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Abstract

Background: Predicting functional properties of proteins in protein-protein interaction (PPI) networks presents a
challenging problem and has important implication in computational biology. Collective classification (CC) that
utilizes both attribute features and relational information to jointly classify related proteins in PPI networks has been
shown to be a powerful computational method for this problem setting. Enabling CC usually increases accuracy
when given a fully-labeled PPI network with a large amount of labeled data. However, such labels can be difficult to
obtain in many real-world PPI networks in which there are usually only a limited number of labeled proteins and
there are a large amount of unlabeled proteins. In this case, most of the unlabeled proteins may not connected to
the labeled ones, the supervision knowledge cannot be obtained effectively from local network connections. As a
consequence, learning a CC model in sparsely-labeled PPI networks can lead to poor performance.

Results: We investigate a latent graph approach for finding an integration latent graph by exploiting various latent
linkages and judiciously integrate the investigated linkages to link (separate) the proteins with similar (different)
functions. We develop a regularized non-negative matrix factorization (RNMF) algorithm for CC to make protein
functional properties prediction by utilizing various data sources that are available in this problem setting, including
attribute features, latent graph, and unlabeled data information. In RNMF, a label matrix factorization term and a
network regularization term are incorporated into the non-negative matrix factorization (NMF) objective function to
seek a matrix factorization that respects the network structure and label information for classification prediction.

Conclusion: Experimental results on KDD Cup tasks predicting the localization and functions of proteins to yeast
genes demonstrate the effectiveness of the proposed RNMF method for predicting the protein properties. In the
comparison, we find that the performance of the new method is better than those of the other compared CC
algorithms especially in paucity of labeled proteins.

Background
Advances in experimental methods in sequencing tech-
nologies results in the rapid growth of genome sequences
and gene expression profiles in last decade. A critical
problem in making use of these sequenced and associated
experimental data is the assignment of functional infor-
mation. Although the knowledge of protein functions can

be acquired by conducting various biochemical experi-
ments, it is both expensive and time-consuming by rely-
ing doing experiments alone to identify the functional
properties of newly sequenced proteins which can no
longer catch up with their rapid growth. Therefore, var-
ious computational methods have been developed for
automated prediction in the biological literature.
The task of protein functional properties prediction has

been explored widely (e.g., see an extensive review on
this task for overviews [1]). The conventional prediction
methods usually concentrated on protein sequence
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homology through finding homologies of a protein based
on their similarity. Typically, each protein is represented
as a feature vector (e.g., textual features from MEDLINE),
and the attribute features are taken as input to machine
learning algorithms, such as SVM [2], neural networks
[3], and random forest [4], to infer annotation rules for
predicting the functional properties of unlabeled proteins
[5]. However, these kinds of methods do not consider the
function diversification when a protein produces interac-
tions with other ones.
Protein-protein interaction (PPI) networks are becom-

ing increasing rich and useful in delineating the biological
processes, pathways and complexes that proteins take
part in. As a consequence, many works have considered
using protein interactions to make prediction. The net-
work-based methods study the task of protein functional
properties prediction in the context of PPI networks
based on the assumption that the interaction partners of
a protein are likely to share similar functions with it.
Sharan et al. [6] summarize the methods into two groups:
direct annotation schemes, which infer the function of a
protein based on its connections in the network [7-9];
and module-assisted schemes which first identify mod-
ules of related proteins and then annotate each module
based on the known functions of its members [10,11].
However, these types of methods using only interaction
partners limit predictions to proteins that have at least
one interaction partner with known annotation.
In recent years, there is an increasing concern about

using collective classification (CC) that utilizes both attri-
bute features and protein interactions to jointly classifying
related proteins in PPI networks [12-14]. CC methods,
such as the iterative classification algorithm (ICA), usually
explore dependencies between proteins based on the ana-
lysis of attributes and functions of neighboring partners.
To do so, the attribute features of each protein, together
with the additional relational features derived from the
linked neighbors are combined for prediction. The addi-
tional relational features can potentially increase classifica-
tion accuracy. But as some of the neighboring proteins’
functions may initially unknown, and thus this inferring
process may decrease accuracy as well when there are only
a limited number of labeled neighboring proteins.
Enabling CC usually improves the performance in pro-

tein function annotation, but such a performance
improvement usually relies on using a fully-labeled net-
work which contains a sufficient large amount of labeled
protein nodes. In this scenario, the labeled neighboring
proteins can be used to derive relevant relational features
effectively to make prediction (see Figure 1(a)). Indeed, it
is difficult and time-consuming to obtain such labels in
the protein function prediction field as each protein
instance may has multiple functional classes simulta-
neously. In particular, the number of possible function

assignments for a protein is exponential to the number of
possible functions in labeling the proteins, which is extre-
mely large even with a small number of possible functional
classes. Yet, when one is given only a sparsely-labeled PPI
network with limited number of labeled proteins, most of
proteins may not directly link to the labeled neighboring
proteins. In this situation, relational features based on
labels of neighbors is not reliable, and thus learning a CC
model with only a few such labels can lead to poor perfor-
mance (see Figure 1(b)).
To tackle this challenge, we investigate a latent graph

approach for finding an integration latent graph by
exploiting various latent linkages among protein nodes
to link (separate) the proteins with similar (different)
functional properties (see Figure 1(c)). Via the latent
graph constructed, the supervision knowledge may be
able to propagate more effectively from labeled proteins
to unlabeled proteins. Then, we develop a regularized
non-negative matrix factorization (RNMF) algorithm to
make prediction on the latent graph. Conventional non-
negative matrix factorization (NMF) method is specifi-
cally designed for unsupervised learning and cannot be
directly used for network data classification. In RNMF,
we extend the NMF objective function by adding a label
matrix factorization term and an additional network reg-
ularization term to encode the network structure and
label information of proteins, and we seek a matrix fac-
torization which gives a new data representation that
provides a good approximation of the original data
matrix to make prediction for the unlabeled proteins. In
this way, the prediction has local smoothness on the
network from labeled proteins to unlabeled proteins. As
a result, RNMF can have more discriminating power
than the ordinary NMF approach which only considers
the Euclidean structure of the data.
We study the KDD Cup 2001 tasks of predicting

properties (protein localization and their functions) of
the protein corresponding to a given yeast gene. Experi-
mental results show that the proposed RNMF algorithm
is able to deliver better performance than other com-
pared CC algorithms in paucity of labeled proteins. In
summary, the main contributions of this paper are listed
as follows:
1 This article studies the protein functional properties

prediction problem on sparsely-labeled PPI networks
with only a limited number of labeled proteins, which is
a very common situation in functional genomics but tra-
ditional prediction approaches rarely consider such label
deficiency problem.
2 It is the first one to propose a NMF based algorithm

that utilizes various additional data sources, including
attribute features, latent graph, and unlabeled data, to
improve the performance of protein functional proper-
ties prediction.
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3 The proposed RNMF algorithm extends NMF
method by incorporating two additional terms into the
model to encode the network structure and labeled
information to obtain a local smoothness of predictions
on the PPI network. This leads to better prediction per-
formance against the other CC methods especially in
paucity of labeled data.

Methods
Protein functional properties prediction task
Conventional supervised learning methods assume that
the instances to be classified are independent of each
other while collective classification (CC) considers to
jointly classify interrelated instances in a network by
exploiting their interrelations [15]. From this viewpoint,
the task of protein functional properties prediction can
be cast into the collective classification problem of
learning a predictive model from PPI networks. Gener-
ally, a PPI network can be represented by a graph where
nodes (proteins) interconnected with each other by edges
reflecting the interactions between the proteins. Informa-
tion on each protein node is represented as an attribute
feature vector. We are given a set of labeled proteins of
known functional classes, and the task is to predict the
functions of the remaining nodes of unlabeled proteins.
Nevertheless, the functional class membership of one
protein may influence the class membership of a related
protein.
Formally, the protein functional properties prediction

task is described as follows: let G = (V, E, X, Y) be a
protein network dataset. V is a set of protein nodes
{v1,...,vN}. E = [Eij] ∈ R

N×N is the weighting matrix
whereas Ei,j indicates the weights on the edge between
node vi and node vj . X = [x1, ..., xN] ∈ R

M×N denotes a
data matrix consists of N protein attribute feature vec-
tors of dimensionality M, where each xi ∈ X is an attri-
bute vector for a node vi ∈ V. {c1, c2, ..., cq} is the set of
q possible labels. Y = [Y1, ..., YN] ∈ R

q×N denotes the

set of class labels where Yi is the class labels of protein
vi. Each Yi = [Yi,1, . . . ,Yi,q]

T ∈ {0, 1}q such that Yi,j = 1
means that protein vi is associated with class cj and
Yi,j = 0 otherwise. Assume that we have n’ labeled pro-
teins {(xi,Yi)}n′i=1 and n” unlabeled data {(xi)}n′+n′′i=n′+1 with
N = n’ + n”. The task is to predict the functional classes
of unlabeled proteins. When there are only a limited
number of labeled proteins in the network, i.e. n’ ≪ n”,
most of the proteins may not connect to labeled ones,
which makes the task very challenging. As such, it is
natural to consider semi-supervised learning and net-
work exploration techniques to utilize different data
sources that are available in this problem setting, includ-
ing attribute features, protein interactions, and unlabeled
data, to improve the prediction performance.

Nonnegative matrix factorization
Nonnegative Matrix Factorization (NMF) is a matrix
factorization technique for discovering low dimensional
representations of data [16,17]. In many applications,
the input data matrix is of very high dimension, NMF
seeks to find two lower dimensional matrices (nonnega-
tive) whose product provides a good approximation to
the original data matrix. NMF has received much atten-
tion because the learned bases can be interpreted as a
natural parts-based representation of data and this inter-
pretation is consistent with the psychological intuition
of combining parts to form a whole, like face images
and text documents [16,18]. That is, we can explain
each data instance by additive linear combination of
nonnegative basis vectors because NMF allows only
additive combinations. For this reason, NMF has been
widely used in various real world applications, such as
face recognition [19], document clustering [20] and gene
expression analysis [21].
Let X = [x1, ..., xN] ∈ R

M×Ndenote the original data
matrix with N nonnegative column vectors (each is an
input instance vector of dimensionality M), NMF seeks

Figure 1 Label deficiency problem in constructing relational features xR and latent linkage solution, one approach to generate the
relational features is to count the number of neighboring nodes labeled “+” or “-” (for binary problem). (a) The unknown protein is
linked to 3 labeled protein where 2 are positive and 1 is negative, as such xR =< 2; 1 >. (b) The labels of neighboring nodes are initially
unknown, which makes the compute of relational features very challenging; (c) By adding latent linkages, the unknown protein is connect to the
most relevant labeled nodes.
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to find two nonnegative matrices U = [uik] ∈ R
M×K and

V = [vjk] ∈ R
N×K whose product provides a good

approximate to the original data matrix X, typically
K ≪ M and K ≪ N, with the following form

X ≈ UVT (1)

where U, V ≥ 0,U is called a basis matrix and V is
called a coefficient matrix.
The cost function that quantifies the quality of the

approximation can be defined in different ways. Here
we consider the square of the Euclidean distance of two
matrices

O = ||X − UVT ||2 =
∑
i,j

(xij −
K∑
k=1

vikvjk)

2

(2)

The right hand side of the above objective function is
generally positive, vanishing only if the approximation
perfectly reconstructs the original data matrix. The
above objective function can be minimized by the itera-
tive update algorithm as follows

uik ← uik
(XV)ik

(UVTV)ik
(3)

vjk ← vjk
(XTU)vjk
(VUTU)jk

(4)

The algorithm minimizing the objective function in
Eq.(2) using the above multiplicative updates. These
updates are guaranteed to decrease the approximation
cost at each iteration, and converge to a local minimum
of the objective function.

Latent graphs for protein function prediction
In the protein functional properties prediction task, we
are given a PPI network data represented as a graph G
(V, E, X, Y). Our objective is to make prediction for
unlabeled proteins on the graph. Recent studies [22,23]
have shown that learning performance can be signifi-
cantly enhanced when the network structure is exploited
and the local invariance is considered. The power of
these approaches lies in the fact that the exploited net-
work topology generally exhibits the predictable rela-
tionships between the input instances and the output
class labels.
For protein functional properties prediction, there are

two ways of looking at this problem by considering local
invariance: i) two neighboring proteins vi and vj with
large linkage weight Ei,j are likely to share similar func-
tional classes; ii) if vi and vj have small Ei,j, they tend to
have different functional classes. Suppose we have a net-
work structure that can well respect the predictable

relationships between the proteins and functional
classes, we should be able to have a good performance
of predicting the functional properties of unlabeled
proteins.
However, the above scheme may not work well on

sparsely-labeled PPI networks where there are plenty of
links among the proteins but only few of these neigh-
boring proteins are labeled or there are only few links
shared between labeled proteins and unlabeled proteins.
Recently, researchers [24,25] have considered exploiting
various latent linkages among the nodes to find latent
graphs with more desirable form of network structures
for prediction. Specifically, a weight matrix E = [Eij] is
defined for one constructed graph, one latent edge is
created for each pair nodes and a weight is assigned on
the edge based on the proximity of the nodes. For pro-
tein function prediction, we can define the weight
matrix E for latent graph generation using different data
sources that are available in this problem setting. Three
of the most commonly used methods are as follows:
PPI latent graph: The original PPI network can be

considered as a latent graph. We define the weight
matrix E(1) of the PPI latent graph as follows

E(1)
ij = E(i, j)

where E(i, j) = 1 if node vi and node vj are connected
in the PPI network, and E(i, j) = 0 otherwise.
Random walk latent graph: It is observed that proteins

that interact with level-2 neighbors (indirect neighbors
in the PPI network) also have a great likelihood of shar-
ing similar characteristics [7]. Thus, we also use the idea
of even-step random walk with restart (ERWR) [25] to
construct the random walk latent graph. Given the
weight matrix E of the original PPI network, we com-
pute P = EE and normalize its entries with respect to
each column to obtain a normalized transition probabil-
ity matrix P. The ERWR uses a random walker to itera-
tively visit the neighbourhood nodes with transition
probability given in P. Also at each step, it has probabil-
ity a (e.g., a = 0.1) to return to the start node. We
define the weight matrix E(2) of the random walk latent
graph as follows

E(2)ij = R(i, j)

where R = �T
t=1 α(1 − α)tPt is the steady-state prob-

ability matrix after T steps, and R(i, j) is the (i, j)th
entry in R.
Prediction similarity latent graph: We consider the

values of class labels of the labeled proteins as input
features to build a classifier, and give prediction to the
remaining proteins. Specifically, we use SVM classifier
with probability outputs implemented in the LIBSVM
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library [26] to compute the classification confidence
Y ′
j of a protein xi to different classes, where

Y ′
i = [P(c1 | xi), · · · , P(cq | xi)] where P(cj|xi) is the

probability of the protein xi belongs to the class cj .
The weight matrix E(3) of latent graph is based on the
cosine similarity of prediction confidences of two pro-
teins, and it is defined as follow

E(3)ij = cosin(Y ′
i ,Y

′
j )

where cosin(Y ′
i ,Y

′
j ) =

Y ′
i · Y ′

j

||Y ′
i|| · ||Y ′

j||.

Latent graphs integration
Our goal is to find a combination of the set of latent
graphs {E(1), E(2), ..., E(t)} to integrate the latent linkages
to infer a integration latent graph Ê such that the weight
on the edge of two protein nodes linked together is large
(small) if they have similar (different) functions. Here, t is
the number of different latent graphs. Formally, we
define the integration latent graph Ê as follows

Ê =
t∑

i=1

wiE(i)

s.t.
t∑

i=1

wi = 1,wi ≥ 0

(5)

where wi is the combination weight for the ith latent
graph.
To achieve this, we utilize the latent graph generation

algorithm proposed in [24] to learn the weights from
the labeled examples, i.e., we only consider the latent
linkages among the labeled examples and try to learn
the weights from it. Denote a q-by-N matrix Y as the
label matrix of all the data, we define another q-by-n’
label matrix Ῡ which respects the label information of
the labeled examples

Ȳij =
{
1, if the labeled vi belongs to jth class,
0, otherwise.

(6)

where q is the number of class labels, n’ is the number
of labeled examples, and N is the number of all
examples.
Similar, denote a N-by-N matrix E(i) as the weight

matrix of ith latent graph, we define another n’-by-n’
weight matrix Ē(i) which only respects the linkage weights
among the labeled examples of the ith latent graph.
We use Ῡ and Ē that respects the labeled proteins’

label information and linkage information to learn the
weights. The idea is to ensure that proteins have similar
(different) class labels have large (small) linkage weights.
To this end, the square of the Euclidean distance

between the matrices ῩTῩ and
q∑
i=1

wiĒ
(i)

is used as the

objective function to quantify the quality of the combi-
nation weights because the optimal similarity matrix for
the labeled examples should be ῩTῩ. Formally, the
objective function can be written as

min

∥∥∥∥∥
t∑

i=1

wiĒ
(i) − Ȳ

T
Ȳ

∥∥∥∥∥
2

+ λ||w ||2

s.t.
t∑

i=1

wi = 1,wi ≥ 0

(7)

where Ē and ῩTῩ are n’-by-n’ matrices, w = [w1, ...,wt]
T is the combination weight vector, l is a smoothing
parameter (e.g., l = 0.01). The objective is solved to
learn the weights w for latent graph integration. Then,
collective classification methods can be applied on the
learnt latent graph to make prediction.

Regularized NMF with latent graph for protein function
prediction
Various methods have been developed for protein func-
tional properties prediction. Previous works have shown
that NMF is a general method for robust pattern discov-
ery in complex biological systems [21]. NMF appears to
have advantages over other methods such as hierarchical
clustering to recover meaningful biological information
based on the protein attribute feature matrix. Concre-
tely, NMF aims to find two non-negative matrices
whose product provides a good approximation to the
original matrix. The nonnegative constraints lead to a
parts-based representation. For instance, when applied
to face image, NMF yielded a decomposition of faces
into parts reminiscent of features such as eyes, nose, etc.
The protein patterns in terms of attribute features of the
proteins are summarized while applying NMF to the
problem of protein function prediction, i.e., NMF is able
to provide an interesting decomposition of proteins ana-
logous to facial features in Lee and Seung’s work [16]
on images.
The main aim of this paper is to study the effective-

ness of the NMF and latent graph learning approaches
for the problem of protein functional properties predic-
tion. The ordinary NMF method as well as most of its
variants cannot be directly applied for network data
classification task because the approaches are developed
for analysis of unlabeled examples in the context of
Euclidean structure of the data. The updates in Eq. (3)
and (4) derived from the objective function of NMF in
Eq. (2) simply ignore the label information and network
structure which play a crucial role for functional geno-
mics problems.
To leverage the power of both NMF and latent graph

learning, in this paper, we propose a novel regularized
nonnegative matrix factorization (RNMF) algorithm,
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which seeks a matrix factorization that respects the label
information and network structure on the constructed
latent graph for protein functional properties prediction.
To achieve this, a label matrix factorization term and an
additional network regularization term are incorporated
into the NMF objective function, and an optimization
scheme is developed to solve the objective function of
the new NMF method.
Suppose Yi = [Yi1, · · ·,Yiq]T ∈ {0, 1}q is the label vec-

tor of xi ∈ X, and Y = [Y1, ..., YN] ∈ R
q×Ndenotes the

label matrix encoding the label information of all the
data. For labeled data, Yij = 1 if xi is labeled with cj ,
and Yij = 0 otherwise. For unlabeled data, Yij = 0. With
the protein attribute feature matrix X and label matrix
Y, the objective function of NMF is extended as follows

O = ||X − UVT||2 + α ||W � (Y − BVT) || (8)

The above objective function is divided into two terms.
The first term is exactly the same as the objective func-
tion in Eq. (2), the second term is incorporated into the
model to encode the label information, ⊙ is the Hada-
mard product symbol which is a binary operation that
takes two matrices of the same dimensions, and produces
another matrix with elements given by [A ⊙ B]ij = [A]ij ·
[B]ij , and a is a tradeoff parameter to determine the
importance of the label matrix term. Here B ∈ R

q×K is a
basis matrix for the second term, and W ∈ R

q×Nis a
weight matrix such that elements of W are with nonzero
values if the labels of corresponding proteins are known,
otherwise elements of W are 0. Specifically, we have

Wij =

⎧⎨
⎩
0.01, if Yi is known and Yij = 1,
1, if Yi is known and Yij = 0,
0, if Yi is unknown.

(9)

where Yij is either 1 or 0 depending on the class mem-
bership of the instance.
In the objective function in Eq. (8), the approximation

matrix [BVT]ij (with nonnegative value) does not need
to be exactly equal to 1 when Yij = 1. On the other
hand, we hope [BVT]ij to be close to 0 when Yij = 0.
Thus, in Eq. (9), the weights with respect to Yij = 0 is
set to be larger than those of Yij = 1 for the labeled data.
By using the new NMF method, the supervised knowl-

edge can be effectively preserved, and we seek a matrix
factorization which gives a good approximation for both
of the data matrix and label matrix. On the other hand,
with the integration latent graph Ê constructed, one
might further hope that the intrinsic network structure
can be considered while applying the NMF method to
make prediction. In the following, we incorporate a net-
work regularizer into the NMF objective function to
seek a matrix factorization that also respects the intrin-
sic network structure.

We assume that if the linkage weight Êjl of two pro-
teins xj and xl on the constructed latent graph Ê is
large, these two nodes also should be close to each
other in terms of the new representations of the matrix
factorization. To achieve this, we denote that the new
representations of two neighboring nodes xj and xl with
respect to the new basis matrices are zj = [vj1, ..., vjK]

T

and zl = [vl1,...,vlK]
T, respectively. Again, we use the

square of the Euclidean distance between these two vec-
tors to measure their distance

d(zj, zl) = || zj − zl||2

With the constructed integration latent graph matrix
Ê and the distribution distance measure d(zj , zl), we
can compute the smoothness of the proteins on the
latent graph as follows

R =
1
2

N∑
j,l=1

|| zj − zl ||2 Êjl

=
N∑
j=1

zTj zjDjj−
N∑

j,l=1

zTj zlÊjl

= Tr(VTDV) − Tr(VT ÊV) = Tr(VTLV)

(10)

where Tr(·) denotes the trace of a matrix and D is a
diagonal matrix whose entries are column sum of Ê,
D = ∑l Êjl. L = D - Ê is the graph Laplacian.
Combing this network regularizer R with the objective

function in Eq. (8), we obtain the objective function of
RNMF as follows

O = ||X − UVT ||2 + α||W � (Y − BVT) ||2 + βTr(VTLV)(11)

where b is the regularization parameter controlling the
importance of the network regularization term.
As in the standard NMF, multiplicative updates are

derived for U, B and V for minimizing the objective func-
tion. In the following, we introduce an iterative algorithm
which can achieve a local minimum for the objective
function O in Eq. (11). Using the matrix properties Tr
(AB) = Tr(BA) and Tr(A) = Tr(AT), the objective func-
tion can be rewritten as follows

O = Tr((X − UVT)(X − UVT)T)

+ αTr(W � ((Y − BVT)(Y − BVT)T)) + βTr(VTLV)

= Tr(XXT) − 2Tr(XVUT) + Tr(UVTVUT)

+ αTr(W � YYT) − 2αTr(W � YVBT)

+ αTr(W � BVTVBT) + βTr(VTLV)

(12)

Let ψik, gik and jjk be the lagrange multiplier for con-
straint uik ≥ 0, bik ≥ 0 and vjk ≥ 0, respectively. We need
to minimize O with respect to U, B and V subject to

Wu et al. BMC Systems Biology 2015, 9(Suppl 1):S9
http://www.biomedcentral.com/qc/1752-0509/9/S1/S9

Page 6 of 14



the lagrange multiplier constraints. Then we have the
Lagrange function L as follows

L = Tr(XXT) − 2Tr(XVUT) + Tr(UVTVUT)

+αTr(W � YYT) − 2αTr(W � YVBT)

+αTr(W � BVTVBT) + βTr(VTLV)

+Tr(�UT) + Tr(ϒBT) + Tr(�VT)

(13)

where Ψ = [ψik], ϒ = [gik] and F = [jjk].
The partial derivatives of L with respect to U, B and

V are

∂L
∂U

= −2XV + 2UVTV + � (14)

∂L
∂B

= −2α[W � Y]V + 2α[W � BVT]V + ϒ (15)

∂L
∂V

= −2XTU + 2VUTU − 2α[WT � YT]B

+2α[WT � VBT]B + 2βLV + �

(16)

By using the Karush-Kuhn-Tucker conditions ψikuik = 0,
gikbik = 0 and jjkvjk = 0, we have

(UVTV)ikuik − (XV)ikuik = 0 (17)

([W � BVT]V)ikbik − ([W � Y]V)ikbik = 0 (18)

(VUTU + α[WT � VBT]B + βDV)jkvjk

−(XTU + α[WT � YT]B + βEV)jkvjk = 0
(19)

These equations lead to the following updating rules

uik ← uik
(XV)ik

(UVTV)ik
(20)

bik ← bik
([W � Y]V)ik

([W � BVT]V)ik
(21)

vjk ← vjk
(XTU + α[WT � YT]B + βEV)ik

(VUTU + α[WT � VBT]B + βDV)ik
(22)

when a = 0 and b = 0 the above updating rules
reduce to the updating rules of the original NMF.
Algorithm 1 RNMF
Input: data matrix X, label matrix Y, linkage weight-

ing matrix Ê, label weighting matrix W
Output: new label matrix Y ‘
1: Initialize V using Eq.(23) and Eq.(25).
2: repeat
3: Update U using Eq.(20)
4: Update B using Eq.(21)

5: Update V using Eq.(22)
6: Reset V for labeled data using Eq.(25)
7: until stopping criteria is met
8: for each unlabeled protein xi do
9: k̂ ← argmaxk(vik)
10: Y ′(i, k̂) ← 1
11: end for
The proposed RNMF algorithm is summarized in

Algorithm 1. In the algorithm, the first step (line 1) is to
initialize the value of V for the updates in Eq. (20-22)
based on the class priors (using the labeled data). Speci-
fically, for the labeled data we have

vjk =
{
1, if Yjk = 1,
0, if Yjk = 0,

(23)

For unlabeled data, the values of vjk are initialized as

vjk =

∑
i n(ck, xi)∑

k′
∑

i n(ck′ , xi)
(24)

where n(ck, xi) = 1 if xi is labeled as ck and 0
otherwise.
The matrices U, B and V are then updated alternately

until the objective value of Eq. (11) does not change or
the maximum number of iterations is met (line 2-7). In
this procedure, the values of vjk of the labeled data are
reset at each iteration to preserve the label information
(line 6). In practice, only a small portion of entries of V
will be reset when we have limited number of labeled
data and do not affect the convergence of the algorithm
as we see in the experiment section.
By alternatively updating the nonnegative matrices, we

obtain a local optimum solution of the coefficient matrix
V. In the following, we describe how to use V for pro-
tein function prediction. We specify the column dimen-
sion of the new representation V = [vjk] ∈ R

N×K of the
original data with respect to the new basis as the same
as the number of possible class labels q, i.e., we set K
equals to q, each dimension of the new representation
corresponds to one class label.
For a single label protein xj function prediction, it is

then assigned with the class with the largest vjk value, i.e.,

Yjk =
{
1, if k = arg maxk′vjk′ ,
0, otherwise,

(25)

For multi-label protein xj function prediction, we are
primarily interested in learning a model that generate a
ranking of possible labels for the given instance such
that its correct labels receive higher ranking than the
other irrelevant labels. The vjk value give ranking of
labels to indicate the importance of a set of labels asso-
ciated with the instance. That is, the class label is
ordered according to value of vjk for each instance. A
large value of vjk has a high rank of the corresponding
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class label. If vjk’ > vjk“, the label k’ is considered to be
ranked higher than the label k”. The model is then eval-
uated in terms of its ability to predict a good approxi-
mation of ranks for labels associated with the unlabeled
instances.
Our proposed RNMF model is different from the

other variants of NMF methods. Recently, various
researchers have considered manifold learning in matrix
factorization. For instance, Cai et al. [22] showed that
adding manifold learning in matrix factorization will
improve clustering performance substantially. But these
NMF methods only deal with unsupervised modeling so
far. They cannot directly used for supervised protein
functional properties prediction problems where PPI
interaction networks are involved. One hopes then to
find a matrix factorization which uncovers the network
structure and simultaneously respects the label informa-
tion of the labeled data. In our RNMF model, a label
matrix factorization term and a network regularization
term are incorporated into the NMF model for this
purpose.

Experiments
In this section, we conduct extensive experiments to
compare the performance of our proposed RNMF
method with the other compared baselines: SVM, wvRN
+RL, ICA, semi-ICA and ICML, and show that the pro-
posed RNMF method is able to achieve better perfor-
mance against these algorithms.

Yeast dataset and baselines
We conduct experiments to predict properties of the pro-
teins corresponding to a given yeast gene from KDD Cup
2001 [27] (available at http://www.kdd.org/kdd-cup-2001-
molecular-bioactivity-plus-protein-locale-prediction).
These properties are (1) the localization of the proteins
encoded by the genes (2) one (or several) of categories of
protein function(s). A protein can have more than one
function, but only one localization. Problem (1) is a binary
problem, i.e., proteins are localized (or not localized) to
the corresponding organelle. Problem (2) is a multi-label
problem with 14 functional classes, and we are primarily
interested in learning a ranking of possible functions for
the proteins.
The dataset for these two problems includes 1,243

protein instances and 1,806 interactions among the pair
of proteins interact with one another. The protein fea-
tures include the attributes refer to the chromosome on
which the genes appears, to whether the gene is essen-
tial for survival, observable characteristics of the pheno-
type, structural category of the protein, the existence of
characteristic motifs in the amino acid sequence of the
protein, and whether the protein forms larger proteins
with others [27,5].

We evaluate the performance of problem (1) by classi-
fication accuracy

Accuracy =
#Unlabeled data classified correctly

#Unlabeled data

and problem (2) by two multi-label learning evaluation
metrics Coverage and RankingLoss [28].
Coverage evaluates how far we need, on the average,

to go down the list of labels in order to cover all the
true labels of an instance:

Coverage(f ) =
1
N

N∑
i=1

max
ck∈ Yi ranks(xi, ck) − 1.

where ranks(xi, ck) denotes the ranks of class label ck
derived from a confidence function s(xi, ck) which indi-
cates the confidence for the class label ck to be a proper
label of xi.
Ranking loss evaluates the average fraction of label

pairs that are reversely ordered for the instance:

RankingLoss(f ) =
1
N

N∑
i=1

1

|Yi||Ȳi|
· |Ri|,

where Ri = {(c1, c2)|h(xi, c1) ≤ h(xi, c2), (c1, c2) ∈ Yi ×
Ῡi|}, and Ῡi denotes the complementary set of Yi.
1 SVM [26]. This baseline is a feature-based method

only using the attribute features of the proteins for
learning without considering to use any network
sources.
2 wvRN+RL [29]. This algorithm is a relational-only

method only using the PPI network for prediction.
wvRN+RL computes a new label distribution for an
unlabeled node by averaging the current estimated dis-
tributions of its linked neighbors. This process is
repeated until reaching the maximum iteration number.
3 ICA [15]. This denotes a collective classification

algorithm which uses both attribute features and rela-
tional features to train a base classifier iteratively for
prediction. The relational features are constructed based
on the labels of neighbors. We use logistic regression
(LR) as base classifier because prior works have found
that LR to be superior to other classifiers such as naive
bayes and kNN, as base classifier for ICA.
4 semi-ICA [30]. This method extends ICA to lever-

age the unlabeled data using semi-supervised learning.
There are four semi-ICA variants (KNOWN-EM, ALL-
EM, KNOWN-ONEPASS, ALL-ONEPASS) for semi-
ICA, we run all four variants and choose the best one as
the result of semi-ICA.
5 ICML [31]. This method extends ICA to handle

multi-label learning by constructing additional label cor-
relation features to exploit the dependencies among the
labels as additional input features to learn base classifier.
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It is generally more difficult to determine the classifier
parameter values when the number of labeled data avail-
able is smaller. Learning from limited number of labeled
data is the focus of this study. Thus, we do not tune the
algorithm parameters using cross validation. In the
experiments, we use default parameter values for the
compared methods as recommended by previous works.
In particular, we use the LibSVM (available at http://
www.csie.ntu.edu.tw/ cjlin/libsvm/) library [26] with lin-
ear kernel as base classifier for the SVM algorithm, and
set the penalty parameter C = 1.0 for the SVM as
default. The maximum number of iterations for ICA,
semi-ICA are set to 10 as in [30,31]. While the wvRN
+RL uses 1000 iterations. The parameters a and b for
our proposed method are set to 10 and 5. The para-
meter selection will be discussed in the later section.

Results on protein localization prediction
We first consider problem (1) of KDD Cup 2001, i.e., the
protein localization prediction problem. We compare
RNMF with the learning algorithms: SVM, wvRN+RN,
ICA and semi-ICA. The performance is measured in clas-
sification accuracy.
We note that a smaller number of label data is the

most interesting case for our algorithm, because it is not
reliable for classification prediction due to the inade-
quacy of supervision knowledge in the labeled dataset. In
order to validate the performance of the algorithm in
paucity of labeled data, only a small number of proteins
are selected as labeled data, which makes the problem
very challenging. The remaining are used for testing the
quality of the algorithms through the classification accu-
racy. In the experiments, we use varying number of
labeled data ranging from 2% to 5%. For each labeled/
unlabeled data split, we execute an algorithm for 10 runs
(we have also try 50 runs, the results are similar), and
report the performance (mean and standard deviation)
over 10 runs for each algorithm. Table 1 shows the
experimental results of the algorithms with respect to dif-
ferent ratios of labeled data. One observes that the overall
picture taken from the experiments is clearly in favor of
our proposed RNMF. The performance of RNMF is con-
sistently better than the other algorithms across different
ratios of labeled data. On average, RNMF performs best

followed by semi-ICA, these two methods are much bet-
ter than the SVM method only using attribute features
and the wvRN+RL only using relational information.
We further analyze the performance difference between

RNMF and the compared methods and count the results
of the win-tie-loss with pairwise t-tests at 0.10 significance
level. The label ratios used are 2%, 3%, 4% and 5%. For
each label ratio, a win (or loss) is counted when RNMF is
significantly better (or worse) than the compared algo-
rithm over 10 runs. Otherwise, a tie is recorded. We find
that the win/tie/lose counts with pairwise t-test for RNMF
against other algorithms are 4/0/0 over all comparisons.
This result reveals that the RNMF method is statistically
superior to other methods at 0.10 significance level when
there is limited number of labeled data. This is consistent
with our earlier assertions that our approach can work
well in the paucity of labeled proteins.
We also use the receiver operating characteristics

(ROC) curve [32] to present results for the protein loca-
lization prediction problem with 5% of label ratio. ROC
curve reflects the true positive rate of a classifier as a
function of its false positive rate. ROC curve is a two-
dimensional graph in which false positive (fp) rate is
plotted on the X axis and true positive (tp) rate is
plotted on the Y axis. In classification evaluation, the
classifier model produces a continuous output (i.e., an
estimate of an instance’s class membership probability)
to which different thresholds are applied to predict class
membership. If the classifier output is above the thresh-
old, the classifier predicts the instance as class c, else _c.
In this way, each threshold value produces a different
prediction result to compute the results of tp and fp.
Each of the thresholds corresponds to a different point
in ROC space. The area under the ROC curve (the lar-
ger the better) is used to evaluate the strength of a clas-
sifier across various thresholds. Figure 2 shows the ROC
curves of the RNMF method and the baselines (SVM
and wvRN+RL). We see from the figure that the area
under the ROC curve of our RNMF (the red curve) is
larger than those of the SVM method (the blue curve)
and the wvRN+RL method (the green curve), which
implies that the RNMF method is able to deliver better
performance against the baselines for protein localiza-
tion prediction.

Table 1 Accuracy (mean ± standard deviation) of the compared algorithms against different label ratios on problem
(1) of KDD Cup 2001

label ratio RNMF SVM wvRN+RL ICA semiICA

2% 0.790 ± 0.023 0.700 ± 0.044 0.633 ± 0.012 0.700 ± 0.058 0.725 ± 0.052

3% 0.827 ± 0.031 0.736 ± 0.004 0.624 ± 0.013 0.731 ± 0.063 0.755 ± 0.004

4% 0.833 ± 0.021 0.774 ± 0.005 0.650 ± 0.004 0.760 ± 0.052 0.774 ± 0.055

5% 0.843 ± 0.008 0.770 ± 0.003 0.675 ± 0.023 0.771 ± 0.058 0.792 ± 0.001

Avg. 0.823 ± 0.020 0.745 ± 0.014 0.645 ± 0.013 0.740 ± 0.057 0.762 ± 0.028

Wu et al. BMC Systems Biology 2015, 9(Suppl 1):S9
http://www.biomedcentral.com/qc/1752-0509/9/S1/S9

Page 9 of 14

http://www.csie.ntu.edu
http://www.csie.ntu.edu


Convergence study
The objective function O in Eq. (11) is optimized for
classification prediction based on the iterative algorithm
in Algorithm 1. Here, we investigate how fast the algo-
rithm can converge. Figure 3 shows the convergence
curve of the RNMF algorithm on the problem (1) (at 5%
label ratio). The x-axis is the number of iteration num-
ber in the process of optimizing the objective value O
and the y axis is the value of successive computed
objective value ||O(t + 1) − O(t) ||/||O(t) ||. We observe
that the algorithm converge after about 10 iterations.

Parameter sensitivity
In the proposed RNMF method, we need to set the the
parameters a and b which quantify the importance of
the label matrix factorization term and the network reg-
ularization term of the objective function in Eq. (11). In
this experiment, we investigate how different values of
the parameters a and b affect the classification accuracy
of the proposed method. We examine the sensitivity of
RNMF with respect to different a and b. (i) We fix b =
5 and vary a. Figure 4 shows the classification accuracy
of RNMF against different values of a on problem (1) of
the KDD Cup 2001 dataset. From the figure, we observe
that when a is small the accuracy is poor because the
RNMF algorithm boils down to an unsupervised NMF
approach in this situation. The accuracy of the proposed
RNMF method increases as the value of a increases,
and the accurate for a between 5 to 60 does not change

significantly. (ii) We fix a = 10 and vary b. Figure 5
shows the classification accuracy of RNMF against dif-
ferent values of b. One observes that when b is small,
the classification accuracy is degraded, because no
smoothness is used in this situation. As the parameter b
increases, the accuracy reaches a plateau between 5 to
60, and does not change significantly. In summary, the
experimental results show that one can use the method
in a robust way across a wide range of parameters. The
best performance is achieved at a = 10 and b = 5.
Therefore, we set a = 10 and b = 5 as default values in
the experiments.

Interaction relations
The coefficient matrix V learnt by the proposed RNMF
method can be used to estimate the interaction effects
among the proteins. Given two protein instances xi and
xj, their interaction can be estimated by the cosine simi-
larity between their coefficient vectors vi = [vi,1,...,vi,K]
and vj = [vj,1, ..., vj,K]. The resulting similarity ranges from
0 to 1, with 0 indicating the instances are independence,
and 1 indicating the instances are highly interrelated. We
apply the cosine similarity measure to evaluate the inter-
action relations of 5 randomly selected genes (G238510,
G238510, G234935, G235158, G237021, G234980) to
their interrelated genes in the KDD Cup 2001 dataset.
Table 2 shows these interrelated proteins (discovered by
previous studies) and their similarity values (computed
by using the matrix V). In general, we can see that these

Figure 2 ROC curves of RNMF and baselines (SVM and wvRN+RL).
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interrelated genes tend to have large similarity values.
This provides evidence of the advantages of using our
proposed method to detect the interactions.

Results on protein function prediction
We also conduct experiments for problem (2) of KDD
Cup 2001, i.e., the multi-label protein function prediction

problem. We compare the proposed RNMF algorithms
with baseline classifiers: SVM, wvRN+RN, ICA, semi-
ICA and ICML. For SVM, wvRN+RN, ICA and semi-
ICA, we use the binary relevance (BR) method [33] to
decompose the multi-label problem into a set of q binary
classification problems using one-against-all strategy, and
train independent classifier for each single-label problem.

Figure 3 Convergence curve of RNMF for the problem (1) of KDD Cup 2001 dataset.

Figure 4 Classification accuracy of RNMF with respect to different a for the problem (1) of KDD Cup 2001 dataset. (the parameter b is
fixed at 5).
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The predictions for all q binary classification problems
are combined to make the final prediction.
We compare the performance of our proposed RNMF

approach and other tested algorithms with varying per-
centages of labeled data from 2% to 10%. For each per-
centage, we execute each algorithm 10 times and report
the results of mean as well as standard deviation of each

compared algorithms over 10 runs. The results are
shown in Figure 6 and 7 in terms of Coverage and
RankingLoss, respectively. For these two evaluation
metrics, the smaller the value of the metrics, the better
the performance of the algorithms. From the experimen-
tal results, we see that the RNMF method (the black
line) has the best performance (lies under the other
curves) across different percentages of labeled data from
2% to 10%. This provides evidence of the advantage of
the proposed RNMF method for multi-label protein
function prediction.

Conclusion
In this paper, we utilize a latent graph approach for
finding an integration latent graph by exploiting various
latent linkages and judiciously integrate the linkages to
generate a latent graph to effectively propagate the label
information from labeled data to unlabeled data. For
protein function prediction, we developed a novel
method, called regularized non-negative matrix factori-
zation (RNMF), to seek a matrix factorization which
respect the attribute features, latent graph, and unla-
beled data for classification prediction. In RNMF, a label
matrix factorization term and a network regularization
term are incorporated into the NMF objective function
to encode the network structure and label information.
As such, the learnt RNMF has more discriminating
power than the other compared baseline methods.
Several questions remain to be investigated in our

future work: 1) A challenge problem is the lack of large
benchmark datasets for evaluation the scalability of the

Figure 5 Classification accuracy of RNMF with respect to different b for the problem (1) of KDD Cup 2001 dataset. (the parameter a is
fixed at 10).

Table 2 Selected interrelated genes and their similarity
computed by the proposed method

GeneID GeneID Similarity

G238510 G239467 0.9984

G238510 G239178 0.9987

G238510 G235250 0.9983

G234935 G234445 0.9094

G234935 G239966 0.9388

G234935 G235763 0.9589

G234935 G235329 0.9700

G235158 G234735 0.9776

G235158 G234074 0.9808

G235158 G234177 0.9837

G235158 G235216 0.9554

G237021 G234486 0.8831

G237021 G234065 0.9222

G237021 G239804 0.9285

G237021 G239266 0.8751

G234980 G235439 0.9865

G234980 G235231 0.9843

G234980 G234914 0.9939

G234980 G235780 0.9305
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proposed method. Future work includes collecting and
generating large datasets for more extensive empirical
study. 2) Using suitable parameters are critical to the
RNMF model and the compared methods. We will further
investigate how to select the parameters effectively and
efficiently with limited number of labeled data. 3) The

convergence proofs of the RNMF can follow the idea in
the proofs of Lee and Seung’s paper [17] for the original
NMF. It is interesting to apply Lee and Seung’s idea [17]
to theoretically proof the convergence of the RNMF
model. 4) Advances in biotechnology have generated a
wide variety of heterogeneous biology networks. This

Figure 6 Coverage of different algorithms with varying percentages of labeled data on problem (2) of KDD Cup 2001.

Figure 7 RankingLoss of different algorithms with varying percentages of labeled data on problem (2) of KDD Cup 2001.
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suggests investigating the performance of the RNMF
model on different networks.
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