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Abstract

Background: Molecular networks are the basis of biological processes. Such networks can be decomposed into
smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which
co-operativity effects between the motif components play a critical role in human diseases. We have developed a
motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal
transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and
form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed
dynamical behavior, which may lead biological organisms to perform specific functions.

Results: In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network
motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the
role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF ® miRNA),
gene-gene interaction (CMS), and post-transcriptional regulation (miRNA ® target genes). Among the cancer
networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif
interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN.

Conclusions: To validate the role of network motifs in cancer formation, several examples are presented which
demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be
accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS
missing information for certain cancer types, it is an indispensable tool for cancer biology research.

Background
Molecular networks are formed by the interaction between
biomolecules are the basis of biological processes. These
networks include but not limited to protein-protein inter-
action networks (PPIN), signal transduction networks
(STNs), gene regulatory networks (GRN), and metabolic
networks (MN). The network consists of a large number

of bio-molecules, interacting with each other give rise to
biological responses and stabilities. Network components
perform their function by cooperating with each other.
Such networks can be decomposed into smaller biological
modules,also known as network motifs.
Graph theory approach is a powerful tool for investi-

gating the underlying global and local topological struc-
tures of molecular networks; such as, analyzing the yeast
PPIN [1] and MN [2,3]. Examples of local structures are:
auto-regulation loop (ARL, either catalytic or repression),
feedback loop (FBL), feed-forward loop (FFL, either
coherent or incoherent), bi-fan and single-input motif
(SIM) [4-6]. These five network motifs are responsible
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for a large portion of molecular adjustments when the
host is subjected to changes in the external environment
(e.g. temperature, chemical concentrations), cell differen-
tiation, development, and signal transduction [7].
Such network motifs are known to have interesting

dynamical properties. Besides topological consideration,
the dynamical behavior of the motifs can be formulated by
a system of ordinary differential equations, where the solu-
tions described certain biological functionalities. For
instance, it has been shown that; 1) the FBL is capable of
directing bacterial chemotaxis [7], 2) the coherent FFL
(cFFL) with ‘AND’ logic is capable of filtering out transient
spikes of input activity [8,9], perform sign sensitive delay
[8,10], and 3) the incoherent FFL (iFFL) is capable of
accelerating response times [8,11]. Therefore, identifying
different network motif types is the first step towards a
better understanding of network biology at a system level.
Previous studies have reported certain motifs are com-

monly found in organisms, such as the FFL is found in
E. coli [9], in other bacteria [12], in yeasts [13,14] and
higher organisms transcriptional regulatory network
[15-17]; FBL and FFL also occur in different types of
biological networks, such as neural networks and PPIN
[18-20]. It is note that there was a work claimed that
network motifs do not necessary determine biological
functions, there is no characteristic behavior for network
motifs [21], while other works [8,22,23] reported oppo-
site results.
Cancer is both a genetic and epigenetic disease. Genetic

damage or mutation induced by carcinogens is a possible
cause for cancer formation. Monogenic disease traits are
rare; it is known that the causes of cancers are polygenic
and through gene-gene interaction in general. To get a
better understanding of the role of network motifs in
cancer biology at a system level, in a 2012 work [24], four
motif types, i.e. ARL, FBL, FFL and bi-fan, were identified
for six cancer diseases.
Network motifs do not perform biological functions

independently, instead motifs are interconnected which
lead to observed phenotypic changes. We name these
interconnections, the coupled motif structures (CMS).
CMS is called motif-motif interaction (MMI) pairs in our
previous work [24]. Biological organisms may use coupled
motifs to perform specific functions; for instance, coupled
FBL form dynamic motifs for cellular networks [25] and
shown oscillatory behavior [26].

Network motifs and signal transduction networks (STNs)
STNs play an essential role in cancer formation. External
chemical factor binds to the cell membrane receptor, the
chemical signals get transmitted through protein-protein
interaction, or post-translation modification, pass on to
the transcription factors, imported into the nuclei, which
activate or inhibit cancer-related genes. The cause of

cancer is due to the malfunction of genetic components
of the STNs; such as, Jak-Stat, MAPK, NFkB, PI3K-Akt,
Ras, Wnt [27]. Once a component of the STN is affected,
the signal would propagate and get amplified; hence,
induced anti-apoptosis effect, which leads to cancer
eventually.
In this paper, we extended our previous work [24] by

identifying five motif types for all the available STNs. Dur-
ing the preparation of the present work, we came across
an article written by Chen et al., [28] where the authors
have developed a method, called “Selection of Significant
Expression-Correlation Differential Motifs” (SSECDM) to
study breast cancer. Their work applies a network motif-
based approach, and combines STN and high-throughput
gene expression data to distinguish breast cancer patients
from normal patients.

Network motifs, microRNAs and transcription factors
In recent years, there is an increasing number of works on
examining microRNA-regulated network motifs. Micro-
ribonucleic acid (miRNAs) are small, endogenous mole-
cules of ribonucleic acid around 20 to 24 base pairs long
that regulate gene expression at a post-transcriptional or
translational level [29].
In a recent work by Siciliano et al., [30], the authors have

shown that miRNAs confer phenotypic robustness to tran-
scription regulation networks by suppressing fluctuations
in protein levels. Also, it has reported that miRNA-
mediated FFLs have the effect of bufering the network
against phenotypic variation [31]. For instance, hsa-miR-
15a involves in cell cycle progression through its interac-
tion with the FFL [32]. There is also a study reported the
principles of miRNA regulation in cell STNs [33]. Further-
more, many reports have suggested that aberrant miRNA
expression is associated with tumor progression and
metastasis. MiRNAs could cause cancers by targeting
oncogenes (OCG) or tumor suppressor genes (TSG)
[34,35].In another work published in 2013 [36], we have
reported the results of miRNA-regulated network motifs
for cancer networks obtained from KEGG [37].
Transcription factors (TFs) also play an important role

in GRN. In a recent work, the web-based platform named
CircuitsDB [38] was released, which provided FFL motif
information built from TFs, miRNAs, and genes. In
another work [39], the authors constructed a TF-miRNA-
gene network (TMG-net) for colorectal and breast cancer
by combining experimentally validated and confidently
inferring regulatory relations, i.e. miRNA®gene, TF ®
gene and TF ® miRNA interactions.
We propose to build a TF-miRNA-motif networks

(TMMN) for cancer diseases. To the best of our knowl-
edge, TMMN is probably the first structure constructed
to address the relationships between TFs, miRNAs, CMS,
cancer networks and STNs. Furthermore, since cancer
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networks are highly coupled with the STNs through
motif interconnection, we introduce a measure called
Jaccard Index (JI) to quantify the degree of crosstalking.
In order to identify network motifs, one needs to collect

the regulatory relation between two genetic elements. In
the last few years, we began to see many progresses in
identifying biological network motifs using network motif
prediction tools. However, most of the motifs searching
results are based on missing or false negative regulatory
relations (see Figure 5 in [40]). If any one of the gene regu-
latory pair is uncertain, then any motif derived from that is
meaningless; therefore, a large collection of highly confi-
dent regulatory relations is necessary.
The main advantage of the present computation is that

the gene-gene regulatory relations provided by KEGG are
experimentally verified, which are highly reliable records.
From the biological point of view, these collections of
regulatory pairs permit in silico researchers to obtain reli-
able network motif results.
In Section 2, we give a description of the input data and

the methods used in this paper. In Section 3, results for
cancer-related network motifs, CMS, TMMN, gene set
enrichment analysis and several cancer-related motif
examples are reported. We conclude in the final section.

Methods
The cancer networks and STNs information used in this
study are downloaded from KEGG (July 2013 version).
KEGG integrates genomic, chemical, and systemic func-
tional information to compose a biological database
resource.

Outline of workflow
In the last few years, many biochemical pathways infor-
mation are released by the KEGG database [37], which
are prepared in the XML format. Now, KEGG provides
very detail regulatory information among the molecules.
For example, KEGG delivers the following information
on; 1) PPI (PPrel) including both of the activation and
inhibition events, 2) gene expression interactions (GErel)
including expression and depression events, 3) post-
translational modification (PTM, i.e. PPrel with activation
or inhibit phosphorylation), and 4) protein-compound
interactions (PCrel with activation or inhibition).
A total of 20 cancer networks and 24 STNs have been

processed. Given the regulatory relationships between two
genetic components, one can reconstruct network motifs
using the graph theory approach. The present study
addresses the following issues;
(i) collect highly confident regulatory relations from

cancer networks and STNs,
(ii) analyze the abundance of five common types of

network motifs,
(iii) merge interconnected motif types to form CMS,

(iv) perform gene set enrichment analysis for CMS,
(v) construct TMMN,
(vi) perform text mining to validate the motif results,

and
(vii) quantify crosstalking between cancer networks

and STNs.

Identifying major types of network motifs
There are a number of publicly available network motif
detection tools, namely MFINDER [13], MAVISTO [41],
FANMOD [42], NetMatch [43], and SNAVI [44]. The
main disadvantage of using MFINDER and MAVISTO
for network motif detection is that they are comparably
slow and scale poorly as the subgraph size increases
[22,42]. We have performed a trial study using FANMOD
with KEGG data as input, the tool reports subgraphs that
occur significantly more often than in random networks.
The tool does not provide information on; 1) how many
subgraphs are found, and 2) subgraph’s nodes identities.
In other words, no detail of real motif is supplied. For
instance, the output file of FANMOD reports certain
motif information, such as frequency of occurrence,
Z-value and p-value, however, it does not report nodes
identities, then one does not know which genetic
elements belong to the motif. In other words, given the
pairwise information as input, FANMOD can predict
over-represented motifs with certain level of accuracy,
but it does not report nodes identities.
Also, FANMOD has certain limitation, for instance, it

cannot identify motifs with size one and two, i.e. auto-
regulation loop and feedback loop. This can be done
with the adjacency matrix description. More details are
given in the ‘Results’ section Table 2.
Because of this limitation, we have developed a motif

searching algorithm, which is able to process KEGG net-
works, such as; the ‘pathways in cancer (overview)’ for
human, and found a cFFL that involves genes PKC, Ras
and Raf. It is interesting to note that this loop partici-
pates in coordination of crosstalk between the Ras/Raf
and PKC pathways [23,45].
We also tested our motif-searching algorithm for the

plant pathogen interaction network, and found two
FFLs, where the first FFL involves CNGCs with Ca++,
CDPK and Rboh, and the second FFL involves MEKK1,
MKK1 and MPK4. It is known that the first FFL is asso-
ciated with Ca++ signaling [46] whereas the second FFL
that involves MEKK1, MKK1 and MPK4 is associated
with plant immune responses [47-49]. This demon-
strates the usefulness of identifying or matching network
motifs with functional biological modules.
In the graph theory approach, each bio-molecule is

represented as a node and regulatory relation as an
edge. One constructs an adjacency matrix to represent
the network. In the adjacency matrix a value of one and
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infinity (for convenient a very large number is used in
programming) is assigned to represent direct regulation
and non-regulating nodes respectively. For node that is
interacting with itself a value of one is assigned. Row

and column indices denote the upstream and down-
stream node respectively. Below we briefly described
how to perform the motif search.
ARL
This motif type involves a self-regulated gene. Non-zero
diagonal elements in the adjacency matrix represent this
type of motif. The time complexity is O(n).
FBL
This motif type involves two genes regulate each other.
For any location(i, j) in the adjacency matrix, if the term
of (i,j) is ‘1’ and that of (j,i) is also ‘1’, then genes i and j
form a FBL. Since there are C(n,2) combinations to be
tested, the time complexity is O(n2).
FFL
This motif type involves three genes regulating each
other. Depending on the activation or suppression
order, this motif type can be further divided into the so-
called cFFL, and iFFL.
For any triple set (i,j,k), if the terms of (i,j), (j,i),(i,k),

(k,i), (j,k),(k,j) are all of ‘1’, then genes i , j and k form a
FFL. Since there are C(n,3)*6 combinations to be tested,
the time complexity is O(n3).
Bi-fan
Bi-fan motif denotes a topology where two genes regu-
late the same other two genes.
Select any two rows in the adjacency matrix which

have the value of ‘1’ appear at the same column more
than one time. Check whether these two rows are
connected, if not, then determine which two columns
have the value of ‘1’ in both rows. The time complex-
ity is O(n3). To identify all bi-fan motifs, there are C
(n,2)*C(n-2,2) combinations to check, so the time
complexity is O (n4).
SIM
SIM motif denotes a topology where a master gene reg-
ulates multiple downstream genes.
Select any row in the adjacency matrix and count how

many ‘1’ appear in the row. Since there are at most n
’1’s in a row and n rows to search; therefore, the time
complexity is O(n2).

Coupled motif structures (CMS)
Some of the network motifs are interconnected which
lead to observed phenotypic change. The present study
identifies possible CMS for cancer networks. As a preli-
minary study, the following six types of CMS are con-
sidered; i.e. FBL-FBL, FFL-FFL, bi-fan bi-fan, FBL-FFL,
FBL-bi-fan and FFL-bi-fan. To obtain such structures,
gene names of; 1) same motif type, and 2) different
motif types, are pairwise compared. Given the CMS, it
enables reconstructing the global architecture of the
whole network from a bottom-up approach. More com-
plex CMS are also identified, which can be visualized in
our web platform.

Table 1

A The total number of the five motif types identified for cancer
networks and STNs

ARL FBL FFL bi-fan SIM

Cancer networks

Pathways in cancer 0 0 1 73 27

AML 0 0 0 9 12

Glioma 0 0 0 9 6

Melanoma 0 0 0 1 4

NSCLC 0 1 2 4 7

PC 0 0 1 0 5

RCC 0 0 1 0 3

Signal transduction networks (STNs)

Erbb 0 0 5 69 17

FoxO 0 0 3 0 3

Hippo 0 0 2 0 8

Jak-Stat 0 0 0 4 3

Mapk 0 0 1 6 32

PI3k-Akt 0 0 1 1 10

Rap1 0 0 0 1 13

Ras 0 0 2 15 18

TGF_Beta 0 0 0 1 7

TNF 0 0 0 1 11

TCS 0 0 0 3 35

VEGF 0 0 2 0 5

Wnt 0 0 11 0 7

* TCS denotes the Two-component system

B The total number of SIM motifs identified in cancer networks and
STNs

Cancer networks SIM

Basal cell carcinoma 1

Bladder cancer 1

Chronic myeloid leukemia 4

Colorectal cancer 4

Endometrial cancer 4

Pancreatic cancer 8

Small cell lung cancer 2

Signal transduction networks (STNs) 9

Calcium signaling 3

Hedgehog 6

HIF-1 6

mTOR 10

NFkB 2

Notch 2

Phosphatidylinositol signaling system
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The following pseudo-code was designed to identify
the six types of CMS.
Input: The network A with n nodes and all basic net-

work motifs (ARL, FBL, FFL, Bi-fan and SIM) of A.
Output: All CMS of network A
Begin
For i = 1 to n do
Loop

If any two network motifs or CMS which
include common node i could be

merged to form a meaningful CMS, then mer-
ging these two subgraphs to form

larger CMS;
Until no more basic network motifs or CMS

including node i could be merged;
End of For loop

End
A complex network may have underlying topological

structures, which can be characterized by certain topologi-
cal parameters. We applied the SBEToolbox [50] to com-
pute several topological parameters, i.e. size, maximum
degree, bridging centrality (BRC) and degree centrality
(DC), for the CMS.
Size of the network is given by the largest connected

cluster. Maximum degree of a node is node with the
highest number of connections.
The bridging coefficient of a node i is defined by:

BCO(i) =
d(i)−1

∑
i∈N(i)

1
d(i)

(1)

where d(i) is the degree of node i, and N(i) is the set
of neighbors of node i. Bridging centrality BRC(i) for
node i is defined by

BRC(i) = BC(i) × BCO(i)

The betweenness centrality BC(i) of a node i is com-
puted as follows:

BC(i) =
∑

s�=i�=t
(
σst(i)
σst

) (2)

where s and t are nodes in the network different from
i, sst denotes the number of shortest paths from s to t,
and sst (i) is the number of shortest paths from s to t
that pass through i. BRC is the average of BRC(i) over
all i.
Degree centrality of a node i, DC(i), denotes the node

degree of node i. The DC of node i in a network is
defined by:

DC(i) =

∑
j
Aij

N − 1
(3)

where N denotes the total number of nodes in the
network and Aij is the corresponding entry value in
the adjacency matrix A. DC is the average of DC(i)
over all i.

MiRNA-regulated network motifs
It is known that miRNA plays a crucial role in controlling
gene expression and biological process through its inter-
action with network motifs. For instance, hsa-miR-15a
involves in cell cycle progression [32] through its interac-
tion with the FFL. In particular, we are interested in
miRNA target genes that are related to cancer formation,
i.e. OCG and TSG.
Most miRNAs show reduced expression during cancer

formation; while some are overexpressed in cancers.
MiR-155 and its host gene, B-cell integration cluster
(BIC), are highly expressed due to MYB regulates BIC in
chronic lymphocytic leukemia [51]. Another example is
the miR-17-92 cluster, which is activated by the OCG
c-Myc and is highly expressed in B-cell lymphoma.
Members of the miR-17-92 cluster (miR-19a and miR-
19b) are essential to mediate the oncogenic activity of
the entire cluster by down-regulated the expression of
the TSG, Pten [52]. These studies indicate that some
miRNAs may act as OCGs and involve in the initiation
and progression of cancers.
Cancer gene data are obtained from the Tumor Asso-

ciated Gene (TAG) database [53], Memorial Sloan-Ket-
tering Cancer Center (MSKCC) [54] and National Yang
Ming University, Taiwan [55]. After removing overlapped

Table 2 A comparison of motif finding by the adjacency matrix approach and FANMOD

approach motif AML Glioma Melanoma NSCLC PC RCC

Adjacency Matrix FFL 0§ 0§ 0§ 1 1 1

bi-fan 1§ 1§ 1 1 0§ 0§

FANMOD FFL 0§ 0§ 0§ 0 (FN) 0 (FN) 0 (FN)

bi-fan 1§ 1§ 0 (FN) 0 (FN) 0§ 0§

Non bi-fan 2(2)* 1(1)* 0(0)* 2(2)* 3(3)* 3(1)*
§given a fixed motif size, the italic and underlined fonts denote the results uisng adjacency matrix approach are consistent with those of FANMON, i.e. true
positive or true negative events

* the first number denotes the number of identified motifs, the number inside the parenthesis denotes the total number of motif pattern found in the cancer type
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information among the three datasets, we have collected a
total of 659 OCGs, 1023 TAGs and 151 cancer-related
genes. MiRNA target gene information are obtained from
miRTarBase (version 4.5) [56] and TarBase (version 5) [57].
To construct TMMN, the TF-regulated miRNA data

are retrieved from Chipbase [58]. Since miRNA target
genes information are known; then, by matching the can-
cer motifs or CMS results, we obtained cancer-specific
TMMN. In addition, we labeled target genes as OCGs or
TSGs if they can be found in our cancer gene set
collection.

Gene set enrichment analysis
Functional annotation of dense PPI module is given by
the Database for Annotation, Visualization and Inte-
grated Discovery, i.e., DAVID http://david.abcc.ncifcrf.
gov/, which accepts batch annotation and conducts gene
set enrichment analysis. Set of CMS involves in a particu-
lar cancer network was submitted to DAVID for cluster-
ing of the annotation terms and enriched pathways. With
such analysis, enriched pathways and biological processes
related to the cancer network are obtained.
There are several studies on integrating TF, miRNA

and target genes expression profile to construct miRNA-
regulated modules for cancer diseases. Zhang et al. [59]
applied Sparse Network-regularized Multiple Nonnega-
tive Matrix Factorization (SNMNMF) algorithm to iden-
tify miRNA regulatory modules by combining expression
profiles of both miRNAs and genes, gene-gene interac-
tion (GGI) and DNA-protein interaction. The study had
shown that miRNA-gene modules are enriched in
(i) genomics miRNA clusters, (ii) known functional anno-
tations, and (iii) cancer diseases.
Le et al. [60] developed the regression-based model

called PIMiM (Protein Interaction-based MicroRNA Mod-
ules) to predict miRNA-regulated modules by integrating
expression profiles of both miRNAs and genes, sequence-
based predictions of miRNA-mRNA interactions and pro-
tein-protein interactions data. Using ovarian cancer as a
case study, PIMiM had demonstrated that it is able to
identify cancer-specific miRNAs, presence of expression
coherence between miRNA and mRNA, and enriched
functional description.
Li et al. [61] proposed Mirsynergy which applied a

two-stage clustering approach to integrate m/miRNA
expression profile, target site information and gene-gene
interaction (GGI) to infer miRNA regulatory modules
(MiRMs).
Our results differ in several aspects, (i) TMMN can

provide regulatory order among GGI, (ii) both TF ®
miRNA and miRNA ® gene information are obtained
from experimentally verified database, instead of predic-
tion, (iii) we also knew that the target gene is an OCG

or TSG; these information are definite not available in
those studies [59-61].

Signal transduction networks (STNs)
Twenty-four STNs are retrieved from KEGG, where only
13 STNs are found to compose of the proposed motif
types. To quantify the number of common motif nodes
share between cancer networks and STNs, we character-
ized that using the Jaccard index, JI, which is given by:

JI(A,B) =
|A ∩ B|

|A| ∪ |B| − |A ∩ B| (4)

where |A ∩ B|, |A| and |B| denote the cardinality of
A ∩ B , |A| and |B| respectively. A and B denote the
sets of motif nodes found in a cancer network and a
STN respectively.

Results
The results of major types of network motifs
A total of 20 cancer networks have been processed, only
seven networks; i.e. pathways in cancer, glioma, acute
myeloid leukemia (AML), melanoma, renal cell carci-
noma (RCC), non-small cell lung cancer (NSCLC), and
prostate cancer (PC), have identifiable motifs. Table 1
presents the results of the five motif types for cancer
networks and STNs. Our results suggested that the
number of bi-fans and SIM motifs outnumber other
motif types. Both of ARL and FBL motifs are rare
events.
We note that the SIM motif is a more common motif,

which is the only identifiable motif type for seven other
cancer networks and seven other STNs. In other words,
SIM can be found in 14 out of the 20 cancer networks,
and 20 out of the 24 STNs. The results are presented in
Table 1B.
Our approach, using adjacency matrix, allow us to

identify exact motifs, hence, no p-values are associated
with the findings. In order to compare our results with
the randomization approach, we performed motif find-
ing for the six cancer types using FANMOD. Default
setting for FANMOD are: p-value threshold is 0.05 and
number of randomized samples is 1000. We compare
the motif finding by our approach and FANMOD,
where the results are given in Table 2.
It is evident from the table that FANMOD is not able

to identify any FFL motif for NSCLC, PC and RCC, i.e.
false negative (FN) events. For motifs with size four, our
approach can identify bi-fan structure only, whereas
FANMOD can predict more motif patterns. FANMOD
predicted bi-fan motif for AML and glioma, which is in
line with our findings, i.e. true positive events. FAN-
MOD did not identify any bi-fan motif in PC and RCC,
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i.e. true negative events, which is in line with our
approach.
But, FANMOD found SIM (size of four) for RCC,

which is false positive events. Also, it fails to find bi-fan
motif for melanoma and NSCLC, i.e. false negative
events.
The last row in Table 2 summarized motif patterns

with size four identified by FANMOD. These findings
indicated that FANMOD performed well in identifying
motif pattern with size four except in RCC, i.e. 3(1)*
means that among the three motif patterns only one
pattern is realized.
Certain network motifs are recorded as cancer-related

modules by using the text mining tool, AliBaba http://
alibaba.informatik.hu-berlin.de/. AliBaba is a web-based
text mining service based on PubMed database, which
displays the search result in form of a graph. The fol-
lowing criteria are assumed for literature text mining; 1)
for FBL, both nodes are found, 2) for FFL, at least two
nodes are found, 3) for bi-fans, at least two nodes are
found, and 4) for SIM, since it is a bipartite graph, at
least one node in each layer can be found. Table 3 sum-
marized the text mining results, which satisfy the above
criteria; for instance, at least 62 publications recorded
SIM for the AML disease.
Our collection of motifs can provide additional details

that are not reported in the literature. As a first exam-
ple, a previous study demonstrated that PI3k/Akt is an
important influential factor in cancer, but PDPK1 was
not known for its influence in cancer formation [19].
Our study showed that PI3K, Akt3, and PDPK1 form a
cFFL; all involving in prostate cancer formation.
As another example, we have identified that PKC and

Ras are the upstream regulators of Raf in the MAPK
STN, and these three genes form a cFFL. It has reported
[62] that Ras-Raf-MAPK is an important pathway in
apoptosis suppression. Here we are able to add PKC,
which acts as an upstream regulator, is a missing com-
ponent in the literature.
As a third case, PI3K3CA and PDPK1 (also known as

PDK1) are the upstream regulators of Akt, and these
three genes form a cFFL in the PI3K-Akt STN. As

Fresno et al. [63] stated that PI3K-Akt STN components
are frequently altered in human cancers, such as AML,
NSCLC, PC and RCC.

The results of coupled motif structures (CMS)
Table 4 summarizes the results of the six possible types
of CMS. The bi-fan bi-fan CMS is the dominant type
among all the possibilities. In particular, the Erbb STN
has the highest number of bi-fan bi-fan and FFL-bi-fan
interconnected structures. This is because the Erbb STN
has multiple layers of bi-fan structure, plus bi-fan is the
dominant motif type. More complex CMS can be con-
structed by merging three or more different motif types.
To address the difference of cancer networks and

STNs CMS, we compared the results of their size, maxi-
mum degree, BRC and DC. Let a and b be the medians
of the above four parameters for cancer networks and
STNs respectively, and the ratio g is defined by b/a.
From Table 4 we found that the g values for the size

and maximum degree are about 2.5 times bigger for
STNs. This implies that STNs CMS incline to form big-
ger modules and higher gene-gene interactions. How-
ever, the ratio for DC and BRC are 0.335 and 0.419,
respectively. The results appear to suggest that cancer
networks have higher degree centrality and bridging
coefficients. It is known that DC shows that an impor-
tant node is involved in a large number of interactions;
whereas, a bridging node is a node connecting densely
connected components in a graph. The present analysis
revealed that highly interacting nodes and bridging
nodes appear to be important components in cancer
networks.

Construction of TF-miRNA-motif networks
The studied cancer network motifs are targeted by multiple
miRNAs. Table 5 summarizes the results of these post-
transcriptional modification events, i.e. miRNA ®motif. In
Table 5 the miRNA column represents the total number of
miRNAs involve in targeting the motif types. The FBL, FFL
and bi-fan columns list the total number of miRNAs
involve in regulating those three network motifs respec-
tively. In summary, the miRNA-motif regulatory relations
can be classified into three classes, i.e. one-to-many, many-
to-one and many-to-many. Certain miRNAs can target
multiple motifs (one-to-many), some miRNAs target the
same motif (many-to-one), and a few miRNAs can target
multiple motifs (many-to-many). In the FBL, FFL, and bi-
fan columns, the first and second numbers denote inter-
motif and intra-motif regulation respectively. Inter-motif
regulation represents the number of miRNAs involve in
targeting multiple motifs, whereas intra-motif regulation
denotes the number of miRNAs involves in targeting dif-
ferent members of the same motif. For the AML cancer,
there are 27 miRNAs involve in regulating multiple bi-fan

Table 3 Cancer-related motifs that are reported in
literature

Cancer ARL FBL FFL Bi-fan SIM

AML 0 0 0 20 62

Glioma 0 0 0 29 4

Melanoma 0 0 0 2 0

NSCLC 0 3 2 40 37

PC 0 0 2 0 4

RCC 0 0 20 0 22
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motifs, and seven miRNAs involve in regulating different
targets of the same bi-fan motif.
By integrating the transcription initiation data, i.e.

TF ® miRNA events, Figure 1 is a graphical display of
TMMN for NSCLC using Cytoscape. Cytoscape http://
www.cytoscape.org/ is a useful tool for visualizing mole-
cular interaction network and observing the correlation
between molecules.
In order to facilitate the Cytoscape displaying part, we

provide two options: (i) low resolution and (ii) high
resolution, for the user to view our results. Lower reso-
lution image file allows the user to view TMMN in a
faster pace.

As we shown in Table 5 certain bi-fan motifs are
highly regulated by miRNAs. Given that a network
motif can perform specific biological function, it is sug-
gested that regulating TMMN may result in observable
phenotypic effects.
Using the text mining tool, AliBaba, it was found that

the Akt expression is significantly correlated with TGFA
and EGFR in NSCLC [64]. Our motif searching result
indicates that EGF and TGFA are the upstream regula-
tors of EGFR and ERBB2 in NSCLC, in which these
four genes form a bi-fan motif. From Figure 1, one can
conclude the following pathway, i.e. TGFA ® EGFR ®
PI3K3CA ® Akt, which is consistent with Refs. [64,65]
description. Our finding not only provides the missing
genetic part, PI3KCA; which is not reported in the lit-
erature, but also reveals the genetic regulatory order.
Again, this illustrates the potential practical application
of our results.

The results of enrichment analysis
Functional annotations of the cancer network motifs are
based on gene set enrichment analysis by implementing
DAVID. Tables 6 and 7 summarized the gene set
enrichment analysis results of the AML and NSCLC

Table 4 The results of the six types of CMS for cancer networks and STNs

FBL-FBL FFL-FFL bi-fan-bi-fan FBL-FFL FBL-bi-fan FFL-bi-fan size max deg BRC DC

Cancer networks

AML 0 0 17 0 0 0 22 7 0.310 0.116

Glioma 0 0 36 0 0 0 8 4 0.0443 0.393

Melanoma 0 0 0 0 0 0 4 2 0.0678 0.400

NSCLC 0 1 6 0 4 2 18 6 0.0309 0.150

PC 0 0 0 0 0 0 18 11 0.0137 0.111

RCC 0 0 0 0 0 0 6 5 0.0075 0.333

Median, a 13 5.5 0.0376 0.242

Signal transduction networks (STNs)

Erbb 0 10 1607 0 0 111 31 13 0.0106 0.123

FoxO 0 2 0 0 0 0 34 31 0.00074 0.064

Hippo 0 10 0 0 0 0 12 6 0.0765 0.167

Jak-Stat 0 0 3 0 0 0 16 6 0.0461 0.158

Mapk 0 0 6 0 0 0 72 13 0.0154 0.039

PI3k-Akt 0 0 0 0 0 0 39 15 0.00878 0.058

Rap1 0 0 0 0 0 0 26 15 0.0161 0.080

Ras 0 1 105 0 0 7 39 14 0.0107 0.082

TGF_Beta 0 0 0 0 0 0 5 3 0.0678 0.250

TNF 0 0 0 0 0 0 12 5 0.0379 0.167

TCS 0 0 3 0 0 0 11 8 0.0333 0.182

VEGF 0 1 0 0 0 0 19 8 0.0146 0.123

Wnt 0 24 0 0 0 0 24 9 0.0106 0.123

Median, b 32.5 13.5 0.00158 0.081

g 2.50 2.46 0.419 0.335

Table 5 Mirna-regulated cancer network motifs

Cancer miRNA FBL FFL bi-fan

AML 80 0 0 27/7

Glioma 133 0 0 7/0

Melanoma 131 0 0 8/1

NSCLC 92 6/0 1/0 13/1

PC 126 0 1/0 0

RCC 44 0 15/1 0
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networks respectively, with p-value less than or equal to
0.05. Over-represented Gene Ontology [66] biological
process (BP), molecular function (MF), cellular compo-
nent (CC) and KEGG pathway are reported. Because of
the limitation of space, the results of gene set enrich-
ment analysis for the other cancer networks are not
reported, but it can be accessed in our web-based
platform.
From Table 7 it is found that giloma is another

enriched network in addition to the NSCLC network.
This suggested that the same CMS involves in different
cancer types, which may hint for disease comorbidity
study.

The results of crosstalk between cancer networks
and STNs
Table 8 summarized the JI scores for the crosstalk
between six cancer networks and 13 STNs, i.e. a total of
78 combinations. The first row and the first column list
cancer types and the STNS respectively. Entries in Table

8 represents the JI associated with a STN and the corre-
sponding cancer disease. It is found that most of the
entries are non-zero, which indicated that cancer net-
works are highly coupled with STNs through motif
interconnections. For non-zero JI values, the values
range from 0.013 to 0.184, where crosstalking between
PC and PI3K-Akt has the highest JI value. There are
several studies have examined this before; for instance,
targeting the PI3K-Akt-mTOR pathway in PC as a clini-
cal treatment [67-69], PI3K pathway is dominant over
androgen receptor signaling in PC [70], and activation
of PI3K pathway promotes PC cell invasion [71]. The
second highest JI belongs to the crosstalk between
NSCLC network and ErbB2 STN. Both Erbb and EGFR
are mutated in many epithelial tumors; such as, NSCLC
and breast cancer [72].
A web-based interface has been set up for query, and

can be accessed at: http://ppi.bioinfo.asia.edu.tw/path-
way/. The platform provides useful information accord-
ing to various cancer types and STNs search. First, for a

Figure 1 TMMN for NSCLC network displayed using Cytoscape. Square node and hexagon denote miRNA and target gene respectively,
Circular shape denotes transcription factor. Compound, and p+ represent compound and phosphorylation event respectively. Compound
interaction denotes interaction with an intermediate molecule, mostly chemical compound.

Table 6 The gene set enrichment analysis results for the AML network motifs

Annotation cluster Enrichment source Involving genes % of the total genes

GO_BP cellular process 15 93.75%

GO_CC intracellular 15 93.75%

GO_MF protein binding 15 93.75%

KEGG Acute myeloid leukemia 16 100.00%

KEGG Pathways in cancer 16 100.00%
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specific cancer type or STN, user can search for known
regulatory relations using the ‘Gene-Gene Interaction’
button. The platform will return, 1) PPrel, 2) GErel,
3) PTM, and 4) PCrel information. Second, under the
‘Cancer regulation motif’ or ‘Signal transduction net-
work’ button, user can select a cancer type or STN, the
platform will return all the identified motifs. Third, user
can search for TF-regulated miRNA and inter-motif
miRNA-regulated gene information from our web plat-
form. Fourth, TMMN can be visualized on-line, which
is displayed in Cytoscape format. This information can
be adopted to elucidate the role of motifs in cancer for-
mation. Finally, the platform provides PubMed literature
ID hyperlinks for the motifs, this allows the users to
continue their studies.

Conclusions
The major conclusions drawn from our results are as
follows. First, the bi-fan and SIM motifs are two of the
most frequently found motifs in cancer networks and
STNs. Second, in the seven cancer networks, the bi-fan
bi-fan coupling structure is more probable than the
other types. Third, miRNA mediates inter-motif regula-
tion is more often than intra-motif regulation. Fourth,
we have examined the role of network motifs in cancer
formation at different levels of regulation, i.e. transcrip-
tion initiation (TF ® miRNA), gene-gene interaction

(CMS), and post-transcriptional regulation (miRNA ®
target genes). Fifth, highly interacting nodes and brid-
ging nodes appear to be important components in can-
cer networks. Sixth, based on the JI calculation, there is
a substantial amount of crosstalk between cancer net-
works and the STNs.
By integrating TFs, miRNAs and motif information,

cancer-specific TMMN are constructed. Results are
deployed as a web-based platform. The platform is
unique in the sense that it provides experimentally vali-
dated network motif information. Our algorithm can be
easily applied to any other networks, once the binary
interaction information is available.
As we have indicated in four case studies, it is very

likely that our collection of CMS can supply very speci-
fic missing information for certain cancer networks;
hence, it is an indispensable tool for cancer biology
research.
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