SNP, (ii) if the minimum allele frequency
in controls MAF = min(P(a), P(A)) is lower than 1%,
because the SNP holds no information, or (iii) if the prob-
ability that the SNP follows the Hardy-Weinberg equilib-
rium in controls is lower than 0.02.

Bin definition
Bins are defined on DNA from protein genes as defined in
the version 35.35 of EnsEMBL [9] of the human DNA
sequence. The basic region of a gene lie from the begin-

ning of its first exon to the end of its last exon. Overlap-
ping genes are clustered in the same bin. If two
consecutive genes or clusters of overlapping genes are sep-
arated by less than 200 kbp, the bin limit is fixed in the
middle of the interval. Otherwise, the limit of the
upstream bin is set 50 kbp downstream its last exon, the
limit of the downstream bin is set 50 kbp upstream its first
exon, and a special bin corresponding to a desert is created
in between the two bins. With these rules, desert bins have
a minimum length of 100 kbp (Figure 1).

Assessing bin association
General model, hypotheses and statistics
We assume that each bin constitutes an independent data
set. The following ideal probability distribution is
defined:

As experimenters choose cases and controls (phenotypes)
each individual subset of the study is a realization of the

conditional distributions . Estimations of

probability distribution are possible from contingency
tables:

On the contrary, due to the experimental design, estima-

tions of  are impossible.

A general way to assess the association of a bin b is to esti-

mate whether  is independent from the pheno-

 k

n K( ,..., ) 1
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Representation of a bin containing two genes and Jb markersFigure 1
Representation of a bin containing two genes and Jb markers.
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type , i.e., whether  is "far" from

.

However, as only  is estimable, estimation of

 is not possible. Therefore, one estimates

 assuming , as indicated by the subscript:

We have chosen likelihood ratio LR as a statistic to esti-

mate the "distance" between estimations of 

and . For each patient, the LR is:

As all patients are considered to be independently chosen,
the LR of the set of patients available is:

p-value estimation and FDR

To assess estimation errors due to randomness and sam-

ple size, the probability that  is true given the observa-

tion, i.e. the p-value πb needs to be computed. This is

theoretically achieved by enumerating all possible out-

comes Db(σ) of the experiment that lead to the observed

data Db(σ0) (σ is a enumeration parameter to be defined.

The following notation simplification is done: Db(σ0) =

Db). Then the probability p(Db (σ)) of each outcome

assuming that  is true is computed as well as its LR.

Finally, the p-value is:

In this article, estimation of p-values is based on permuta-
tions: possible outcomes are obtained through patient
phenotype permutations σ and σ0 is the identity permuta-
tion. The probability of each permutation is uniform. The

denominator of equation (8) is constant with respect to
such permutations, therefore it is omitted. Sampling this
space is possible: random permutations of the phenotypes
are drawn and used to compute a LR. This is a Monte-
Carlo procedure, for which we propose an optimized
implementation that guarantees the precision required for
FDR estimation:

For each bin b, compute LR for new permutations of phe-
notypes until the number of permutations realized Nb sat-

isfies the following equation, noting  the estimation of

the bin p-value:

θ and γ/δ control the quality of the method: θ is an upper
bound of the threshold that is expected to be used to select

bins. γ/δ controls the error due to the randomness of the

process: Assuming that two consecutive p-values πb1 <πb2 ≈

θ are sufficiently spaced (probability ps = e-δ), 

with a confidence c = cdf( (0, 1), γ) (standard normal
cumulative distribution function). In this article, B = 11

264, θ = 0.001, δ = 1 and γ =  thus Nb = 507 003, ps =

0.37 and c = 0.92.

To address multiple testing, the method uses an FDR esti-
mation defined as in [10]:

The numerator is an estimation of the expectation of the

number of false-positive with πb ≤ θ.  is an estimation

of the proportion of bins under the null hypothesis. Given
that it is expected to be very high in current study, it is

(conservatively) fixed at its upper bound:  = 1. The

denominator is the number of tests with p-values below.
The ratio is therefore an estimation of the proportion of

false negatives in the set of bins with a p-value below θ.
Because we want to analyze thoroughly the FDR for
around the 10 bins with the lowest p-values, the FDR is
not controlled at a specified threshold as in [6] but only
estimated.

This estimation relies on two main hypothesis: (i) tests are
independent or positively correlated [11], (ii) p-values are
continuously and uniformly distributed in [0, 1]. Assum-
ing that sharing of haplotype block by neighbor bins is the
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only source of correlation between tests, the positive cor-
relation seems reasonable. Indeed, if the p-value of a not
associated bin decreases, the p-values of bins sharing the
same haplotype block are more than likely to decrease
too. The uniform distribution is less obvious, because the
number of possible contingency tables is finite so that
even the null distribution is not uniform. However, the
sample size is one to two order of magnitude higher than
in other applications of FDR to discrete data in which the
problem is acute [12].

Model of linkage disequilibrium and error
Correlation between markers induced by LD is modelled
with an inhomogeneous hidden Markov chain of order 1.
Indeed, as a rough approximation, for each marker, most
information is found on its first neighbor on each direc-
tion of DNA. In a directed graphical model, independence
assumptions consist in:

Finally, this assumptions also allow to obtain correct esti-
mations because corresponding contingency tables are
sufficiently filled. They implies that contingency tables are

computed for 2 SNPs (#( ) = 3), the phenotype (#( )

= 2) and the co-variables together. The gender co-variable
is not be used. It requires the hypothesis that the SNP dis-
tribution is independent from it. The only co-variable is

the study patients belong to (Table 1, #( ) = 3). As col-

lection sizes for a given study are around 600, the average
number of patients in each cell of contingency tables is
then  = 33.

An error model (Figure 2) is introduced linking observed

genotypes  with real ones (  ∈ {aa, Aa, AA, ∅},

where ∅ means that the observed genotype is missing):

Since  are hidden variables, estimation of a priori

probabilities of  and  is not straight-

forward. Usual strategy is to use an Expectation-Maximi-
zation (E.-M.) algorithm to infer the state of hidden
variables. However, it is not required in order to assess bin
associations. Therefore, an alternative strategy is devel-

oped.  and  are estimated through the

removal of patients with missing genotypes:

Where n∅ is the number of patients with either  or

 missing and and m is the number of cells. To obtain

more regular estimates, a constant is added to all cell
counts. It is a Dirichlet prior on parameters. This constant

is chosen to be C = α0 , where α0 is the chosen error rate

and  is the mean number of individuals per cell. This
constant means that uncertainty on low cell counts is
high, not only because of randomness, but also because of
genotyping errors.

On the other hand, given the previously developed struc-

ture of errors, the following model of  is chosen:

The missing rate β is estimated for each marker through
the resolution of the non-linear system drawn from the

preceding model. The maximum error rate α0 is estimated
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during external comparison of Affy. technology and other
technologies. In this study, the error rate is chosen to be

α0 = 0.05. The error rate is α = min(α0, P(  = Aa)/(1 - P

(  = ∅))) in order that the system always have a solu-

tion for β.

Likelihood computation
With the current model, the likelihood of a patient is the
sum of the likelihoods over all possible combinations of
real genotypes:

This is a computation in . Some

approximations in the model are required to obtain com-
putations linear with the number of markers. The follow-
ing one is based on two-marker sliding windows and
corresponds to the model of Figure 3:

This equation considers information coming from two
neighbor markers together. Compared to the full model,
information flow is limited to pair of markers. The likeli-
hood could be falsely increased in this extreme situation:
suppose that a missing genotype is inferred aa from its left
neighbor and AA from its right neighbor, the merging of
this two inferences would results in a contradiction and
thus a low resulting likelihood. On the contrary, the
approximated likelihood does not detect this contradic-
tion and is falsely increased. This likelihood is named
thereafter "two-marker" likelihood.

Simplifying further leads to consider markers one by one.
There is no model of linkage disequilibrium anymore, but

noise is reduced as cells are better filled. This likelihood is
named thereafter "naive likelihood" because it corre-
sponds to a naive Bayesian model:

Results
The method has been applied to each of the three collec-
tions A, B, C (Table 1) as well as to the three collections at
once (ABC), considering the collection of origins as a co-
variable. The overall computation time is about 10 days
on a single processor.

The pre-processing filters discard around 20% of SNP: for
collection A (resp. B and C), out of 112 463 SNP, 84 430
(resp. 93 548 and 86 652) SNP remains. If all SNP satis-
fied the Hardy-Weinberg equilibrium, 2 249 SNP are
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Table 2: Associated bins at FDR 5% threshold (top), at FDR 50% 
threshold before (middle) and after exclusion of MHC region 
bins (bottom). A, B, C, ABC: collection designs, L2: two-marker 
likelihood, L3: naive likelihood.

FDR 5% with MHC L3 L2

A 3 2

B 3 6

C 2 2

ABC 4 6

FDR 50% with MHC L3 L2

A 6 6

B 14 7

C 6 28

ABC 20 33

FDR 50% w/o MHC L3 L2

A 2 0

B 1 1

C 0 0

ABC 8 10

Simplified model of two-marker likelihood computationFigure 3
Simplified model of two-marker likelihood computation.
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expected to be discarded. 9 422 were for collection A. It
can be explained (i) by artifacts of DM calling algorithm
which has a higher error rate on heterozygotic genotypes
(ii) by deviations from the assumptions underlying this
theoretical equilibrium. The bin partioning algorithm
divides the genome into 19 556 gene bins and 1 993
desert bins. Out of these 21 549 bins, only 11 264 (52%)
contain one SNP or more after pre-processing in at least
one collection and are considered for further analysis.
Before pre-processing, out of 12 512 SNP with one bin or
more, 2 781 have only one SNP, and 2 188 bins 10 SNP
or more. The maximum is 210.

Figure 4 shows the FDR plotted against p-values computed
using the two-marker L2 or the naive L3 likelihood for the
three collection design. Two-marker FDR remains below
naive FDR until a p-value level of 0.01 and both increase
slowly towards 1. FDR against the number of selected SNP
plots are detailed by collection in Figure 5. As observed in
other studies [13], the FDR is not monotonous with the p-
value. The oscillations are less important for the three col-
lection design, maybe because of the three time increase
of sample size. With a FDR threshold of 5%, only between
2 and 6 bins are selected depending on the collections and
likelihood considered (Table 2, top). Most of them are
located, in the Major Histocompatibility Complex (MHC)
region, mainly in the class III subregion. The class II sub-
region is known to be associated with MS [14]. The three
collection design selects more associated bins than one

collection designs, independently on the likelihood.
Results with a less stringent FDR threshold of 50% (Table
2, middle) shows a greater power of L2 over L3 for the three
collection design. However, FDR is misleading in this
study because the MHC region is known to be associated
with MS. It leads to an overestimation of the FDR at which
bins outside of this region are selected. It contains 12 of
the 33 bins selected by L2 on the three collection design.
As a result, only 10 and not 21 bins are selected (Table 2,
bottom).

Discussion
We have developed a new method to practically analyze
genome-wide association studies data. Our algorithm is
based on a bin partitioning of the genome, takes advan-
tage of studying several collections simultaneously, takes
into account genotyping errors and local genomic struc-
ture (LD), and handles the multiple testing problem
through FDR estimation while staying computationally
tractable. The method has been applied to analyze three
association studies in Multiple Sclerosis.

The FDR threshold is chosen according to the desired
application. To conduct expensive further experiments
with putatively associated genes, a very low rate of false-
positives is required. A FDR threshold of 5% seems rea-
sonable. On the contrary, if one wants to minimize the
false-negative rate, a FDR of 50% is acceptable.

FDR versus p-values of bins sorted in increasing order for the three collections design (ABC)Figure 4
FDR versus p-values of bins sorted in increasing order for the three collections design (ABC). Thick line: two-
marker likelihood L2, thin line: naive L3.
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FDR versus number of bins selected using L3 naive likelihood (top) and L2 two-marker likelihood (bottom)Figure 5
FDR versus number of bins selected using L3 naive likelihood (top) and L2 two-marker likelihood (bottom). A: 
solid, B: dash, C: dash dot, ABC: thick.
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Applying the method to experimental genome-wide asso-
ciation data on three collections permits (i) to assess the
algorithm and evaluate the different parameters and
design and (ii) to identify genes potentially associated to
Multiple Sclerosis. We have evidenced that the three col-
lection design outperforms the one-study design in terms
of expected number of true-positives, despite differences
between the studied collections, especially on the severity
of the disease. Furthermore, with this three collection
design, the two-marker likelihood L2 seems to be more
efficient thanks to the additional information used. With
this configuration, a FDR threshold of 5% gives 6 associ-
ated bins. Four of them are located in the MHC region,
known to be linked to Multiple Sclerosis [14]. It is a vali-
dation of the method. The two others are bins containing
olfactory receptor genes OR2T2 and OR4A47. The biolog-
ical meaning of such association is unclear but the
extended MHC regions contain many other olfactory
genes [14] and olfactory dysfunction has already been
reported in Multiple Sclerosis [15]. At FDR threshold of
50% and after exclusion of bins from MHC, the method
selects ten bins. They open the perspective of insights to
explain Multiple Sclerosis.
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