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Abstract

Background:: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from
DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges
in the field of genome annotation. There have been several computational methods proposed in the literature to
deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge
base for our understanding of DNA-protein interactions.

Results:: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and
then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance
Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST
program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric
representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric
representations are inputted into a SYM classifier for prediction. Thus whether a sequence can bind to DNA or not
can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife
validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is
considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently
constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%,
MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods.

Conclusions:: The experiment results demonstrate that PSSM Distance Transformation is an available protein
sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A
user-friendly web-server of SYM-PSSM-DT was constructed, which is freely accessible to the public at the web-site
on http://bioinformatics.hitszedu.cn/PSSM-DT/.

Introduction package chromosomal DNA into a compact structure,

DNA-binding proteins are pivotal to the cell functions
such as DNA replication, transcriptional regulation,
packaging recombination, DNA repair, DNA modifica-
tion and other fundamental activities associated with
DNA. For example, in eukaryotic cells, histones which is
a typical type of DNA-binding protein often help
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and as another typical DNA-binding protein, restriction
enzymes are DNA-cutting enzymes found in bacteria
that recognize and cut DNA only at a particular
sequence of nucleotides to serve a host-defense role.
DNA-binding proteins represent a broad category of
proteins, known to be highly diverse in sequence and
structure. Structurally, they have been divided into eight
structural groups, which were further classified 54 pro-
tein structural families[1,2]. Functionally, protein-DNA
interactions play various roles across the entire genome
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as previously mentioned [3]. The past decade has wit-
nessed tremendous progress in genome sequencing
[4-7]. According to the Genome On Line Database, the
complete sequenced genomes of almost 1000 cellular
organisms have been released, and about 5000 active
genome sequencing projects are on the way [8,9]. The
unprecedented amount of genetic information has pro-
vided hundreds of thousands of protein sequences [10],
indicating that a challenging problem to elucidate their
functions is posed.

At present, several experimental techniques have been
employed for identifying DNA-binding proteins, such as
filter binding assays, genetic analysis, chromatin immu-
noprecipitation on microarrays, and X-ray crystallogra-
phy. But experimental approaches for identifying the
DNA-binding proteins are costly and time consuming. It
would be highly desirable to develop computational
approaches that can automatically determine whether a
novel sequence binds to DNA or not. Therefore, a reli-
able identification of DNA-binding proteins with effec-
tive computational approach is an import research topic
in the proteomics fields. It has been observed that many
attempts have been made for identifying DNA-binding
proteins and many effective computational predicting
methods have been proposed for analyzing it in the lit-
erature. The computational methods represent a broad
category of predicting methods for DNA-binding pro-
teins, known to be highly diverse in classifiers and pro-
tein representation.

In terms of classifiers, the computational methods can
be divided into template-based and machine-learning-
based methods, depending on how they use the infor-
mation from the putative DNA-binding proteins.
Template-based methods can be further classified into
two classes, one of which utilize a structural comparison
protocol to detect significant structural similarity
between the query and a template known to bind DNA
at either the domain or the structural motif to assess
the DNA-binding preference of the target sequence
[11,12] and the other employ a sequence comparison
protocol (such as PSI-BLAST) to detect significant
sequence similarity between the query and a template
known to bind DNA to evaluate the DNA-binding prefer-
ence of the target sequence [13]. Machine-learning-based
methods do not perform direct structural comparison,
but typically follow a machine-learning framework. To
obtain good predictive model, various machine-learning
algorithms have been employed to construct classification
models, such as support vector machine (SVM) [14-17],
neural network [18-22], random forest [23], naive Bayes
classifier [24,25], nearest neighbor [26] and ensemble
classifiers [27,28], [29]

In the task of computational protein function prediction,
there are two major problems: choice of the classification
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algorithm and choice of the protein representation.
Depending on the choice of protein representation, these
computational predictive methods can be classified into
two categories: i) analysis from protein structure
[19,20,28,30] and ii) prediction from amino acid sequence
[11,21,31-33]. In case of structure-based prediction meth-
ods, Stawiski et al. [19] examined positively charged
patches on the surface of putative DNA-binding proteins
in comparison with that on non DNA-binding proteins.
They employed 12 features including the patch size,
hydrogen-bonding potential, and the fraction of evolution-
ary conserved positively charged residues and other prop-
erties of the protein to train a neural network (NN) for
identifying DNA-binding proteins. Ahmad and Sarai [20]
trained a NN classifier using three features, including net
charge, electric dipole and quadruple moments of the pro-
tein. Bhardwaj et al. [15] examined the sizes of positively
charged patches on the surface of putative DNA-binding
proteins. They based their SVM classifier on the protein’s
overall charge, overall and surface amino acid composi-
tion. Szildgyi and Skolnick [34] previously trained a logistic
regression classifier using the amino acid composition, the
asymmetry of the spatial distribution of specific residues
and the dipole moment of the protein. Guy Nimrod and
Andras Szildgyi et al. [23] recently developed a random
forest classifier based on the electrostatic potential, clus-
ter-based amino acid conservation patterns and the sec-
ondary structure content of the patches, as well as features
of the whole protein including its dipole moment. Since
the negative samples are much more than real DNA-bind-
ing proteins, this is an imbalanced binary classification
problem from the view of machine learning. Song et al.
[35] employed ensemble classifier [36] to solve this pro-
blem and improved the identification. Several methods
considering the sequence-order effects were proposed, and
the experimental results showed that this information can
improve the predictive performance [37,38].

The accuracy of structure-based prediction methods is
usually higher, but they can’t be used in high throughput
annotation, as it requires the high-resolution 3D structure
of the query sequence. Until now, many computational
methods have been proposed for identifying DNA-binding
protein from their amino acid sequences directly. There
are four different categories of protein sequence features
and three kinds of sequence encoding methods have been
proposed [31,39-41]. The four categories of features are
composition information, structural and functional infor-
mation, physicochemical properties and evolutionary
information and the three kinds of coding methods are
overall composition-transition-distribution called OCTD
(Global method), autocross-covariance (ACC) transforma-
tion (Nonlocal method) and split amino acid (SAA) Trans-
formation (Local method). A comprehensive survey of
these methods can be found in related research work
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[42-44]. However, most of the present encoding methods
provided limited information to explain the mechanisms
of DNA-protein interactions. It is desirable to explore a
novel encoding method that can reveal the binding
mechanism of DNA-proteins interactions.

In the current study, to further advance the prediction
accuracy and understand the binding mechanism of
DNA-protein interaction, we presented here a novel
encoding method called PSSM distance transformation
(PSSM-DT) to transform the PSSM profiles of query
sequences into uniform numeric representations. Then
we constructed a DNA-binding protein identification
method SVM-PSSM-DT by combining the PSSM-DT
with SVM. The benchmark test and independent test
showed that PSSM-DT is a promising protein encoding
method.

Methods

As shown by a series of recent publications [45-59] and
summarized in a comprehensive review, to develop a
useful statistical prediction method or model for a biolo-
gical system, one needs to engage the following proce-
dures: (i) construct or select a valid benchmark dataset
to train and test the predictor; (ii) formulate the samples
with an effective mathematical expression that can truly
reflect their intrinsic correlation with the target to be
predicted; (iii) introduce or develop a powerful algo-
rithm (or engine) to operate the prediction; (iv) properly
perform cross-validation tests to objectively evaluate the
anticipated accuracy of the predictor; (v) construct a
web-server for the prediction method. Below, we
describe our proposed method followed such a general
procedure.

Dataset

To construct a high quality benchmark dataset, only
experimentally confirmed data were collected. The
benchmark dataset S can be formulated as

S=S"US” (1)

where the subset S* contains 525 DNA-binding proteins,
the subset S™ consists of 550 non DNA-binding proteins
and the symbol U represents the “union” in the set theory.
The benchmark dataset was obtained according to the fol-
lowing procedure. (1) Extract DNA-binding protein
sequences from Protein Data Bank (PDB) released at
December 2013 by searching the mmCIF keyword of
‘DNA binding protein’ through the advanced search inter-
face. (2) Remove the sequences with length of less than 50
amino acid residues and character of ‘X’. (3) Utilize
PISCES to cutoff those sequences that have >= 25% pair-
wise sequence identity to any other in the same subset.
Thus the subset S™ consisting 525 sequences is obtained.
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(4) Randomly extract some non DNA-binding proteins
from Protein Data Bank, then utilize PISCES to cutoff
those sequence that have >= 25% pairwise sequence iden-
tity to any other in the same subset and remove all the
sequences with less than 50 amino acids or with character
of ‘X’. Thus the subset S™ containing 550 sequences is
obtained. A complete list of all the PDB codes and
sequence for the benchmark dataset can be found in
Supporting Information S1.

Position Specific Scoring Matrix

Evolutionary information, one of the most import kinds
of information in protein functionality annotation in
biological analysis, has been widely used in many studies
[21,60-63]. In this study, evolutionary information in
forms of PSSM profile of every protein sequence is
obtained by running the PSI-BLAST [64] program to
search the non-redundant (NR) database through three
iteration with 0.001 as the E-value cutoff for multiple
sequence alignment. The final PSSM profile is a matrix
with dimension of L*20 (excluding dummy residue X),
which can depicted as follows:

81/1 81,2 81/20

82/1 82,2 e 82/20

PSSM = 2)

SL,l SL,Z SL,20

where L is the length of protein, the S;; represents the
occurrence probability of amino acid j at position i of
the protein sequence, the rows of matrix represent the
positions of the sequence and the columns of the matrix
represent the 20 types original amino acids. PSSM
scores are generally shown as positive or negative inte-
gers. Positive scores indicate that the given amino acid
occurs more frequently in the alignment than expected
by chance, while negative scores indicate that the given
amino acid occurs less frequently than expected. Large
positive scores often indicate critical functional residues,
which may be active site residues or residues required
for other intermolecular interactions. Therefore the ele-
ment of PSSM profile can be used to approximately
measure the occurrence probability of the corresponding
amino acid at a specific position.

PSSM distance transformation

It has been reported that dipeptides containing two resi-
dues separated by a distance along the sequence are
important for protein functionality annotation in the work
[65]. Additionally, the PSSM score can approximately
measure how frequently an amino acid occurs at a posi-
tion of a sequence. Accordingly, we present here a PSSM
distance transformation (PSSM-DT) method to encode
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the feature vector representation from the PSSM informa-
tion. PSSM-DT can transform the PSSM information into
uniform numeric representation by approximately mea-
suring the occurrence probabilities of any pairs of
amino acid separated by a distance along the sequence
in a sequence. PSSM-DT results in two kinds of fea-
tures: PSSM distance transformation of pairs of same
amino acids (PSSM-SDT) and PSSM distance transfor-
mation of pairs of different amino acids (PSSM-DDT).
The PSSM-SDT features approximately measure the
occurrence probabilities of pairs of same amino acids
separated by a distance of /g along the sequence in a
sequence, which can be calculated as below

L-Ig

PSSM - SDT(i, Ig) = > Si;* Sijutg/(L — Ig) (3)
j=1

where i is one type of the amino acid, L is the length
of the sequence, S;; is the PSSM score of amino acid j
at position i. In such a way, 20*LG is the number of
PSSM-SDT features, where LG is the maximum value of
lg(lg=1,2,..,LG).

The PSSM-DDT features approximately measures the
occurrence probabilities of pairs of different amino acids
separated by a distance of Ig along the sequence, which
can be calculated by:

L-Ig
PSSM - DDT(i1,i2,1g) = ) _ Sij * Sinjuig/ (L — 1) (4)
j=1

where i1 and i2 refer to two different types amino
acids. Similarly, the total number of PSSM-DDT features
can be calculated as 380*LG.

PSSM-DT is the combination of variable PSSM-SDT
and PSSM-DDT. Thus a sequence can be transformed
into a uniform feature vector with a fixed dimension of
400*LG by using variable PSSM-DT from its PSSM
profile.

Support vector machine

Support vector machine is a machine learning algorithm
based on statistical learning theory presented by Vapnik
(1998) [66], which uses a non-linear transformation to
map the input data to a high dimensional feature space
where linear classification is performed. It is equivalent
to solving the quadratic optimization problem:

1

. C 4

i?;gzw*w+ Xi:& (5)
sty (o(x)xw+b)>1-§,i=1,..,m,

gi Z Oli= 11---rml

(6)
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Where x; is a feature vector labeled by y; € {-1, +1}
and C, called the cost, is the penalty parameter of the
error term. The above model called soft-margin SVM
can be able to tolerate noise within the data, which ana-
lyze an example by generating a separating hyper-plane
with flx) = ¢(x)-w + b = 0. Through resolving the above
model with lagrangian multiplier method, we obtain
w= Z}, ap * Y * 9(x) and w- (%) = Z}. ap * i * o (x;)-p(x:),
which provides an efficient approach to solve SVM
without the explicit use of the non-linear transforma-
tion, where K(xi, xj) = ¢(xi) - #(x;j) is the kernel function.
Application of SVM in bioinformatics problems has
been widely explored [15,67-69]. At present, the publicly
available LIBSVM, which take the radial basis function
(RBF) as the kernel function, is employed as the imple-
mentation of SVM. RBF is defined as below

K(Xi, X;) = exp(—y | Xi — X;|| ) @)

In this study, SVM parameter y and penalty parameter
C were optimized based on 5-fold cross validation in a
grid-based manner with respect to the sequence in
benchmark dataset. In this study, jackknife test is taken
as the evaluation method to calculate the evaluation cri-
teria. For a dataset with N sequences, each time, one of
sequence is taken out as testing sequence and the
remaining sequences are employed as training dataset.
This process repeated until each sequence in the dataset
is tested exactly once. The average performance over all
the processes is taken as the final results.

Evaluation metrics

Sensitivity (SN), Specificity (SP), Accuracy (ACC), Mat-
thews Correlation Coefficient (MCC), Receiver Operat-
ing Characteristic (ROC) curve and the area under ROC
curve (AUC) are employed in this work. All of the
above measurements were calculated in the case of jack-
knife validation and defined as follows:

SN = TP/(TP + EN) (8)
SP = TN/(TN + FP) 9)
ACC = (TP + TN)/(TP + FP + TN + EN) (10
MCC = (TP % TN — FP % FN)//(TP + FN) % (TP + FP) (TN + FP) « (IN + FN) ~ (11)

In this study, TP, FP, TN and FN donated the numbers
of true positives, false positives, true negatives and false
negatives, respectively. ACC denotes the percentage of
both positive instances and negative instances correctly
predicted. SN and SP represent the percentage of positive
instances correctly predicted and that of negative instances
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correctly predicted, respectively. A ROC curve is a plot of
Sensitivity versus (1-Specificity) and generated by shifting
the decision threshold. AUC gives a measure of classifier
performance. An AUC of 1.0 indicates perfect classifier
whereas an AUC of classifier no better than random is 0.5.
The value of MCC measures the degree of overlap
between the predicted labels and true labels of all the
samples in the benchmark dataset. It returns a value
between -1 and +1. A perfect prediction at 100% accuracy
yields a MCC of +1, whereas a random prediction gives a
MCC of 0 and a terrible prediction at 0 accuracy produce
a MCC of -1.

Results and discussion

The selection of LG and features

To evaluate the PSSM-DT method, we analyzed the
impact of parameter LG on the predictive performance
of the proposed model. The predictive results of SVM-
PSSM-DT with different values of LG on the benchmark
dataset by using five-fold cross validation is shown in
Figure 1. As can be seen from the Figure, the value of
LG has modest impact on both the ACC and MCC
metrics. The ACC firstly increases to a maximum value
and then slightly goes down as the LG value increases.
So we can conclude that SVM-PSSM-DT achieves the
best performance when LG = 5, which mean that the
dimension of the feature space applied in this work is
2000. Therefore, the parameter LG was set as 5 for the
following experiments.

In this study, we proposed three protein representa-
tions, including PSSM-DT, PSSM-SDT and PSSM-DDT.
Table 1 lists predictive results of the three proposed
protein representation according to jackknife validation

1.00 [~ T = & * 1T ¢+ T & [ *& 1+ & ™
0.95 |- —=—ACC| 4
*— MCC ]

0.85 |- .
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Figure 1 The performance of SVM-PSSM-DT with different LG.
LG is a parameter in the present method SVM-PSSM-DT. The
average ACC and MCC values were used to evaluate the impact of
different LG values on the performance of SYM-PSSM-DT. The results
were got by testing the model on the benchmark dataset by five-
fold-cross-validation.
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Table 1 Results on benchmark dataset of different
features through jackknife validation.

Methods Acc(%) mcc SN(%) SP(%)
PSSM-DDT? 79.72 0.607 8133 7818
PSSM-SDT 74.79 0512 77147 7493
PSSM-DT® 79.96 0.622 8191 78.00

PSSM-DT can extract two kinds protein features, called PSSM-DDT and
PSSM-SDT respectively. And PSSM-DT represents the combination of
PSSM-DDT and PSSM-SDT. The results were got by testing the models on
benchmark dataset through jackknife validation.

°the predictor using PSSM-DDT as protein representation
bthe predictor using PSSM-SDT as protein representation
the predictor using PSSM-DT as protein representation

on benchmark dataset. As a result, the predictor using
PSSM-DT yields the highest ACC of 79.96%, MCC of
0.622 and AUC of 86.50%. So in the following experi-
ments, the PSSM-DT based representation was applied
to encode the features from PSSM profile.

Feature analysis

To further investigate the importance of the features
and reveal the biological meaning of the features in
PSSM-DT, we followed the study [50,70,71] to calculate
the discriminant weight vector in the feature space. The
sequence-specific weight obtained from the SVM train-
ing process can be used to calculate the discriminant
weight of each feature to measure the importance of the
features. Given the weight vectors of the training set
with N samples obtained from the kernel-based training
A = [ay, aj, as,...ay), the feature discriminant weight
vector W in the feature space can be calculated by the
following equation:

T
ay my Mmia --- Myj
az mpp Myp - -+ Myj
W=A-M-= , (12)
an mMN1 MN2 - - - MNj

where M is the matrix of sequence representatives in
PSSM-DT; A is the weight vectors of the training sam-
ples; N is the number of training samples; j is the
dimension of the feature vector. The element in W
represents the discriminative power of the correspond-
ing feature.

In this study, we are only interested in the descriptors
frequently occurring in positive samples (DNA-binding
proteins). Therefore, the discriminant weight of an amino
acid pair is calculated as the quadratic sum of the discri-
minant weights of the corresponding descriptors with
positive discriminant weight for this amino acid pair. The
discriminant weights of all the 400 amino acid pairs in
PSSM-DT are depicted in Figure 2A. According to this
figure, the top four most discriminative amino acid pairs
are (R, R), (R, P), (P, R) and (A, R), which indicate that
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Figure 2 Feature analysis on protein 1AKH chain A. (A) The discriminant weights of the 400 amino acid pairs. Each element in the figure
refers to the quadratic sum of the discriminant weights of descriptors with positive discriminant weight for a certain amino acid pair. A amino
acid pair is identified by two amino acids, the x-axis and y-axis represent its second amino acid and first amino acid, respectively. (B) The
discriminant weights of the descriptors with different g values for the top four most discriminant amino acid pairs, including pair(R,R), pair(R,P),
pair(P,R) and pair(AR). (C) The occurrence distributions of the descriptors for the top four most discriminant amino acid pairs on the DNA-
binding regions and non DNA-binding regions of protein 1AKH chain A, respectively. The regions in green color are non DNA-binding regions
and the region in grey color is DNA-binding protein. (D) The occurrence distributions of the descriptors for the top four most discriminant
amino acid pairs on the three dimensional structure of protein TAKH chain A. The green sections are the three dimensional structure of protein
and the brown sections are the three dimensional structure of the DNA.
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the amino acid R (Arg) and A (Ala) are important for
identifying the DNA-protein interaction. This conclusion
is consistent with Szilagyi and Skolnick’s study [34], in
which they found that the percentage of Arg, Ala, Gly,
Lys and Asp are useful for identification of DNA-binding
proteins. Sieber and Allemann [72] found that R (348)

can’t directly interact with the nucleobases, but can
determine the DNA binding specificity of the basic helix-
loop-helix proteins (BHLH) E12 by directly interacting
with both the phosphate backbone and the carboxylate of
E(345) resulting in locking the side chain conformation
of E(345). what’s more, by comprehensively analyzing the
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three dimensional structures of protein-DNA complexes,
Rohs and West et al. [73] demonstrated that the binding
of R to narrow minor grooves can be applied to mode for
protein-DNA recognition, indicating that R is an impor-
tant component in protein-DNA binding activity. It has
been previously reported that the DNA usually enveloped
with negative electrostatic potential and the amino acid R
shows positive charge [12], which explain the reason why
the amino acid R is important for DNA-binding protein
identification.

The discriminant weight of the descriptors for pairs
(R, R), (R, P), (P, R) and (A, R) with different /g values
are shown in Figure 2B. As indicated by the figure, the
descriptor with Ig of 4 for pair (R, R) has the highest
discriminant power. For pair (R, P) and (P, R), the dis-
criminant weight of all descriptors are slightly different.
In case of pair (A, R), the descriptor with g of 5 is the
most discriminative feature. In conclusion, for an amino
acid pair, the distance between the two amino acids
along the sequence can impact its discriminant power in
DNA-binding protein identification.

Additionally, we take protein 1AKH [PDB:1AKH] chain
A as an example to show the availability of PSSM-DT
based protein representation on DNA-binding protein
identification. 1AKH is known as the MATal/MATa2
homeodomain heterodimer and its chain A is the yeast
mating type transcription factors (MATal). MATal pro-
teins are members of the homeodomain superfamily of
DNA-binding proteins and contact the DNA with its
homeodomain. It always folds into a compact three-helix
domain containing a helix-turn-helix DNA-binding motif.
Figure 2C lists the distributions of descriptors for the top
four most discriminative pairs on the sequence of
MATal protein. From this figure we can see that there
are 5 occurrences of the proposed descriptors in the
DNA-binding region and no occurrence in the non
DNA-binding regions. There are totally 5 descriptors
occurred in the DNA-binding region, including pair(R, R)
with lg of 1, pair(R, R) with Ig of 3, pair(P, R) with lg of
2, pair(P, R) with Ig of 3 and pair(A, R) with Ig of 1. This
is further confirmed by the three dimensional structure
shown in Figure 2D. As indicated by the figure, there is
no descriptor for the four top most discriminative amino
acid pairs that occur in the non DNA-binding regions,
and all the five occurrences are within the one DNA-
binding region. Furthermore, the figure showed that the
pair(R, R) with [g of 1land pair(P, R) with g of 3 are very
closed to the three dimensional structure of DNA, indi-
cating that these two descriptors are very discriminative
for DNA and protein interaction.

Comparison with existing PSSM based encoding schemes
In this section, four protein encoding schemes based on
PSSM are introduced for a comparison. They are the
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average score of the residues with respect to the column
of certain AA type called AvePscore-20 [21], the average
score of the residues of certain AA type with respect to
the column of certain AA type called AvePscore-400
[74], the percentile value of the PSSM scores along with
the column of certain AA type according to percent
thresholds called Pscore-100 [75], and auto-correlation
coefficient (ACC) transformation that can transform the
PSSMs of different lengths into fixed-length vectors by
measuring the correlation between two scores separated
by a distance of lg along the sequence [76], respectively.
Table 2 lists the predictive results of the proposed
protein representation and other four considered protein
representations on the benchmark dataset using jack-
knife validation.

Furthermore, to provide a graphic illustration to show
the performance of the five protein representations, the
corresponding ROC (receiver operating characteristic)
curves were drawn in Figure 3, where the horizontal
coordinate X is for the false positive rate or 1-SP and the
vertical coordinate Y is for the true positive rate or SN.
The best method would yield a point with the coordinate
(0,1) meaning 0 false positive rate and 100% true positive
rate. Therefore a perfect classification method would give
a point with the coordinate (0,1) and a completely ran-
dom guess would give a point along the diagonal from
point (0,0) to (1,1). The area under the ROC curve called
AUC is often used to indicate the performance quality of
binary classification methods, where the larger the area,
the better the predictive quality is.

As shown in Table 2 and Figure 3, the PSSM-DT based
protein representation generated the highest performance
and outperformed the other four protein representations
based on PSSM, indicating that PSSM-DT based protein
representation is effective for DNA-binding protein
identification.

Table 2 Results on benchmark dataset of different PSSM
based encoding schemes through jackknife validation.

Methods Acc(%) MCC SN(%) SP(%)  AUC(%)
AvePscore-20° 73.95 0480 68.57 79.09 81.40
AvePscore-400 73.58 0470 6647 80.36 81.50
Pscore-100° 73.12 0463 72.76 7345 80.50
ACCH 73.77 0475 73.14 74.36 81.90
PSSM-DT 79.96 0.622 8191 78.00 86.50

The four protein representation methods in the front of the table are four
protein encoding methods for identification of DNA-binding proteins
proposed in the past. The four methods and the current method PSSM-DT are
based on PSSMs property of protein sequences, but the encoding method
applied by them are different. The results were got by testing on benchmark
dataset through jackknife validation.

“results obtained by in-house implementation of AvePscore-20 [21]

Presults obtained by in-house implementation of AvePscore-400 [21]

‘results obtained by in-house implementation of Pscore-100 [75]

dresults obtained by in-house implementation of ACC [76]

fresults obtained by using PSSM-DT as protein representation
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Figure 3 The ROC curves of several PSSM based protein
encoding methods on benchmark dataset. The receiver
operating characteristic (ROC) curves of PSSM-DT and several other
existing protein encoding methods were got by testing the models
on benchmark dataset through jackknife validation, where the
horizontal coordinate X is for the false positive rate or 1-SP and the
vertical coordinate Y is for the true positive rate or SN and a good
method would yield a curve close to the coordinate (0,1) meaning
low false positive rate and high true positive rate.

Comparison with existing prediction methods

Table 3 shows the predictive results of SVM-PSSM-DT
and four other state-of-the-art methods on the bench-
mark dataset through jackknife validation, including
DNAbinder(dimension 21) [21], DNAbinder(dimension
400) [21], DNA-Port [74] and iDNA-Prot [16]. DNAbin-
der(dimension 21) and DNAbinder(dimension 400)
encode features from their PSSM based evolutionary

Table 3 Results on benchmark dataset of different
predictors through jackknife validation.

metric ACC MCC SN SP AUC

(%) (%) (%) (%)
DNAbinder(dimension 21)* 7395 0480 6857 7909 8140
bDNAbmder(dimemsion 400) 73.58 0470 6647 8036 8150
DNA-Prot® 7255 0440 8267 5976 7890
iDNA-Prot? 7540 0.500 8381 6473 7610
PSSM-DT 79.96 0622 8191 7800 8650

The four methods in the front of the table are four state-of-the-art predicting
methods for identification of DNA-binding proteins proposed in the past and
were demonstrated to have good performance. The results of the four
existing methods and SVM-PSSM-DT were got by testing on benchmark
dataset through jackknife validation.

“results obtained by in-house implementation of DNAbinder [21]
Presults obtained by in-house implementation of DNAbinder [21]
“results obtained by in-house implementation of DNA-Prot [74]
dresults obtained by in-house implementation of iDNA-Prot [16]
fresults obtained by using PSSM-DT as protein representation
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information and utilize SVM to build prediction model.
iDNA-Prot applies grey model to integrate the features
from protein sequence into the general form of pseudo
amino acid composition and then inputs into a Random
Forest classifier. DNA-Prot is a Random Forest classifier
based on the amino acid composition, predicted second
structure and some physicochemical properties. The
ROC curves of the proposed method and the four pre-
dictive methods are shown in Figure 4.

From Table 3 and Figure 4 we can see that SVM-
PSSM-DT achieved the best performance with ACC of
79.96%, MCC of 0.62 and AUC of 86.50%, outperform-
ing other four methods by 4.56-7.41% in terms of ACC,
0.12-0.18 in terms of MCC and 5-10.4% in terms of
AUC. It indicates that PSSM-DT can advance the prhe-
dictive performance of DNA-binding proteins identifica-
tion from PSSM based sequence information.

Independent test

In order to further compare the predictive performance
of SVM-PSSM-DT with other existing methods, we eval-
uated the proposed method on the independent dataset
PDB186. It was recently constructed by Lou et al [75] to
validate the quality of predictions, which consists 93
DNA-binding proteins and equal number of non DNA-
binding proteins selected from PDB. Since there are
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Figure 4 The ROC curves of several predictive methods on
benchmark dataset. The receiver operating characteristic (ROC)
curves of SYM-PSSM-DT and several other existing DNA-binding
protein predictors were got by testing the models on benchmark
dataset through jackknife validation, where the horizontal
coordinate X is for the false positive rate or 1-SP and the vertical
coordinate Y is for the true positive rate or SN and a good method
would yield a curve close to the coordinate (0,1) meaning low false
positive rate and high true positive rate.
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some sequences from the benchmark dataset that shared
high sequence identity with the independent dataset
PDBI186, the tool CD-HIT [77] was applied to remove the
sequences from the benchmark dataset having more than
25% sequence identity to any one in a same subset in the
independent dataset PDB186 to avoid homology bias.
Table 4 lists the predictive results of the proposed method
and several relevant existing methods, including iDNA-
Prot [16], DNA-Prot [74], DNAbinder [21], DNABIND
[34], and DNA-Threader [78], to our best knowledge.

Moreover, to provide a graphic illustration to show
the performance comparisons of the SVM-PSSM-DT
with other existing state-of-the-art predictors, the corre-
sponding ROC curves were drawn in Figure 5. The
experimental real value results of three predictors are
provided by [75], including DBPPred [75], DNAbinder
[21] and DNABIND [23]. And the real value outputs of
the proposed method, iDNA-Prot and DNA-Prot are
obtained by testing their predictors trained on bench-
mark dataset on independent dataset PDB186.

From Table 4 and Figure 5 we can see that among the
seven predictive methods, the proposed method has the
highest performance with ACC of 80.00%, MCC of 0.674
and AUC of 87.40% and DBPPred is the known reported
predictive method with the best predictive performance
(ACC = 76.90%, MCC = 0.538 and AUC = 79.10%). So
the independent prediction of SVM-PSSM-DT is
improved by ACC of 3.105%, MCC of 0.136 and AUC of
8.30% when compared with the DBPPred method, indi-
cating that SVM-PSSM-DT is an effective prediction
model for DNA-binding protein identification.

Web-server guide

We have constructed a user-friendly web-server of SVM-
PSSM-DT freely accessible to the public. Moreover, for
the convenience of the vast majority of experimental

Table 4 Results on Independent dataset PDB186 of
different predictors®

Methods Acc(%) MCC Sn(%) Sp(%) AUC(%)
iDNA-Prot 67.20 0.344 67.70 66.70 83.30
DNA-Prot 61.80 0.240 69.90 53.80 79.60
DNAbinder 60.80 0.216 57.00 64.50 60.70
DNABIND 67.70 0.355 66.70 68.80 69.40
DNA-Threader 59.70 0.279 23.70 95.70 N/A
DBPPred 76.90 0.538 79.60 74.20 79.10
PSSM-DT 80.00 0.647 87.09 7283 8740

The six methods in the front of the table are six useful predicting methods for
identification of DNA-binding proteins proposed in the past and were
demonstrated to have good performance. The results of the six existing
predicting methods and the SVM-PSSM-DT were achieved on the dataset
PDB186 by their model trained on benchmark dataset.

“The results of iDNA-Prot [16], DNA-Prot [74], DNAbinder[21], DNABIND [34],
DNA-Threader [78] and DDPPred [75] were obtained from [75].
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Figure 5 The ROC curves of several predictive methods on
Independent dataset. The receiver operating characteristic (ROC)
curves of SYM-PSSM-DT and several other existing DNA-binding
protein predictors were got by testing the models trained by
benchmark dataset on independent dataset PDB186, where the
horizontal coordinate X is for the false positive rate or 1-SP and the
vertical coordinate Y is for the true positive rate or SN and a good
method would yield a curve close to the coordinate (0,1) meaning
low false positive rate and high true positive rate.

scientists, a step-by-step guide is provided below on how
to use the web-server to get the desired results.

Step 1. Open the web-server by clicking the link [79]
and you will see the home page as shown in Figure 6.
Click on the Read Me button you can obtain the brief
introduction about this web-server.

Step 2. Either type or copy and paste the query pro-
tein sequences into the input box at the center of Figure
6. AS this server need calculate the PSSM profile for
every protein sequence through PSI-BLAST, which is a
time-consuming operation, thus it receive only a query
protein sequence at a time. The input sequence should
be in the FASTA format and example sequences in
FASTA format can be seen by clicking on the Example
button right above the input box.

Step 3. Click on the Submit button to submit the
query sequence to the server, then you will see the pre-
dicted results on your screen. For example, use the pro-
tein 1IGN chain B as a query sequence, you will see on
your screen that the predictive result is “DNA-binding
protein”.

Conclusion

In this work, we investigated the idea of identifying
DNA-binding proteins from sequence by combining
SVM and PSSM-DT. The PSSM-DT is the features
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Identifying DNA-binding proteins by combining
support vector machine and PSSM distance transformation

| server | Read Me | Data | Citation |

Enter or copy/paste query protein sequences in FASTA format (Example):

You are permitted to input only one sequence every time

Submit = Clear

Contact@Bin Liu

clicking on the Example button right above the input box.

Copyright@2014 By Liu Lab , Harbin I “ﬁ of Technology Shenzhen Graduate School,

Figure 6 The top page of the web-server. In the top page, you can type or copy and paste the query protein sequences into the input box
at the center, obtain the brief introduction about this web-server by clicking on Read Me button and see information about FASTA format by

from PSSM by considering the probabilities of pairs of
amino acid separated by certain number of sites along
the sequence in a sequence. A benchmark test on a
dataset of 525 DNA-binding proteins and 550 proteins
which do not bind to DNA using jackknife validation
showed that SVM-PSSM-DT achieved the best predict-
ing performance with ACC of 79.96%, MCC of 0.62 and
AUC of 86.50%, and performed better than other state-
of-the-art methods by 4.56-7.41% in terms of ACC,
5-10.4% in terms of AUC and 0.12-0.18 in terms of
MCC. Subsequently, the blind test performed on the
Independent dataset PDB186 indicated that the pro-
posed predictive method obtain an ACC of 80.00%,
MCC of 0.647 and AUC of 87.40%, and outperformed
some existing state-of-the-art methods. Additionally, the
discriminant weight of the descriptors in PSSM-DT-
based protein representation is calculated based on the
benchmark dataset and the analysis results show that
pair(R, R), pair(R, P), pair(P, R) and pair(A, R) are the
top four most discriminative amino acid pairs. The
three dimensional structure of the protein 1AKH chain
A showed that the descriptors for the top four most
discriminative amino acid pairs only occur in the DNA-
binding regions of the protein, indicating that PSSM-DT
is a useful tool for identifying DNA-binding protein.
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