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Abstract

docking applications.

Background: The hardware accelerators will provide solutions to computationally complex problems in
bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection
of an appropriate accelerator requires some consideration.

Results: In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and
many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation.
The GPU implementation performed the protein-protein docking calculations approximately five times faster than
the MIC offload mode implementation. The MIC native mode implementation has the advantage in the
implementation costs. However, the performance was worse with larger protein pairs because of memory limitations.

Conclusion: The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein

Introduction

Many recently developed hardware accelerators, such as
ClearSpeed, Cell Accelerator Board, and GRAPE, were
developed for specific purposes, but graphics processing
units (GPUs) have currently become the most popular
because of their excellent performance and simple pro-
gramming environments, such as NVIDIA’s CUDA and
OpenCL [1].

Many integrated core (MIC) architectures are hardware
accelerators developed by Intel, which have been released
recently as the Xeon Phi co-processor. Similar to a GPU,
MIC includes many tiny computing cores. However, the
core can be used in the same ways as a general CPU
core. MIC is one of the main architectures used in cur-
rent supercomputing systems [2]. For example, Tianhe-2
at the National Super Computer Center in Guangzhou,
China, has 48,000 MIC boards and it was the “fastest”
supercomputer in the world in June 2014 [3]. However,
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the TOP500 ranking only shows that MIC has good per-
formance when solving LINPACK benchmark problems
and it is still not known whether MIC can accelerate real
applications, because acceleration depends on the nature
of the application and the accelerator.

Thus, the actual applications should be considered
during evaluations of hardware accelerators.

At present, various applications have been mapped
onto accelerators. In particular, GPU-based applications
have been developed in various research fields, including
genome analysis [4,5], molecular dynamics simulations
[6,7], and quantum chemistry calculations [8,9]. By con-
trast, only a few MIC applications have appeared, such as
molecular dynamics simulations [10] and genome-wide
association studies [11], which means that it is difficult to
compare the performance of GPU and MIC in real appli-
cations based on previous studies.

In the present study, we evaluated the performance of
GPU and MIC using protein-protein docking calcula-
tions, which is a real-world application in computational
biology. Protein-protein docking is a method used to pre-
dict protein complex structures based on monomeric
protein structures. At present, the most popular docking
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methods employ rigid-body docking using a voxel-based
representation in a three-dimensional (3D) grid space
with a discrete convolution-based scoring function,
where the fast Fourier transform (FFT) is employed to
speed up the calculations [12-14]. FFT-based protein-
protein docking needs only a few minutes to compute a
protein pair, although the performance is not adequate
for large-scale interactome predictions, which require
docking calculations for millions of protein pairs. Thus,
further acceleration is still required.

In this study, we used MEGADOCK [15,16], which is a
FFT-based protein- protein docking program developed
by our group, and we mapped the docking calculations
onto GPU and MIC. Next, we compared the acceleration
obtained with these accelerators and evaluated the best
method for the acceleration of FFT-based real-world
applications. In addition to the computational perfor-
mance, we also considered the implementation costs.

MEGADOCK

MEGADOCK is a protein-protein interaction prediction
system that uses FFT-based protein-protein docking
based on the Katchalski-Katzir algorithm [12]. MEGA-
DOCK was implemented in C++. MEGADOCK evaluates
each docking pose based on three types of score function,
i.e., shape complementarity, electrostatic interactions,
and the desolvation free energy. It calculates these func-
tions using a single FFT calculation and is much faster
than the well-known docking program ZDOCK [13],
which requires eight FFT calculations. MEGADOCK has
already been parallelized using MPI and OpenMP for
multiple combinations of protein pairs [16,17].

Figure 1 shows the flow of the docking processes in
MEGADOCK, where the flow is based mainly on the
Katchalski-Katzir algorithm. In the Katchalski-Katzir
algorithm, the pseudo-interaction energy score (the
docking score S) between a receptor protein and a
ligand protein is calculated as the convolution of two
discrete functions using N*-point forward FFT and
inverse FFT (IFFT), as follows:

S(t) = > _RW)L(v +1) (1)
veV
= IFFT[FFT[R(v)] % FFT[L(v)]], 2)

where R and L are the discrete score functions of the
receptor and ligand proteins, respectively, v is a coordi-
nate in the 3D grid space V), t is the parallel translation
vector of the ligand protein, * is the complex conjuga-
tion operator, and N , which is referred to as the FFT
size, is double the size of the grid. The discrete score
functions R and L are based on shape complementarity
(rPSC model [15]), electrostatic interactions (FTDock
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potential [18]) and desolvation free energy (RDE model
[19]). To identify the best docking pose, the possible
ligand orientations are examined exhaustively at 7, rota-
tion angles with a given step size 6. For each rotation,
the ligand protein is translated into N/2 x N/2 x N/2
voxels in the V grid space (where N/2 is an edge of V).
The decoy (relative conformation model of the receptor
and ligand) that yields the highest value of S for each
rotation is recorded. In this method, a total of ny x N
docking poses are evaluated for one protein pair. To
execute the simple convolution sums in eq. (1) directly,
O(N°®) calculations are required, although this is
reduced to O(N?logN) using the FFT in eq. (2). The
FFT-based docking calculation comprises the following
processes: initialization (P1), receptor voxelization (P2),
forward FFT of a receptor (P3), ligand voxelization (P4),
forward FFT of a ligand (P5), convolution (P6), inverse
FEFT (P7), identifying the best solutions (P8), and post
processes (P9), as shown in Figure 1. Processes (P4)-(P8)
are looped ny times. MEGADOCK uses an ny value of
3,600 as the default setting. Table 1 shows the propor-
tions of the docking calculation time required by each
process in MEGADOCK. This profile was obtained
based on the docking calculation of a protein complex
(Protein Data Bank (PDB) [20] ID: [PDB:1JK9]; receptor:
CCS metallochaperone (243 residues), ligand: SOD1
superoxide dismutase (153 residues)). The FFT size N of
the docking calculation was 128, which is typical in the
current protein structure database. The profile was
obtained using an Intel Xeon E5-2670 2.60 GHz, one
CPU core. FFT processes (P5 and P7) accounted for
most of the processing time (75.9%). However, other
calculations, such as voxelization and identifying the
best solutions, still accounted for considerable propor-
tions of the total time.

GPU implementation

To compare GPU and MIC, the MEGADOCK program
should be mapped onto both GPU and MIC. The MIC
implementation was newly implemented for this study.
For GPU implementation, we used MEGADOCK-GPU
developed in the previous study [21]. In this section, we
provide a brief description of the GPU implementation.
We implemented the following processes on a GPU: for-
ward FFT of a receptor (P3), ligand rotation and voxeli-
zation (P4), forward FFT of a ligand (P5), convolution
(P6), inverse FFT (P7), and identifying the best solutions
(P8). The details of each implementation are described
in the following sections.

In ligand rotation process (P4), the atomic coordinates
of a ligand are updated according to a given rotation
matrix. The process is independent for each atom and it
can be fully parallelized. We mapped the atomic coordi-
nates onto a GPU. In ligand voxelization process (P4),
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Figure 1 Process flow of FFT-based protein-protein docking tools.

MEGADOCK sets a suitable rPSC score, electrostatic
interaction values, and desolvation free energy scores for
the ligand voxel model during this process. Ligand voxe-
lization calculates the distance between the coordinates
of an atom and each grid, before assigning a value to
each grid within the van der Waals radius of the atom.
The assignment process can be parallelized for each
atom. The rPSC score and the desolvation free energy
score of a ligand has only binary states (0 or 1), and the
electrostatic interaction value of a grid is calculated as
the cumulative sum of the values of all adjacent atoms,

thus the calculation order for each atom can be
exchanged freely. Therefore, we processed the atoms in
parallel and mapped them onto a GPU. Thus, multiple
atoms were processed simultaneously on different GPU
cores in this process. In FFT processes (P3, P5, P7), single
precision complex 3-dimentional FFT is performed using
the NVIDIA cuFFT library to map the FFT calculations
onto a GPU. In convolution process (P6), the output of
FFT of receptor voxel is complex conjugated and multi-
plied by the output of FFT of ligand voxel. The convolu-
tion can be independent for each grid, thus we mapped
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Table 1 Docking calculation time profile using a one CPU
core (PDB ID: [PDB:1JK9])

Time [sec.] Ratio [%]
P1. Initialization 0.0 0.0
P2. Receptor voxelization 03 0.2
P3. Forward FFT of receptor 0.1 0.0
P4. Ligand rotation & voxelization 129 6.9
P5. Forward FFT of ligand 69.8 375
Pé. Convolution 274 14.7
P7. Inverse FFT 715 384
P8. Identifying best solutions 43 23
P9. Post processes 00 00
Total 186.4 1000

them onto a GPU. In identifying the best solutions pro-
cess (P8), the best docking pose was selected according
to the docking score. This process was also implemented
on a GPU using reduction.

In our implementation, the transfer of large volumes
of data from a host to a GPU occurred only once. These
data comprised the original atom coordinates of a ligand
and the Fourier transformed receptor grid information,
which were transferred first. Only trivial volumes of
data transfer were required (12 bytes for angular infor-
mation and 8 bytes for the calculation results) in the
loop for each ligand rotation angle.

Rotation of the ligand

In this process, the atomic coordinates of a ligand are
updated according to a given rotation matrix. The process
is independent for each atom and it can be fully paralle-
lized. We mapped the atomic coordinates onto a GPU.

Ligand voxelization

MEGADOCK sets a suitable rPSC score, electrostatic
interaction values, and desolvation free energy scores for
the ligand voxel model during this process. Ligand voxeli-
zation calculates the distance between the coordinates of
an atom and each grid, before assigning a value to each
grid within the van der Waals radius of the atom. The
assignment process can be parallelized for each atom. The
rPSC score and the desolvation free energy score of a
ligand has only binary states (0 or 1), and the electrostatic
interaction value of a grid is calculated as the cumulative
sum of the values of all adjacent atoms, thus the calculation
order for each atom can be exchanged freely. Therefore, we
processed the atoms in parallel and mapped them onto a
GPU. Thus, multiple atoms were processed simultaneously
on different GPU cores in this process.

Forward and inverse FFT
We used the NVIDIA cuFFT library [22] to map the
FFT calculations onto a GPU.

Page 4 of 10

Convolution
The convolution can be independent for each grid, thus
we mapped them onto a GPU.

Identifying the best solutions

In this process, the best docking pose was selected
according to the docking score. This process was also
implemented on a GPU using reduction.

Data transfer

In our implementation, the transfer of large volumes of
data from a host to a GPU occurred only once. These data
comprised the original atom coordinates of a ligand and
the Fourier transformed receptor grid information, which
were transferred first. Only trivial volumes of data transfer
were required (12 bytes for angular information and 8
bytes for the calculation results) in the loop for each ligand
rotation angle.

MIC implementation

The MIC architecture can be used in two different modes.
In the offload mode, only specific sections of the program
are executed on the MIC and the user has to add pragmas
in the code to organize the data transfer and paralleliza-
tion. In the native mode, the program is executed on the
MIC alone and there is no need to change the source code
of existing applications if the program is parallelized using
OpenMP.

We accelerated protein-protein docking calculations by
utilizing MIC in both the offload and native modes.
MEGADOCK has already been parallelized by looping the
rotational angles of the ligand protein using OpenMP and
it can be run in parallel on a multi-core CPU. Thus, the
native mode implementation parallelizes the looping of the
rotational angles, whereas the offload mode implementa-
tion is parallelized during each docking calculation process.

Offload mode

In the offload mode implementation, we mapped the
most intensive processes, i.e., from (P4) to (P8), onto the
MIC architecture in a similar manner to the GPU imple-
mentation. Processes such as ligand atom rotation, voxe-
lization, and convolution were parallelized in the same
manner as the GPU implementation with OpenMP. The
process used to identify the best solution was accelerated
with the “reduction” pragma in OpenMP. The Intel Math
Kernel Library (MKL) was used to perform the FFT cal-
culations. On MIC, the FFT calculations were parallelized
automatically and the number of threads was optimized
to the FFT size.

Native mode
In the native mode implementation, we did not change
the program, but added the compile option. In contrast
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to the offload mode and the GPU implementation, the
native mode implementation did not require data trans-
fer from the host to the MIC. However, the serial sec-
tions in the program may have operated more slowly
compared with that when running on a CPU because
the clock of the MIC cores was slower than that of the
CPU. In addition, a problem occurred in the native
mode when the docking target was a large protein pair.
This was because the parallelization of the loop used for
rotational angles required per-thread memory. Thus, the
largest memory requirements were for the input and
output of the FFT, which were specific to each thread.
The FFT requirements were:

Memory requirements for FFT on one thread
= (input array + output array)

x size of complex float type x N>
= 16N> bytes

on each thread, where N is the number of 3D FFT points.
Thus, if all 240 threads were used, 240 x 16N> bytes of
memory were required. However, the Xeon Phi 5110P,
which is a product of MIC architecture, has an onboard
memory of 8 GB. Therefore, N could be up to 127 because
N = /8 x 10° bytes/240 threads/16 = 127.7 .. . (this was
actually smaller). Thus, even if we only used 60 threads, the
FFT size would have been less than 202, because
N = /8 x 10° bytes/60 threads/16 = 202.7 .. . Unfortu-
nately, the FFT sizes of many proteins exceed 127. Figure 2
shows the distribution of the FFT sizes of proteins that are
experimentally determined by X-ray diffraction and regis-
tered in the PDB (as of April 16, 2013). For over 46.8% of
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the proteins, the current MIC specification would not uti-
lize all of the computing cores to perform docking calcula-
tions in the native mode.

Experiments

To evaluate the acceleration of protein-protein docking
application using accelerators, we measured the MEGA-
DOCK execution performance using CPUs, a GPU, and
a MIC. We also compared the performance of the MIC
offload and native modes. We used the following five
conditions in the comparisons: docking calculation
using one CPU core (“1CPU”), docking calculation using
an OpenMP implementation and the eight CPU cores
included in a CPU socket (“8CPUs”), GPU-accelerated
docking calculation using one GPU and one CPU core
(“GPU”), docking calculation accelerated by the MIC
offload mode implementation using one MIC and one
CPU core (“MICqysq0aq”), and docking calculation exe-
cuted on a MIC using an OpenMP implementation and
the MIC native mode (“MICuive’). Table 2 shows the
difference of parallelization among each implementation.

To evaluate the time required for the calculations in
each condition, we performed docking calculations for
the same dataset using each system. We used the getti-
meofday() function to measure the calculation time.

All of the conditions were compared based on three
metrics: the performance with large-scale benchmark
dataset, the performance with protein pairs of different
sizes, and the acceleration rate of each process. For large
proteins, as mentioned earlier, it was impossible to exe-
cute docking calculations using the MIC native mode
implementation with all of the MIC cores because of the
memory limitations of the Xeon Phi coprocessor. Thus,
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Figure 2 FFT size of the proteins registered in the PDB (experimentally determined by X-ray diffraction, 78,958 structures).
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Table 2 Difference of parallelization among GPU and MIC offload and native implementations (n,, is number of MIC

threads)
Target of parallelization #threads used for one ligand angle Consumption of accelerator memory
GPU Each process in one ligand angle All GPU threads For only one ligand
MICsffioad Each process in one ligand angle All MIC threads For only one ligand
MIChative Loop of rotational angles of ligand One MIC thread For ny, ligands

the number of threads was adjusted according to the pro-
tein size when we used the MIC native mode.

Computational environment
The specifications of the computation nodes are shown
in Table 3. The CPU/MIC node was used to measure
the performance of “1CPU,” “8CPUs,” “MIC¢f10aq,” and
“MIC.tive,. and the performance of “GPU” was mea-
sured using the GPU node.

Performance evaluation using benchmark dataset

We retrieved 352 protein complex structures from a stan-
dard protein-protein docking benchmark set (ZLAB Bench-
mark 4.0) [23], which contained bound and unbound forms
of the protein structures. The proteins sizes were distributed
widely in the dataset (from 128 residues to 2,604 residues)
and it represented a fairly sampled subset of the current
known protein structure complexes.

Figure 3 and Table 4 show the total docking calcula-
tion time results for the dataset. MEGADOCK was par-
allelized previously using OpenMP and it provided good
acceleration with multicores, as reported in our previous
study [17]. With this dataset, it achieved a 6.3-fold
speed up using eight CPU cores. GPU and MIC also
accelerated the protein docking calculations. Using a
GPU, the docking calculations were 15.1 times faster
than the calculations with a CPU core alone. With a
GPU, the acceleration was more than double that
obtained with eight CPU cores, i.e., a CPU socket. By
contrast, the acceleration rates were increased by 3.3-
fold and 5.2-fold with the MIC offload mode and MIC
native mode, respectively, which were much lower than
the improvements obtained with the GPU. The MIC
native mode was faster than the MIC offload mode but
slower than a CPU socket.

Table 3 Computational environment

Performance with proteins of different sizes

To test the relationship between the FFT size and the
speed up with the accelerators, we evaluated the perfor-
mance with three protein pairs of different sizes. Figure 4
shows images of the three protein pairs, where the orange
proteins are receptors and the green proteins are ligands.
Table 5 shows the details of each protein and the docking
calculation time required for the three protein pairs. The
FFT size depended on the size of the protein and “med-
ium” indicates a typical protein and FFT size. The FFT
size affected the computational costs directly.

For a small-sized protein pair, the acceleration rates
obtained with GPU and MIC were less than those with lar-
ger proteins. “GPU” achieved only a 6.6-fold speed up com-
pared with “1CPU” in this case. “MIC,44ve” Was 5.0 times
faster than “1CPU” and it was faster than “8CPUs,” but
“MICytr10aq" Was even slower than “1CPU.” This was
because the memory offload overhead became large in this
case and small FFT calculations were inefficient in the MIC.

For a medium-sized protein pair, the GPU calculation
achieved a 17.3-fold speed up compared with the one
CPU core, which was much greater than that for a small-
sized protein. Because the processes such as FFT and
convolution, which show better speedup using accelera-
tors as shown in Table 6 account for larger part of the
calculation time in larger protein pairs. The acceleration
obtained with MIC was also greater than that with a
small-sized protein but it was smaller than “GPU”. “MIC-
native. and “MICo.q” vielded 7.0-fold and 2.4-fold speed
ups compared with “1CPU,” respectively. One of the rea-
sons why “MIC,..ive” Was not effective in accelerating the
calculations was that only 171 threads were used because
of the memory limitations on the MIC.

For large-sized protein pairs, the GPU calculations
achieved 17.8-fold speed up compared with the one

CPU/MIC node GPU node
CPU Intel Xeon E5-2670, 2.60 GHz (8 cores) Intel Xeon X5670, 2.93 GHz (6 cores)
Memory 54 GB 64 GB
Accelerator Intel Xeon Phi 5110P, 1.05 GHz (60 cores) NVIDIA Tesla K20X, 0.73 GHz (2,688 CUDA cores)
Accelerator memory 8 GB 6 GB
oS CentOS 6.3 SUSE LES 11 SP1
Compiler Intel C++ Compiler 13.0 Intel C++ Compiler 13.0
FFT library Intel MKL 11.0 CUFFT (CUDA 5.0)
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CPU core and the acceleration rate was almost same as
that with a medium-sized protein pair. For a large-sized
protein pair, “MIC,,ve” Was only 3.6 times faster than
“1CPU” and it was much smaller compared with the
small-sized protein pairs. This was because only 38
threads could be used for the large-sized protein pairs
because of the MIC memory limitations. On the other
hand, “MICnoaq" Was relatively fast and it achieved a
6.1-fold speed up compared with “1CPU,” which was
comparable to eight CPU cores.

Overall, GPU implementation delivered the most effi-
cient performance with various protein pair sizes. MIC
native mode implementation delivered better perfor-
mance with small- and medium-sized protein pairs, but
its performance was worse with large-sized proteins due
to the MIC memory limitations.

Acceleration rate for each process

Table 6 shows the profile of docking calculation time
obtained with each system. The FFT calculations (P5 and
P7) were speeded up greatly by the accelerators. In parti-
cular, the speed of the FFT calculations on the GPU was
over 30 times faster than those on one CPU core. How-
ever, the FFT calculations were accelerated much less
using the MIC than the GPU, even when using the native
mode. This is one of the reasons why the GPU delivered
much better acceleration than the MIC. In addition, cur-
rent MIC systems require more time for data transfer
between the host and the accelerator compared with a

Table 4 Total docking calculation times for 352 protein
complexes

1CPU 8CPUs GPU MICytfi0ad  MIChative
Total docking time [hour] 308 49 20 94 6.0

GPU. Each memory offload by the MIC incurred large
overheads and the docking calculations required 3,600
data transfers, although the data size was approximately
200 bytes and there was a small difference in the data
transfer speed with the GPU and the MIC. In addition,
both the GPU and MIC required the initialization of the
accelerators before they could be used, which may have
been a bottleneck, especially with small-sized protein
pairs.

Discussion

Effects of the different computational environments

In this study, we used different nodes to compare the per-
formance of the GPU and MIC. To test MIC, we used a
Xeon E5-2670, which was faster than Xeon X5670 used
for testing the GPU. However, “GPU” performed almost
all of the processes on the GPU so the difference in the
performance of the CPU was largely irrelevant with
respect to the calculation time. Indeed, the calculation
time with “GPU” was almost the same even when we used
six CPU cores and one GPU card (9.77 seconds for
[PDB:1JK9]). Furthermore, “GPU” achieved the best per-
formance in all of the experiments. Thus, even if X5670
had been replaced with E5-2670, the results of the com-
parison would not have changed.

Implementation costs

In addition to the computational speed, the costs of map-
ping a program onto the accelerators are also important
when evaluating the accelerators. Learning a new lan-
guage to implement a program on accelerators is a
demanding task. GPU computing requires a novel pro-
gramming technique, such as CUDA, whereas a program
is ready-to-use with MIC if it is implemented in C, C++,
and OpenMP. Thus, we considered the time and effort
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PDB ID: 1GCQ PDB ID: 1JK9
FFT size N: 80 FFT size N: 128

Figure 4 Images showing protein pairs of different sizes.

PDB ID:

1N2C
FFT size N: 216

required to port a code onto a GPU and a MIC, including
the offload and native modes.

To map a docking calculation onto a GPU, we had to
write several CUDA kernel functions, which describe the
processes executed on the GPU, as well as adding state-
ments to facilitate data transfer between the host and the
accelerator. We had to add the code with approximately
1,000 lines to the MEGADOCK original code with
approximately 7,000 lines. Therefore, the implementation
costs were high, although we were familiar with CUDA
programming. Furthermore, the source code management
costs were increased because the code required many

branches and additional source code files for GPU
computing.

For the MIC offload mode implementation, we also had
to add several pragmas to the offload section so we could
execute them on a MIC. This was similar to the GPU
implementation but the size of the additional statements
was approximately 500 lines, which was less than that
required for the GPU implementation.

By contrast, to implement a MIC in the native mode
code, we did not need to write any additional code
because MEGADOCK had already been parallelized for
looping ligand protein rotational angles using OpenMP.

Table 5 Docking calculation times and acceleration rates for three proteins of different sizes

Small Medium Large
Receptor (#residues) GRB2 C-ter CCS metallochaperone (249) Nitrogenase Mo-Fe protein (2026)
SH3 domain (61)
Ligand (#residues) Vav N-ter SOD1 superoxide dismutase (153) Nitrogenase Fe protein (578)
SH3 domain (70)
PDB ID [PDB:1GCQ] [PDB:1JK9] [PDB:1N2C]
FFT size 80 x 80 x 80 128 x 128 x 128 216 X 216 x 216
Docking time [second] (vs. 1CPU)  1CPU 383 (1.0x) 1864 (1.0x) 1105.6 (1.0x)
8CPUs 84 (4.6X) 385 (4.8%) 177.5 (6.2%)
GPU 58 (6.6x) 108 (17.3%) 62.2 (17.8%)
MICoffioad 587 (0.7%) 770 (24x) 180.6 (6.1%)
MICative 76 (50x) 26.8 (7.0x) 3105 (3.6%)

The MIC native mode (MICyative) Used an optimized numbers of threads, which were the largest numbers available for each protein size (small = 240 threads,

medium = 171 threads, and large = 38 threads).
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Table 6 Docking calculation time results for the protein complex (PDB ID: [PDB:1JK9]) for each process (in seconds)

1CPU 8CPUs GPU MICotfioad MIC,ative

P1. Initialization 0.0 0.0 08 4.0 0.7

P2. Receptor voxel 03 03 (1.1%) 03 (1.1%x) 03 (1.1x) 44 (0.1%x)
P3. Receptor FFT 0.1 0.1 (1.0x) 00 (1.7%) 1.0 (0.1%) 03 (0.2%)
P4. Ligand rot & voxel 129 34 (3.8%) 23 (5.5%) 74 (1.7%) 12 (11.1%)
P5. Ligand FFT 69.8 14.2 (4.9%) 22 (31.1%) 151 (4.6x) 79 (8.9%)
P6. Convolution 274 46 (5.9%) 1.1 (25.6%) 139 (2.0x) 3.6 (7.7%)
P7. Inverse FFT 71.5 14.1 (5.1%) 22 (31.8%) 152 (4.7X) 83 (8.6%)
P8. Identifying the bests 43 1.7 (2.5%) 1.7 (2.5%) 98 (0.4x) 03 (12.5%)
P9. Post processes 0.0 00 00 0.0 00

Data transfer 06 10.1

Total 1864 385 (4.8x) 108 (17.3%) 770 (24%) 268 (7.0%)

The values shown in parentheses are the acceleration rates relative to one CPU core. MIC native used 171 threads.

We only added a compile option for constructing the
MIC native mode binary. Thus, the implementation cost
was lowest for the MIC native mode. To execute the
program, however, we needed to copy the binary and
libraries files, and execute them remotely on each Xeon
Phi. Therefore, the operability was more complex than
that with the other systems.

Conclusion

In this study, we compared the acceleration obtained by
applying GPU and MIC to protein-protein docking cal-
culation, which is a FFT-based real-world application.
GPU computing required considerable effort to map the
calculations but it achieved the best performance. The
MIC offload mode implementation had similar costs to
GPU but its performance was far inferior to that
obtained with the GPU. With the GPU implementation,
the protein-protein docking calculations were completed
about five times faster than the MIC offload mode
implementation. The MIC native mode implementation
had the advantage that the user did not have to write
additional code, but this was mainly because the pro-
gram code had already been parallelized using OpenMP.
However, the performance became worse with larger
protein pairs because some of the MIC computing cores
could not be used due to memory limitations. The over-
all performance was comparable to eight CPU cores, i.e.,
a CPU socket. These results suggest that a GPU is now
more suitable than a MIC to accelerate FFT-based pro-
tein-protein docking calculations.

List of abbreviations

GPU: graphics processing unit; CUDA: compute unified device architecture;
MIC: many integrated core; FFT: fast Fourier transform; IFFT: inverse fast
Fourier transform; PDB: protein data bank; MKL: math kernel library.
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