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Abstract

Background: High throughput techniques produce multiple functional association networks. Integrating these
networks can enhance the accuracy of protein function prediction. Many algorithms have been introduced to
generate a composite network, which is obtained as a weighted sum of individual networks. The weight assigned
to an individual network reflects its benefit towards the protein functional annotation inference. A classifier is then
trained on the composite network for predicting protein functions. However, since these techniques model the
optimization of the composite network and the prediction tasks as separate objectives, the resulting composite
network is not necessarily optimal for the follow-up protein function prediction.

Results: We address this issue by modeling the optimization of the composite network and the prediction
problems within a unified objective function. In particular, we use a kernel target alignment technique and the loss
function of a network based classifier to jointly adjust the weights assigned to the individual networks. We show
that the proposed method, called MNet, can achieve a performance that is superior (with respect to different
evaluation criteria) to related techniques using the multiple networks of four example species (yeast, human,
mouse, and fly) annotated with thousands (or hundreds) of GO terms.

Conclusion: MNet can effectively integrate multiple networks for protein function prediction and is robust to the
input parameters. Supplementary data is available at https://sites.google.com/site/guoxian85/home/mnet. The
Matlab code of MNet is available upon request.

Introduction
Determining the functional roles of proteins is important
to understand life at molecular level and has great biome-
dical and pharmaceutical implications [1-3]. Proteins with
similar amino acids often have similar functions. Addition-
ally, functions are often performed by proteins physically
interacting with each other, or located in the same com-
plex [4], or having similar structures. The availability of a
large variety of genomic and proteomic data makes it pos-
sible to predict protein functions in silico by leveraging
these data. More accurate functional inference of proteins
can be achieved by integrating these heterogeneous

sources of genomic and proteomic data [5,6]. The compe-
titive algorithms from the first large-scale community-
based critical assessment of protein function annotation
(CAFA) also took advantage of heterogeneous data
sources [2,7-9]. Some data integration based hybrid meth-
ods do something more sophisticated, i.e., incorporating
the evolution knowledge [8], the pathways information
[10] and negative examples [11,12].
A number of computational methods have been sug-

gested to integrate heterogeneous data for inferring pro-
tein (or gene) functions [6,13]. Most of these techniques
follow the same basic paradigm: first, they generate various
functional association networks (one or more networks for
one data source) that encode the implicit information of
shared functions of proteins in each data source. Then
these individual networks (or kernels) are combined,
through a weighted sum, into a composite network, where
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the weights are optimized using labels, each label corre-
sponding to a distinct protein function. Next, the compo-
site network, along with the function labels, are given in
input to a network (or kernel) based classification algo-
rithm [5,14-16] to compute the likelihood of a specific
function label for a protein.
The functional association network is an inherent and

widely applied representation for encoding information of
shared protein functions from high-throughput proteomic
(or genomic) data sources (i.e., protein-protein interactions
(PPI), protein sequences). In this representation, a node in
the network corresponds to a protein, and the weights of
the edges of connected nodes are specified to capture the
evidence (or reliability) of shared functions derived from
one data source. These weights are computed by a specific
similarity metric for a given data source. For example,
string kernels [17] for protein sequences, Pearson’s correla-
tion coefficients for gene expression profiles. In this way,
each data source can be transformed into a network (or
kernel). To leverage the networks derived from heteroge-
neous data sources to predict protein functions, some
approaches first train individual classifiers on these net-
works and then use ensemble learning techniques to com-
bine these classifiers [7,9,11,18]. Another set of algorithms
first integrate these networks into a composite network
and then train network-based learning methods [5,14-16].
In this study, we focus on the second kind of algorithms.
Current techniques on integrating multiple networks

can be mainly divided into two categories: (i) several
approaches model the composite kernel optimization and
the final predictor training as separate problems. As such
they may not necessarily result in optimal predictors
[15,16]. (ii) Some methods optimize the composite net-
work and the predictor for each functional label sepa-
rately [5,14]. Since protein functions are inter-correlated
and most functional labels often have a relatively small
number of member proteins, these algorithms ignore the
interrelationship among labels, which can often be used
to boost the prediction accuracy [3,19]. Furthermore,
they have to resort to time consuming special techniques
(i.e., parameter tuning, regularization) to avoid the over-
fitting problem and to optimize a composite network for
each label.
To overcome the limitations of existing techniques, we

introduce a new approach to integrate Multiple Networks
(MNet) for prediction of protein functions. Unlike the
aforementioned methods, MNet jointly optimizes the mul-
tiple network integration and the network-based classifier
for a set of function labels in a unified objective function.
In addition, MNet takes into account the unbalanced label
problem in protein function prediction, and incorporates a
label weighted scheme into the unified objective function
to give more emphasis to the functional labels with fewer
proteins. Our empirical study on four publicly available

species (yeast, human, fly, and mouse, with different num-
ber of individual networks), annotated with thousands of
GO terms, shows that MNet performs better (according to
different evaluation criteria) than other related techniques.
Furthermore, MNet, unlike the competitive methods,
enables an easy selection of suitable parameters.

Related work
Different proteomic data sources (i.e., protein sequences,
PPI networks and protein domains) often capture proteins’
properties in different aspects, and have different correla-
tions with different GO terms [1,20]. Yang et al. [21] and
Teng et al. [22] observed that the GO term similarities
have different correlations with different proteomic data
sources. Therefore, integrating these data sources can
often enable a more comprehensive view of proteins and
their functions. Recently, several studies have observed a
significant improvement in protein function prediction
when multiple heterogenous biological data sources are
integrated. To name a few, Pavlidis et al. [23] integrated
heterogeneous data sources in three different ways:
(i) early integration concatenates all feature vectors from
different data sources of a protein into a single feature vec-
tor; (ii) intermediate integration computes the functional
association network for each data set separately and then
combines them; (iii) late integration trains a support vec-
tor machine (SVM) on each network (or kernel) and then
combines the resulting discriminant values. Their study
revealed that different data sources have different qualities,
and setting different weights for different networks can
enhance the accuracy of protein function prediction.
Lanckriet et al. [5] proposed a semi-definite programming
based SVM method to get the optimal weights on indivi-
dual networks. Tsuda et al. [14] constructed an optimal
combination of weights on individual networks using con-
vex optimization. Mostafavi et al. [15] determined the
optimal function-specific composite network by solving a
linear regression problem. These methods constructed a
composite network for each functional label. Since there
are often more than hundreds of functional labels, and
these labels are highly unbalanced and inter-correlated,
these algorithms are often confronted with the over-fitting
problem and require massive computational resources.
More recently, some researchers advocated for the com-

putation of optimal weights on individual networks for a
group of labels, and achieved better performance than the
methods operating on single labels. Mostafavi et al. [16]
introduced a method, called SW, that simultaneously opti-
mizes the weights on individual networks with respect to a
group of related functional labels by solving a single-con-
strained linear regression problem. The optimal weights
maximize a form of kernel-target alignment [24] between
the composite network and the target network, which is
defined based on the functional relationships implied by
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the functions of proteins. However, merely maximizing the
kernel target alignment does not necessarily result in an
optimal composite network for the network-based classi-
fier. Yu et al. [25] proposed a method, called ProMK, that
combines the composite network optimization with
respect to a group of functions and the network based
classifier in a unified objective function. ProMK can selec-
tively integrate multiple networks and can construct an
optimal composite network directly targeted to the net-
work based classification, but it suffers from the parameter
selection problem, and does not take into account the
intrinsic unbalanced label problem in protein function
prediction.
In this study, we build a composite network optimized

for a linear neighborhood propagation classifier. The
resulting method is called MNet. MNet iteratively opti-
mizes the weights assigned to the individual networks and
the loss of the classifier according to a unified objective
function. We show that the unified objective function can
boost the accuracy of protein function prediction accord-
ing to several evaluation criteria. Furthermore, MNet is
more robust than other related approaches for a wide
range of parameter values.
MNet has a close relationship with multiple kernel

learning, which is a popular topic in machine learning
[26], and it’s also widely applied in biological data mining
[5,14,25]. Wang et al. [27] introduced a method called
Optimal Multiple Graphs learning (OMG) to integrate
multiple graphs into a composite one for graph-based
semi-supervised learning. Shiga et al. [28] proposed a
method called LIG. LIG first partitions each individual
graph into several locally informative subgraphs via soft
spectral clustering and then integrates these subgraphs
into a composite one for graph-based classification.
A protein can have several different functions and these
functions are inter-correlated, thus protein function pre-
diction from multiple data sources can also be trans-
formed into a multi-label multiple kernel learning
problem [3,25]. Multi-label multiple kernel learning
methods often learn a composite kernel for each binary
label and thus have a complexity linear to the number of
labels. Bucak et al. [29] suggested a method called multi-
ple kernel learning by stochastic approximation, whose
complexity is sub-linear to the number of labels.
MNet is different from the aforementioned approaches

to integrating multiple networks in several ways.
ProMK, OMG, and LIG assign weights to the individual
networks solely based on their smoothness loss: the
smaller the value of the smoothness loss for a network,
the larger the weight assigned to this network. However,
our empirical study in this paper shows that, a smaller
value of the smoothness loss on an individual network
does not necessarily imply that the network is a better
predictor. In contrast, MNet assigns weights to the

individual networks not only based on the smoothness
loss, but also on the kernel-target alignment. Therefore,
MNet alleviates the drawback of the existing methods.
Furthermore, MNet constructs a composite network
that is coherent to all the labels, whereas most multiple
kernel learning algorithms optimize a composite kernel
for each binary label, or optimize the composite kernel
and the classifier in two separative objectives.

Method
Network-based prediction algorithm
Let Wm ∈ R

n×n(m ∈ {1, 2, . . . ,M}) be a weight matrix
corresponding to the m-th individual functional associa-
tion network. Each node of a network corresponds to
one of the n proteins, and the entry Wm

i,j ≥ 0 is the asso-
ciation (similarity, or reliability of interaction) between
proteins i and j in the m-th data source. Among the n
proteins, the first l proteins have confirmed annotation,
and the functional annotation of the remaining u = n - l
proteins needs to be predicted. These annotated pro-
teins have C distinct functions, and each annotated pro-
tein has a subset of the C functions. Each of these C
functions corresponds to a Gene Ontology (GO) term in
one of the three sub-branches (Biological Process, Mole-
cular Function, Cellular Component) of the GO [30].
The functions of the i-th protein is represented as a
label vector yi ∈ {0|1}C, where yic = 1 if the i-th protein
is confirmed to have the c-th function, otherwise, yic =
0. For an unlabeled protein j, yjc = 0 (l <j ≤ n, 1 ≤ c ≤
C). Here, we denote the predicted likelihood vector of
the i-th protein as fi ∈ RC , and fic represents the likeli-
hood that the i-th protein has the c-th function.

Let W =
∑M

m=1
αmW

m be the association matrix of the

composite network, where am ≥ 0 is the weight assigned
to the m-th network, representing its relevance towards
the prediction task. Many network-based algorithms
[13] extend the guilt-by-association rule [31], or exploit
the cluster structure of protein complex [4] to predict
protein functions using the PPI networks. Inspired by
these work, we use a linear neighborhood propagation
algorithm [32] on the composite network W to predict
protein functions:

f = arg minf

l∑
i=1

||fi − yi||22+
n∑
i=1

||fi−
∑
j∈N(i)

Wijfj||22

s.t.
n∑
j=1

Wij = 1

(1)

where N(i) is the set of proteins that have connections
with the i-th protein, 0 ≤ Wij ≤ 1 is the (i, j)-th entry of
W , and I is an n × n identity matrix. The first term in
Eq. (1) enforces the prediction to be close to the initial
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annotation of the l proteins, and it is often viewed as the
empirical loss term. The minimization of the second
term enforces that the functions assigned to an unlabeled
protein j are determined by the functions of its connected
proteins in W; as such the second term acts as a smooth-
ness loss term [33]. Eq. (1) is motivated by the observa-
tion that interacting proteins are more likely to share
similar functions [31], and two proteins with similar
amino acids often have similar functions [17]. The above
equation can be rewritten in matrix notation as:

F = arg minF tr((F − Y)TH(F − Y)) + tr(FTLF) (2)

Here, Y = [y1, y2,...,yn], F = [f1, f2,...,fn] ∈ Rn × C, H is
an n × n diagonal matrix with Hii = 1 if i ≤ l, and Hii =
0 otherwise, L = (I - W )T (I - W) and I is an n × n
identity matrix, tr(·) and T are the matrix trace and
transpose operators, respectively. By taking the differen-
tiation of Eq. (2) to F and setting the differentiation to
zero, F can be computed as:

F = (H + L)−1HY (3)

The functional labels are organized in a hierarchy (a
directed acyclic graph for GO terms, and a tree for
MIPS FunCat). The more specific the functional label is
in the hierarchy, the fewer member proteins this label
has. If a protein has a confirmed functional label, this
protein is also annotated with its ancestor labels in the
hierarchy [3,30,34]. Therefore, protein function predic-
tion is an unbalanced classification problem and to
achieve a good prediction it’s important to take into
account this issue [3,11]. Eq. (1) ignores the unbalanced
problem and considers all functional labels as equal. To

address this limitation, we modify yic into ỹic = yic log N
n+c

(N =
∑C

c=1
n+c ,n

+
c proteins annotated with the c-th func-

tion). The added factor has the effect of putting more
emphasis on functional labels that are more specific.
This forces the optimizer to focus on the more specific
functions, versus the general ones which have more
member proteins. We set Ỹ = [ỹ1, · · · , ỹn], and

F = (H + L)−1HỸ .

Kernel target alignment

Given Wij =
∑M

m=1
αmW

m
ij and the available functional

association networks {Wm}Mm=1, the accuracy of protein
function prediction is determined by a = [a1, a2,...,aM].
[24] and [35] have shown that the target aligned kernel
(network) can boost the performance of kernel-based clas-
sification and regression. To compute the weights to be
assigned to the M individual networks, we resort to a form
of kernel-target alignment algorithm [24] as follows:

α = argminαtr((K − W)T(K − W))

s.t.W =
M∑
m=1

αmWm, αm ≥ 0
(4)

where K ∈ R
n×n is the induced target network of func-

tional labels, defined as K =
∑C

c=1
Kc, where Kc is the

c-th induced target network computed as:

Kc(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

(
n−
c
l

)2
if yic = yjc = 1

n+c n
−
c

l2 if yicyjc = 0& yic + yjc = 1 & i, j ≤ 1
0, otherwise

where n−
c is the number of proteins which are not

annotated with the c-th function. Since a functional
label often has a relatively small number of member

proteins n+c < n−
c and

(
n−
c

l

)2

>
n+c n

−
c

l2
. From the defini-

tion, the more functions two proteins have in commom,
the larger the entry (corresponding to the weight of the
edge between them) in the target network is. This idea
was adapted to define the target network [15,16] and to
reconstruct the functional association network [36].
Mostafavi et al. [15,16] set the entry (corresponding to
the edge between two proteins such that one has the c-
th function and the other doesn’t) in the target network

as −n+c n
−
c

n2
. In contrast, we set the entry as

n+c n
−
c

l2
. The

reason is that the available GO term annotation of pro-
teins is incomplete, is updated regularly and suffer from
a large research bias [3,21,37]. As such, yic = 0 should
not be simply interpreted as if the i-th protein does not
have the c-th function. Furthermore, for a to be pre-
dicted protein j, if W(i; j) is large, from the guilty by
association rule, protein j is likely to share some func-
tions with the i-th protein. By minimizing Eq. (4), we
aim at crediting larger weights to the networks which
consider highly similar proteins which share more func-
tions, and smaller weights to networks which consider
highly similar proteins which share fewer or no func-
tions. By doing so, we can assign larger weights to net-
works that are coherent with functional labels.
Based on the fact that tr(KW) = vec(K)T vec(W), where

vec(K) is the vectorization operator that stacks the col-
umns of K on top of each other, we can rewrite Eq. (4)
as a non-negative linear regression problem:

α = argminαtr((VK − VWα)T(VK − VWα))

s.t. αm ≥ 0, 1 ≤ m ≤ M
(5)

where VK = vec(K), VW = [vec(W1), · · · , vec(WM)] ∈ R
(n×n)×M.
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The unified objective function
Mostafavi et al. [15,16] first utilized Eq. (4) to determine
a for the individual networks, and then applied a Gaus-
sian Random Field classifier [33] on the composite net-
work W to predict protein functions. However, the
composite network W optimized from the target net-
work K is not necessarily optimal for the classifier, since
the optimization of the composite network and of the
classifier is divided into two separate objectives. To
avoid this limitation, we attempt to integrate these two
objectives into a unified function as follows:

α = argminαtr((VK −
M∑
m=1

αmvmW)T((VK −
M∑
m=1

αmvmW))

+λtr(FT(I −
M∑
m=1

αmWm)T(I −
M∑
m=1

αmWm)F)

+λtr((F − Ỹ)TH(F − Ỹ))

s.t. αm ≥ 0, 1 ≤ m ≤ M

(6)

where vmW is the m-th column vector of VW. Eq. (6)
combines the objectives of network-based classification
and of target network alignment. Therefore, we can
enforce the composite network to be coherently optimal
with respect to both objectives.
The above objective function is convex with respect to

F and a, respectively. Here, we introduce an EM [38]
style algorithm to iteratively optimize F (or a) while
keeping a (or F) constant. For a fixed a, we can obtain
F directly from Eq. (2). For a fixed F, using tr(amW) =
amtr(W) and tr(K - W) = tr(K) - tr(W), Eq. (7) can be
rewritten as:

α = argminα − 2αTVT
WVK + αTVT

WVKα

+λ(−2αTμ + αT�α)

s.t.αm ≥ 0, 1 ≤ m ≤ M

(7)

where Θ is an M × M matrix with
�(m1,m2) = tr(FT(Wm1)TWm2F), μ is an M × 1 vector
with μm = tr(FTWmF). The other terms in Eq. (6) are
constant for a fixed F and irrelevant for a, thus they are
not included in Eq. (7). Taking the partial derivatives
with respect to a, we can obtain the following solution:

α = (VT
WVW + λ�)−1(VT

WVK + λμ) (8)

It is easy to see that, if l = 0, only the kernel target
alignment criterion is used to optimize a, and MNet is
similar to SW.
The MNet algorithm is presented in Algorithm 1. Ft

and at are the computed values for F and a at the t-th
iteration, maxIter and θ are the maximum number of
iterations and the convergence threshold, respectively.
Algorithm 1 MNet: Integrating Multiple Networks for

Protein Function Prediction

Input:
{Wm}Mm=1 functional association networks, Ỹ , l,

maxIter, θ
Output:
Predicted likelihood score vectors {fj}nj=l+1
1: Initialize α1

m = 1(1 ≤ m ≤ M), and t = 1
2: while t <maxIter and |δ| >θ do
3: t = t + 1
4: Compute Ft using Eq. (3)
5: Compute at using Eq. (8)
6: δ = |at - at-1|
7: end while

Complexity analysis
Several components in Eq. (8) (i.e., VT

WVW ∈ RM×M,

VT
WVK ∈ RM×1 and (Wm1)TWm2 ∈ Rn×n) can be com-

puted before the iterative process. The time complexity
of tr(FTWF ) is O(Cn2). Θ is an M × M symmetric
matrix, in each iteration there are M (M + 1)/2 elements
to be computed, so the time complexity of computing Θ
is O(M (M + 1) × Cn2). The complexity of matrix
inverse in Eq. (3) is O(n3). To avoid large matrix inverse,
iterative approximation algorithms (i.e. Conjugate Gradi-
ent) can be applied. Since the computation complexity
of matrix inverse in Eq. (8), and the complexity of μ is
smaller than Θ, the overall time complexity of MNet is
max{O(M2TCn2), O(Tn3)}. T is the number of iterations
for convergency. In practice, T is no more than 10. In our
study, the association matrices of the individual networks
and the composite network are all sparse with O(n) non-
zero elements. For this reason, the time complexity of the
above operations can be greatly reduced. The main differ-
ence between MNet and ProMK is that ProMK just uses
μ, so its time complexity is max{O(MTCn2), O(Tn3)}.
Given that the number of individual networks is much
smaller than the number of proteins and functional labels,
MNet has similar complexity with ProMK.

Results and discussion
Yeast, human, mouse and fly datasets
We evaluate our methodology on benchmark networks
of four datasets obtained from the study by [16], which
cover four species: yeast, human, mouse, and fly. The
Yeast dataset includes 44 functional association net-
works, the Human dataset includes 8 networks, the
Mouse dataset consists of 10 networks, and the Fly data-
set has 38 networks. These datasets are publicly avail-
able at http://morrislab.med.utoronto.ca/~sara/SW/, and
more information about them can be found in [16].
We annotated the proteins in each dataset using the

recently updated GO term annotation (access date:
2014-05-13) in three sub-ontologies, namely biological
process (BP) functions, molecular functions (MF), and
cellular component (CC) functions, respectively. Each
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protein is also annotated with its ancestral function
labels. As suggested by Pandey et al. [19], the functional
labels which have too few member proteins are not
likely to be testable in the wet lab, and thus of no inter-
est to biologists. We retained the function labels which
have at least 10 member proteins. In addition, we
removed the functional labels that have more than 300
member proteins: these functional labels are too general
and their prediction is not as critical as for the others
[25,39]. The statistic of these datasets is given in Table 1.
In the table, the BP labels are the biological process func-
tions (or terms), the MF labels are the molecular func-
tions, and the CC labels are the cellular component
functions in the Gene Ontology.

Comparing algorithms and evaluation metrics
We compared our proposed MNet with other related
algorithms: ProMK [25], SW [16], OMG [27], LIG [28],
and MSkNN [7]. MSkNN first trains a weighted majority
vote [31] classifier (similar to a weighted kNN) on each
individual network, and then integrates these classifiers
for protein function prediction; it achieves competent
performance on the first large-scale community based
critical assessment of protein function annotation [2].
The details of the other comparing methods were intro-
duced in the section of Related Work, and their para-
meter setting is discussed in the Additional File 1.
The quality of protein function prediction can be evalu-

ated according to different criteria, and the choice of eva-
luation metrics differentially affects different prediction
algorithms [2]. For a fair and comprehensive comparison,
five evaluation metrics are used in this paper, namely
MacroF1, MicroF1, Fmax, function-wise Area Under the
Curve (fAUC ), and protein-wise AUC (pAUC ). These
evaluation metrics are extensively applied to evaluate the
performance of multilabel learning algorithms and protein
function prediction [2,7,25,40]. More information about
these evaluation metrics is provided in the Additional
File 1. For an evaluation metric, since there are more than
hundreds (or thousands) of labels for a dataset, a small
performance difference between two comparing algo-
rithms is also significant.

Protein function prediction
We use five-fold cross validation to investigate the perfor-
mance of the algorithms in predicting protein function.
More specifically, we divide each dataset into five disjoint
folds. In each round, we take four folds as the training
data and the remaining fold as the testing set, in which the
proteins are considered as unlabeled and to be predicted.
We record the results on the testing data to measure the
performance. The parameters of the comparing methods
are optimized via five-fold cross validation on the training
data. Figure 1 gives the prediction performance of the
comparing methods on the BP, CC, and MF functions of
Yeast, respectively. The results on the other datasets are
reported in Figures 1-3 of the Additional File 1.
From the figures, we have several important observa-

tions. MNet almost always performs better than the
other algorithms (including MSkNN) across all the eva-
luation metrics and all the three sub-ontologies (BP, CC,
and MF) of GO, and the performance of the other
methods fluctuate with respect to the different evalua-
tion metrics. MNet also often outperforms MNet(l = 0),
which first uses kernel target alignment to obtain the
composite network, and then applies classification on
the composite network to predict protein functions. The
difference between MNet and MNet(l = 0) shows that
it is important and beneficial to unify the composite
network optimization with the prediction task on the
composite network. MNet(l = 0) performs better than
SW in most cases, and both of them are solely based on
the kernel target alignment to compute the weights on
individual networks. The reason is that MNet (l = 0)
sets the weight of the edge between two proteins (such
that one has the c-th function and the other currently

does’t) as
n+c n

−
c

l2
, whereas SW sets it as −n+c n

−
c

n2
. For the

evaluation metric fAUC, SW and MNet sometimes have
comparable results, but SW often loses to MNet
in other evaluation metrics. The reason is three-fold:
(i) SW optimizes the composite network using kernel
target alignment in advance, and then it performs binary
classification on the composite network, whereas MNet
unifies the optimization of the composite network and
the network-based classifier for all the labels; (ii) SW
specifies the label bias (often negative, since each label
is annotated with a small number of proteins) for each
binary label and MNet also sets the label bias (inversely
proportional to the number of member proteins) to
each binary label; (iii) fAUC is a function-centric evalua-
tion metric and it equally averages the AUC scores of
different labels, and the other evaluation metrics (i.e.,
Fmax and pAUC ) do not favor the binary predictor. In
fact, most functional labels are only annotated with a
rather small number of proteins. For this reason, we
observe that the true positive rate is close to 1 in a wide

Table 1 Dataset statistics

Dataset #Proteins #Networks #BPs #MFs #CCs

Yeast 3904 44 1089 307 224

Human 13281 8 3413 681 438

Mouse 21603 10 4123 818 511

Fly 13562 38 1883 481 315

’#Proteins’ represents the number of proteins in a dataset, ‘#Networks’ means
the number of functional association networks, ‘#BPs’ denotes the number of
BP labels, ‘#MFs’ denotes the number of MF labels, and ‘#CCs’ denotes the
number of CC labels.
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range of false positive rates for a large number of func-
tional labels. This fact also accounts for similar fAUC
results of MNet and SW.
Another observation is that SW often loses to other

comparing methods on MacroF1 and MicroF1. There are
two reasons for this behavior: (i) SW applies binary clas-
sification on the composite network, but the other com-
paring algorithms do network-based classification for all
the labels; (ii) MicroF1 and MacroF1 are computed based
on the transformed binary indicative label vectors, and
the binary indicative vector is derived from the largest
elements of fi for each protein (see the metric definition
in the Additional File 1 for more information); the other
three metrics do not apply the binary transformation of
fi. MSkNN uses a classifier ensemble to integrate multi-
ple networks, and sometimes gets comparable results to
other algorithms, which take advantage of the composite
network to fuse multiple networks. These results show
that classifier ensembles are another effective way to fuse
multiple data sources for protein function prediction.
ProMK and OMG also integrate the optimization of

composite network and the classifier, but they only use
the loss of the classifier on the individual networks to
determine the weights. LIG first utilizes soft spectral
clustering to partition each input individual network into
several subnetworks, and then determines the weights of
these subnetworks solely based on the loss of the classi-
fier on them. SW constructs a composite network in
advance, and then train a classifier on the composite net-
work to predict protein functions. Since it optimizes the
composite network and the classifier on the composite
network into two separate objectives, it often loses to
other comparing algorithms. These facts support our
motivation to unifying the composite network construc-
tion based on kernel target alignment and the network-
based predictor optimization.
Each dataset has more than thousands (or hundreds)

of labels. These labels are highly unbalanced and each
protein is annotated with a very small number of labels
(i.e., each protein in the Human dataset on average has

13.52 BP labels and there are a total of 3413 BP labels).
Since MacroF1 is more driven by the labels associated
to fewer proteins, and MicroF1 is more affected by the
labels associated to a larger number of proteins, the
algorithms have larger values of MicroF1 than MacroF1.
The difference between MNet and the other algorithms
(including SW, which also considers the problem of
unbalanced labels) on MacroF1 is more obvious than
that on MicroF1. This observation indicates that MNet
can handle the unbalanced problem much better than
the other methods.
The Benefit of Weighting Functional Labels
Some researchers [3,11,39] suggested that protein function
prediction should be addressed as an unbalanced classifi-
cation algorithm. Additional experiments were conducted
to investigate the benefit of using Ỹ (weighted) in place of
Y (unweighted). Ỹ differentially weights the labels, and
puts more emphasis on the labels that have fewer member
proteins. In contrast, Y equally weights all the labels. The
definition of Y and Ỹ are provided in the section of
Method. We report the results of MNet using Ỹ
(weighted) and Y (unweighted) in Table 2 of the Addi-
tional File 1.
MNet based on Ỹ performs better than MNet based on

Y , especially for the BP labels, which are more unba-
lanced than the CC and the MF labels. MacroF1 is more
affected by the labels that contains fewer proteins, and
the performance difference between MNet based on Ỹ
and MNet based on Y is more obvious for MacroF1 than
for the other metrics. This fact shows that MNet based
on Ỹ can more accurately predict the labels with few
member proteins than MNet based on Y , and explicitly
considering the unbalanced problem in data integration
based protein function prediction can boost the predic-
tion accuracy. These results support our motivation to
use Ỹ instead of Y. However, we point out that there is
still room to handle the unbalanced label problem for
protein function prediction more efficiently, and how to
achieve a more efficient weighting scheme for the labels
is an important future direction to pursue.

Figure 1 Prediction of the Biological Process (BP) functions, the Cellular Component (CC) functions, and the Molecule functions (MF)
of the Yeast dataset. The groups from left to right give the prediction results with respect to the evaluation metrics MicroF1, MacroF1, Fmax,
fAUC, and pAUC for the different algorithms.
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Network relevance estimation
Different networks present different levels of quality for
protein function prediction. To investigate whether
MNet can assign a large weight to a network that can
produce accurate predictions, and assign a small weight
to a network that poorly predicts protein functions, we
recorded the results of MNet (see Eq. (1)) for individual
networks and the corresponding weights (am). We also
recorded the results and the weights of SW and ProMK
on individual networks. For a fair comparison and a bet-
ter visualization, we scale these weights in the interval

[0, 1] as follows: αm/
∑M

i=1
αm.

Figure 2 gives the Fmax values on the eight individual
networks of the Human dataset (annotated with the BP
labels), and the optimized weights on these networks.
The corresponding results with respect to MacroF1 and
fAUC are reported in Figures 3 and 4 of the Additional
File 1. We also provide the results on the Human data-
set (annotated with the CC and the MF labels) in the
Additional File 1 (see Figures 5 and 6).
From the Figure, we can observe that all three algo-

rithms achieve the largest Fmax value on the 6-th net-
work, and the Fmax value on each individual network
has a similar rank among the eight individual networks
across the different methods, i.e., the Fmax value on the
1st network ranks second according to MNet, SW, and

ProMK. MNet assigns a larger weight on the 6-th net-
work as compared to the weights for the other net-
works. In contrast, neither SW nor ProMK assigns the
largest weight to the 6-th network. MNet, SW, and
ProMK give the smallest weight to the 8-th network,
though these methods do not produce the lowest Fmax
for the 8-th network. The reason is that the 8-th net-
work produces rather large smoothness loss values as
compared to those of the other networks. Since l2 is
given a large value, ProMK assigns nearly equal weights
to the first 7 networks. Because the smoothness loss
value on the 8-th network is much larger than for the
others, ProMK assigns zero weight to the 8-th network.
Note that for small l2 values, ProMK can only use one
network and produces deteriorated results (see our para-
meter analysis in the next subsection). The Fmax values
on the first three networks progressively decrease, and
the weights assigned by MNet and SW to these net-
works also decrease. In contrast, the weights assigned by
ProMK do not follow this trend. ProMK assigns larger
weights to the 2nd and 3rd networks. The Fmax values
on the next three (4-th, 5-th, and 6-th) networks, as well
as the weights assigned by MNet, progressively increase,
but the weight assigned by SW to the 4-th network is lar-
ger than those assigned to the 5-th and 6-th networks,
and the weights assigned by ProMK progressively
decrease. All these three methods give a smaller Fmax
value to the 7-th network than to the 6-th; both MNet
and SW assign a smaller weight to the 7-th network
than to the 6-th, but ProMK assigns a larger weight to
the 7-th network than to the 6-th. ProMK, OMG and
LIG use only the smoothness loss to assign weights to
the individual networks. The smaller the value of the
smoothness loss for a network is, the larger the weight
assigned to it is. The value of the smoothness loss of
ProMK on the 3rd network is smaller than the values of
the other networks, thus ProMK assigns a weight to the

Table 2 Runtime (in seconds)

Dataset GO MNet SW ProMK MSkNN LIG OMG

Yeast BP 2256.26 151.88 72.61 16.60 938.10 65.51

CC 282.10 36.39 31.84 12.47 272.89 15.76

MF 390.10 46.07 36.83 12.42 322.11 18.97

Human BP 19923.15 120.09 628.30 42.15 10309.56 447.01

CC 1003.46 17.57 350.92 31.69 1496.33 96.61

MF 1633.55 25.42 369.92 32.62 2195.25 116.59

Figure 2 Network relevance estimation using MNet, SW, and ProMK on the Human dataset annotated with BP functions. For each
group of bars, the left one shows the Fmax value on the individual network, and the right one gives the weight assigned to the same network.
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3rd network that is larger than the ones assigned to other
networks. However, the value of Fmax of this network is
the lowest. This conflictual scenario shows that assigning
a weight to a network merely based on the smoothness
loss is not always reasonable. This justifies our motiva-
tion to unifying the kernel target alignment with the loss
of classifier in one objective function, and also provides
evidence as for why MNet works better than the other
algorithms. These observations also apply to the results
provided in the Additional File 1.
Another interesting observation for Figure 6 in the

Additional File 1 is that MNet, SW, and ProMK give the
highest Fmax value to the 1st network of the Human
dataset (annotated with MF functions), instead of to the
6-th network. In the Human dataset, the 1st network is
derived from protein domain composition and the 6-th is
a PPI network. This observation supports the statement
that different data sources have different correlation with
the GO terms. Lan et al. [7] also observed that the pre-
diction of MF functions using sequence similarity is
more accurate than that based on PPI information, and
the prediction of BP functions based on PPI networks is
more reliable than that based on sequence similarity.
Regardless of this difference for the proteins of Human
annotated with MF functions, MNet shows similar trends
for the weight and the Fmax values assigned to the indi-
vidual networks. In contrast, neither SW nor ProMK
manifests such behavior.
If we take the Fmax value of an individual network as its

quality, we can conclude that MNet can assign weights to
the individual networks that are proportional to their qual-
ity, whereas SW and ProMK cannot. This observation also
helps us understand why MNet achieves a performance
that is better than that of SW and ProMK.

Parameter sensitivity
Some of the algorithms used for comparison need to
tune several parameters, and the specification of these
parameters affect the performance. These parameters
and their suggested ranges are listed in Table 1 of the
Additional File 1. The result of MNet depends on l,
whose purpose is to balance the kernel target alignment
and the loss of the classifier on the composite network.
ProMK relies on the specification of l2 to determine the
weights on individual networks. OMG needs to tune the
power size r on the weights and LIG requires to set
the number of subnetworks for each input network. To
study the parameter sensitive of these algorithms, for
MNet, we vary l in {10-2, 10-1,...,105}; for ProMK, we
vary l2 in {100, 101,...,107}; for OMG, we vary r in {1.2,
1.5, 2, 3, 4, 5, 6}, and for LIG, we vary C in {1, 5, 10, 20,
30}. For each setting value of the parameter, we execute
five-fold cross validation as in the previous experiment,
and report the average result. The results of these methods

on Yeast (annotated with BP functions) under different
values of the parameters are reported in Figure 3. We also
provide similar results (Yeast annotated with CC and BP
functions, and Human annotated with BP functions) in
Figures 7-9 of the Additional File 1.
When l is set to a small value (i.e., l = 10-2), a small

emphasis is put on the classification task and a large
stress on the kernel target alignment; as such, the results
of MNet slightly deteriorate. These results also support
our statement that optimizing the kernel target align-
ment (or composite network) does not necessarily result
in the optimal composite network for classification.
When l = 1 or above, MNet has a stable performance
and outperforms the other methods. This trend also jus-
tifies our motivation to unifying the kernel target align-
ment and the classifier on the composite network in a
combined objective function.
When l2 is small, only one network can be chosen by

ProMK, and therefore ProMK achieves a relatively poor
result in this case. When l2 increases to a value larger
than 103, more kernels are used to construct the com-
posite network, and the results of ProMK progressively
improve and achieve stability when most of the net-
works are used to construct the composite one. The
best setting of r for OMG is r = 1.5; for larger values,
the results worsen and they become stable when r ≤ 3.
As for LIG, the values C = 1 and C = 5 often give the
best results, and LIG’s performance sometimes fluctu-
ates sharply for other settings of C.
From these results, we can draw the conclusion that

MNet can select an effective l’s value from a wide
range, and MNet is less affected by the parameter selec-
tion problem than ProMK and the other competitive
algorithms.

Runtime analysis
We also recorded the running times of MNet and the
other comparing methods on the Yeast and Human
datasets. The results are given in Table 2. All the meth-
ods are implemented in Matlab (R2011a 64-bit). The
specification of the experiment platform is: CentOS 5.6,
Intel Xeon X5650 and 32GB RAM.
From Table 2, we can observe that MNet often takes

more time than the other methods. As the number of
functional labels reduces, the runtime cost of MNet
decreases sharply. The reason is that MNet has to com-
pute the trace norm not only for individual networks, but
also for the pairwise networks (see Eq. (7)). In contrast,
ProMK, OMG, and LIG only compute the trace norm for
individual networks. The running time of MNet is often
no more than M (the number of individual networks)
times the cost of ProMK, which is consistent with our
previous complexity analysis. MSkNN does not learn
weights on individual networks; as such it always runs
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faster than the other methods. SW first applies kernel
target alignment to fuse multiple networks into a compo-
site one, and then predicts protein functions using the
composite network; it often ranks second (from fastest to
lowest) among the comparing methods. Both ProMK and
OMG iteratively optimize the weights on individual net-
works; they have similar runtime costs and lose to SW
and MSkNN. LIG takes more time than the other meth-
ods; sometimes it is also slower than MNet. The reason
is that LIG applies time-consuming eigen-decomposition
for soft spectral clustering to divide each individual net-
work into several subnetworks, and then combines these
subnetworks into a composite one for function predic-
tion. Given the superior effectiveness of MNet, it is desir-
able to use MNet to integrate multiple networks for
protein function prediction. However, seeking efficient
and effective ways to utilize multiple networks for func-
tion prediction remains an important research direction
to explore.

Conclusions
In this paper, we study how to integrate multiple func-
tional networks for accurate protein function prediction
and propose a method called MNet. MNet unifies the
optimization of a composite network and the optimization
of a predictor on the composite network in a single objec-
tive. An extensive empirical study shows that MNet can
predict protein functions more accurately than related
competitive methods, and it’s also less affected by the
parameter selection issue.
Protein functions are rather difficult to predict, i.e.,

proteins are often multifunctional and promiscuous, and
the functional annotations of proteins are incomplete
and error prone [2,3,21]. There are many avenues for
future improvements for protein function prediction. For
example, incorporating pathway information, evolutional
knowledge, and reducing the noisy in the individual net-
works before the integration. In addition, an input net-
work can have some high quality subnetworks and low
quality subnetworks; it is promising to design algorithms
to discover and differentiate these subnetworks, and to

integrate the high quality subnetworks to enhance the
prediction accuracy, and to discard the low quality ones
(or assign very small weights to these subnetworks) to
reduce their destructive effects.

Additional material

Additional file 1: Supplementary file of ‘Integrating multiple
networks for protein function prediction’.
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