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Abstract

Background: Progress in systems biology offers sophisticated approaches toward a comprehensive understanding
of biological systems. Yet, computational analyses are held back due to difficulties in determining suitable model
parameter values from experimental data which naturally are subject to biological fluctuations. The data may also
be corrupted by experimental uncertainties and sometimes do not contain all information regarding variables that
cannot be measured for technical reasons.

Results: We show here a streamlined approach for the construction of a coarse model that allows us to set up
dynamic models with minimal input information. The approach uses a hybrid between a pure mass action system
and a generalized mass action (GMA) system in the framework of biochemical systems theory (BST) with rate
constants of 1, normal kinetic orders of 1, and -0.5 and 0.5 for inhibitory and activating effects, named Unity (U)-
system. The U-system model does not necessarily fit all data well but is often sufficient for predicting metabolic
behavior of metabolites which cannot be simultaneously measured, identifying inconsistencies between
experimental data and the assumed underlying pathway structure, as well as predicting system responses to a
modification of gene or enzyme. The U-system approach was validated with small, generic systems and
implemented to model a large-scale metabolic reaction network of a higher plant, Arabidopsis. The dynamic
behaviors obtained by predictive simulations agreed with actually available metabolomic time-series data, identified
probable errors in the experimental datasets, and estimated probable behavior of unmeasurable metabolites in a
qualitative manner. The model could also predict metabolic responses of Arabidopsis with altered network
structures due to genetic modification.

Conclusions: The U-system approach can effectively predict metabolic behaviors and responses based on
structures of an alleged metabolic reaction network. Thus, it can be a useful first-line tool of data analysis, model
diagnostics and aid the design of next-step experiments.

Background
Systems biology have advanced far enough that it is
becoming possible to gain a comprehensive understanding
of a metabolic system, and to use this knowledge for

developing rational treatment options for diseases or devis-
ing strategies for increasing the productivity of foods and
chemicals. While the main hallmark of systems biology is
often portrayed as a means for predicting systems
responses to external or internal stimuli, a similarly impor-
tant aspect is its abilities to envisage all relevant informa-
tion and integrate experimental data into logical and
computable structures. As an example, suppose that three
metabolites, A, B, and C, form a linear pathway (Figure 1a).
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Supposing further that only experimental data for A and C
are available and the data show A and C increasing after
stimulating the reaction producing A. On the basis of the
network structure together with the available data, even
though B may not be ably measured, it is logically predict-
able that B is probably increased as well. On the other
hand, supposing that the data for all three metabolites, A,
B, and C, are available and the data show that A and C
increasing whereas B decreasing. Without any information
on the structure of pathway, one can only take the data of
B at face value and deem them correct. However, if there
is an indication showing that A, B, and C, form a linear
pathway like the previous case, it becomes immediately
clear that there is some inconsistencies. According to the
logic of a conceptual or mathematical model of the path-
way, either some branches or regulatory signals are miss-
ing, or the data are unreliable. To be more precise, if the
data behave in a reasonable trend with some biological
fluctuations like those in orange dots (Figure 1a), one may
assume that these data just contain intrinsic biological var-
iations and some missing pathways or regulations make
the data inconsistent. In contrast, if some data split out of
the trend in an unusual way like those in green dots (Fig-
ure 1a), one may judge that these data are prone to be
errors and probably unreliable. This implies that the logi-
cal concepts allow us to assess associated data and possibly
identify inconsistencies.
The exploitation of logical concepts for the prediction of

probable behaviors of unmeasurable data and identification

of uncertainties in datasets becomes much more compli-
cated and important if the pathway systems are large.
Large-scale datasets, and in particular time series data
characterizing metabolic systems, are also becoming more
and more commonplace to assist the investigation. To
acquire such datasets with reasonable efforts, the high-
throughput analytical instruments have been developed in
recent times [1-3]. Given the nature of experiments, how-
ever, it is not even always certain that all information for
interested variables can be gained from experiments and
not all metabolites in the large-scale pathway can be mea-
sured. It also cannot be guarantee that the replicated sam-
ples in terms of biological, technical and analytical aspects
reproduce the same results, even in a qualitative sense.
Two major questions thus arise. The first question is
whether computational methods of systems biology which
are cheap and straightforward may be able to predict or
analyze such unmeasurable data with respect to system
identification based on our understanding of the system.
The second question is how reliable or accurate biological
data are, especially if they were obtained from different cel-
lular compartments or from different developmental stages
in plants and animals.
It is therefore useful to explore to what degree it might

be possible to employ the logic of the pathway to address
these issues. Such an analysis seems to be feasible in
principle, because the biologist executing the experi-
ments usually has a relatively well-supported concept of
the topology of the pathway system. The challenge is that

Figure 1 Examples for typical metabolic pathways and U-system approach. a Simple linear pathway. A, B, and C represent metabolites. b
Diagram for constructing a mathematical model using U-system approach. c Branched pathway with inhibition (⊕) and activation (⊖). Xi (i=1, 2,
3 and 4) represent metabolites.
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even small pathways quickly become too complicated for
intuitive assessments, and larger and more complicated
pathway systems simply prevent us from testing assump-
tions or hypotheses without computational support. Such
computational support of course requires mathematical
models, which immediately leads to the challenge of set-
ting up detailed, quantitatively appropriate models with a
minimum of input requirements. The goal of such mod-
els is not necessarily to provide a quantitatively perfect
picture of a pathway or to fit all data with great accuracy.
Instead, these models should be easy to construct, robust,
and merely able to identify how data within a large data-
set could probably be.
Power-law models within Biochemical Systems Theory

(BST; [4]) possess two great advantages that can be
leveraged toward predicting the unmeasurable data as
well as testing the consistency between the measured
data and an alleged pathway structure and its regulation.
First, symbolic BST models can be designed immediately
for a pathway system of any complexity. These symbolic
models do not include parameter values, but they do
define a model’s potential repertoire of responses, rather
than addressing specific data fits. Second, the estimation
of optimal parameter values for large systems is gener-
ally fraught with technical difficulties [5]. This issue is
greatly ameliorated for BST models, because even rela-
tively coarse numerical settings of their parameters are
often sufficient to capture the behavior of a metabolic
pathway system in a semi-quantitative fashion.
Here we capitalize on these two features of BST and

propose a coarse test for the prospect of metabolic
time-series data and consistency between the data and
an alleged pathway diagram. The purpose is not to
establish optimally fitting models but to identify how
the unmeasurable data of metabolites located in a
focused pathway probably behave, which time-series
data within the dataset may be inconsistent with the
understanding of pathway, as well as which data within
a large dataset are probably reliable and which, if any,
are most likely imprecise. We use a hybrid between a
pure mass action system and a generalized mass action
(GMA) system in the framework of BST with kinetic
orders of 1, which allows for inhibitory and activating
effects that are modeled with kinetic orders of -0.5 and
0.5. The rate constants are at first set to 1, but may be
later subjected to order-of-magnitude adjustments,
which obviously improve the model representation of
the data. Once the parameter values are fixed, their
effects are to some degree compensated by adjustments
in metabolite concentrations according to the network
structure so that we named this simplified method unity
(U)-system. The diagram for U-system approach is also
exhibited in Figure 1b. We begin the demonstration of

the U-system approach with artificial “data” from fully
known, representative models and show that coarse
values for kinetic orders and rate constants retain much
of the qualitative behavior of true model responses.
These U-system solutions are rather coarse, but can be
improved with order-of-magnitude adjustments of flux
split ratios at branched points. We then demonstrate
the feasibility of the method with actual data describing
amino acid synthesis in Arabidopsis. This pathway sys-
tem contains 351 metabolites and 441 fluxes, which are
subject to various regulatory mechanisms. Apart from
these, we have measurements from two different analyti-
cal methods, one comprising 268 metabolites, including
21 amino acids, and the other one accounting for 16
amino acids. As expected, although a large number of
data can be measured, it is clear that not all data can be
obtained. Also, none of the obtained data contain
exactly the same values even in the replicated samples,
mainly due to high biological variation among samples.
In most cases, the measured time series are qualitatively
the same, but in some cases they differ. We show that
the U-system analysis estimates the probable behaviors
of unmeasurable data and identifies at least some of the
unreliable data. Besides, the U-system model is also
applicable to predict metabolic responses when a meta-
bolic reaction is altered.

Results and discussion
Testing of feasibility of assumptions in U-system
Obviously, a system with arbitrary parameter values of 1 is
quite different from a system with diverse parameter
values. The performances and characteristics of U-system
approach were simply approved using a simple model of a
linear pathway by comparing with the typical model con-
structed in Michaelis-Menten format where the enzymatic
reaction velocity is usually determined by an in vitro
experiment (Supplementary Information - additional file
1). The result showed that U-system model can produce
qualitatively similar results to the original. Thus, a simple
generic, yet representative model was used to test to what
degree the U-system model can produce qualitatively
comparable results.
Many studies in recent years have used a simple,

representative model of a branched pathway with inhibi-
tion and activation (Figure 1c), for instance, to test new
parameter estimation methods [6-8]. We used this same
system but slightly modified it to allow a wider range of
responses. Equations (1)-(4) show the differential equa-
tions together with actual parameters for the rate con-
stants and kinetic orders of this system in GMA-system
format.

dX1

dt
= α1X

g13
3 − β11X

h111
1 − β12X

h112
1 = 12X−0.8

3 − 8X0.5
1 − 2X0.5

1 (1)
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dX2

dt
= α2X

g21
1 − β2X

h22
2 = 8X0.5

1 − 3X0.75
2 (2)

dX3

dt
= α3X

g32
2 − β3X

h33
3 Xh34

4 = 3X0.75
2 − 5X0.5

3 X0.2
4 (3)

dX4

dt
= α4X

g41
1 − β4X

h44
4 = 2X0.5

1 − 6X0.8
4 (4)

Effect of rate constants on metabolic behaviors
Figure 2a and 2b show patterns of normalized concentra-
tions for each metabolite over time resulting from changes
in rate constants a1 and b3, respectively. It is clear that
when a1 is increased, the time-course curves of metabolite
concentrations tend to stretch along the x-axis, whereas
the extension along the y-axis is only slight. Although the
results for b3 are clearly different from those for a1, the
dynamic responses for each Xi are qualitatively similar.
Overall, changes in the rate constants tend to affect the
dynamics in the direction of the x-axis. The individual
degree of elongation depends on the specifics of the sys-
tem. This result is not surprising, because multiplying the
entire system with a positive constant corresponds to
changing the unit of time and thereby the scale of the
x-axis (see, e.g., [9]). Additional results are presented in
Supplementary Figures S3 and S4 (additional file 1).
Effect of kinetic orders on metabolic behaviors
Figure 2c and 2d show patterns of normalized concen-
trations of each metabolite over time resulting from
changes in kinetic orders g13 and h34, respectively.
When g13 is changed, only the magnitudes of normal-
ized metabolite concentrations are changed but almost
no difference is observed in temporal changes in time-
course patterns of metabolite concentrations. Similar
results are also observed for g21, g32, g41, h111, h112, h22,
h33 and h44 (Supplementary Figures S5 and S6 - addi-
tional file 1). This consistency may be due to the fact
that the ranges of kinetic orders are typically between
−1 and 1 [9], so that kinetic orders do not play an
overly strong role in the variation of metabolite concen-
trations, and the corresponding fluxes do not change
much. The results for h34 (Figure 2d) and h44 (Supple-
mentary Figure S6 - additional file 1) are different, as
the trajectories noticeably elongate in the direction of
the x-axis with changes in kinetic orders. According to
metabolic reaction network diagram in Figure 1c, one
sees that these kinetic orders are involved in the degra-
dation of X3, so that an increase in kinetic order
strongly increases the degradation flux of X3. However,
this situation is somewhat unusual because of the high
activation of the efflux. In this case, X4 is produced
from X1 which is inhibited by X3 so that a strong activa-
tion of the efflux of X3 by X4 quite effectively slows
down changes in X3. Also, X3 has a low initial value and

kinetic order compared to other metabolites. Thus, the
dynamics of X3 is driven by other metabolites and X3

concentration does not change much unless the other
parameters vary. Furthermore, the input X1 is strongly
affected by X3 which does not change much. Accordingly,
other metabolites hardly change throughout the period of
observed time. In general, the kinetic parameters for acti-
vation are seldom higher than kinetic parameters for the
metabolite itself so that this particular scenario is rare.
As a consequence, it is still able to deduce that changes
of kinetic orders tend to affect the trajectories in the
direction of the y-axis rather than the x-axis.
Effect of random parameters on metabolic behaviors using
Monte-Carlo simulation
Figure 3 shows a selection of Monte-Carlo simulation
results associated with changes in the rate constants
between 0.2 and 20, and kinetic orders between 0.2 (-0.2)
and 0.8 (-0.8) for the branched pathway model with inhibi-
tion and activation as well as the simulations for U-system
model (blue lines) and original GMA-system model (green
lines). Parameter combinations not leading to a stable sys-
tem were removed. For the U-system model, all rate con-
stants and kinetic orders of substrates and enzymes were
set to 1, while the kinetic orders of parameters for inhibi-
tions and activations were set to be -0.5 and 0.5, respec-
tively. As a result, the observed metabolite concentrations
are no longer the real concentrations, but simply indica-
tions of the shapes of their trajectories. The present study
calls these concentrations as U-system concentrations
(Figure 1b).
The initial values of metabolite concentrations of X1,

X2, X3, and X4 were set to 3-, 1-, 0.5- and 2-fold their
steady-state values. The simulated metabolite concentra-
tions for all cases were normalized by their steady-state
values for the observation and comparison. To facilitate
inspection of the calculated behaviors of the metabolite
concentrations, the scales of both axes were adjusted by
the maximum and minimum values of each simulation.
The result shows that most Monte-Carlo simulations
exhibit qualitatively comparable dynamic responses
regardless of the parameter values chosen. Each metabo-
lite concentration changes throughout the period of
time and returns to its steady-state value in a similar
manner. This observation implies that both models pro-
vide qualitatively comparable dynamic patterns of
changes in metabolite concentrations. Furthermore, the
GMA and U-system responses are surrounded by the
Monte-Carlo simulation results for 1000 parameter sets.
In summary of this analysis, the U-system approach

indicates that metabolic behaviors mainly depend on the
network structure of a metabolic system. Unlike most of
modeling methods, it does not need the process of para-
meter estimation in model construction, although it
cannot offer actual quantitative concentrations of
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metabolic behaviors. This insight leads to several conse-
quences. First, the U-system approach provides a coarse
time-transient behavior of the system regardless of the
requirements or dependencies of experimental data.
Accordingly, it will not confront difficulties in parameter
fitting, especially in a large-scale system. Second, the
U-system approach is simple. Plausible parameters for
inhibition and activation can be easily set into the
model to grasp their possible effects, which makes it
possible to design additional experiments. Third, the
U-system approach is suitable for practical applications
because of its simplicity and flexibility. One can simply
construct a mathematical model based on only experi-
mental facts regarding the network structure and regula-
tion. If the U-system simulations are inconsistent with

experimental data, other possible systems may be simply
constructed to find out unknown candidates. As a result,
an appropriate experiment may be designed to validate
or refute the predictions from the simulation and to
characterize biological details. Lastly, the U-system
approach allows us to acquire tendencies of metabolic
behaviors to assess experimental data within the context
of their actual network structure.

Application to metabolic reaction network of Arabidopsis
Methionine, lysine and threonine are essential amino acids
for non-ruminant animals including humans. The methio-
nine derivative, S-adenosyl methionine (AdoMet), is a
major primary methyl-group donor and also a precursor
for a plant hormone ethylene and polyamines. To increase

Figure 2 Normalized concentrations of each metabolite in response to variations of rate constants and kinetic orders. a Rate constant
a1 was varied at 0.5, 1, 5, 10, 15, 20, 25, 50, 75 and 100 in rainbow- colored lines varying from red to blue, respectively. b Rate constant b3 was
varied at 0.5, 1, 5, 10, 15, 20, 25, 50, 75 and 100 in rainbow- colored lines varying from red to blue, respectively. c Kinetic order g13 was varied at
0.5, 1, 5, 10, 15, 20, 25, 50, 75 and 100 in rainbow- colored lines varying from red to blue, respectively. d Kinetic order h34was varied at 0.5, 1, 5,
10, 15, 20, 25, 50, 75 and 100 in rainbow- colored lines varying from red to blue, respectively.
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the sulfur-containing amino acids methionine and cysteine
in crops, numerous researches in the field of genetics and
metabolic engineering have been carried out for more
than two decades, and the objectives have been partially
realized. However, the results are not quite satisfactory
yet, because the amino acids and related metabolites in
the obtained transgenic crops are not well balanced. One
of the major causes for not achieving a good balance is an
incomplete understanding of the whole regulatory
mechanisms of amino acid accumulation, as well as the
regulatory feedback structure of the system, although it is
well known that the accumulation of methionine, a mem-
ber of the aspartate-family amino acids together with
lysine and threonine, is tightly controlled by negative feed-
back by lysine and threonine [10]. Another cause is an
ambiguity in the characteristics of the metabolic flow

pattern, which affects productivity and metabolic balance
[11]. To elucidate their correlations among metabolites,
there are various researches focusing on the integrations
of in vitro data into kinetic models for specific pathways
[12,13] and the reconstructions of metabolic fluxes at the
genome scale [14,15]. However, no large-scale kinetic
models including regulatory mechanisms are known for
the Arabidopsis metabolic system. In this study, therefore,
we exploited the U-system approach to construct a large-
scale mathematical model based on available metabolic
reaction networks (Figure 4) for describing important
characteristics of its metabolic system and predicting
metabolic behaviors in whole. A perturbation experiment
was also conducted with Arabidopsis callus by exogenous
application of lysine and threonine to obtain metabolic
time-series data for validating the U-system model.

Figure 3 Comparisons among Monte-Carlo simulations, U-system simulations and original GMA model simulations. The U-system
simulations and original GMA model simulations are shown in blue and green lines, respectively. The Monte-Carlo simulations in response to
changes of rate constants within ranges of 0.5 and 20 and kinetic orders between 0.2(-0.2) and 0.8(-0.8) are shown in red lines. The
concentrations of Xi along the y-axis are scaled using maximum and minimum values of each simulation, while the time along the x-axis is
scaled using maximal values of the Xi concentrations before they return to their steady-states.
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Figure 4 Metabolic reaction network of Arabidopsis focused in this study. Green zone, aromatic amino acid biosynthesis, indole GSL
biosynthesis, histidine biosynthesis and leucine and valine biosynthesis; gray zone, purine and pyrimidine biosynthesis; pink zone, glycolysis
pathway, TCA cycle and pentose phosphate pathway; yellow zone, aspartate-family amino acid biosynthesis, proline biosynthesis, lysine
degradation, methionine salvage pathway, aliphatic GSL biosynthesis. The number i in square boxes indicate the metabolite numbers arbitrarily
given for simulations (Supplementary Model - additional file 2).
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Modified U-system approach with rough adjustments of
rate constants
The mathematical model including nonlinear ordinary dif-
ferential equations (ODEs) for 351 metabolites was con-
structed by U-system approach on the basis of only
structures of metabolic reaction networks available in
databases (Supplementary Model - additional file 2). Fick’s
laws of diffusion [16] was used for representing the uptake
rate of lysine plus threonine from the callus culture med-
ium to the inside of the cells from t=0, and the parameters
for uptake rates were estimated using experimental data.
For simulations, all ODEs representing changes of meta-
bolite concentrations inside the cells were calculated

together with equations for the supplementation through-
out a period of 100 h.
Figure 5 shows the time courses of metabolite concentra-

tions from the U-system approach (gray dotted lines) com-
pared with those from metabolome analysis covering 268
metabolites measured by liquid chromatography-mass
spectrometry (LC-MS) (red dots) and those with a coeffi-
cient of variations more than 20% (blue dots). It is clear
that the actual data contained some biological fluctuations
and/or analytical errors. The results indicated that simu-
lated metabolic behaviors changed in similar ways to actual
metabolic behaviors but in different time-scales. This is
because all rate constants were fixed to 1 so that some rate

Figure 5 Comparisons of metabolome data with U-system and Monte-Carlo simulations. Experimental data from metabolome analysis
with coefficient of variations less than and more than 20% are represented in red and blue dots, respectively (upper boxes). The U-system and
modified U-system simulations for metabolic system of Arabidopsis are represented in gray dotted and black lines, respectively (middle boxes),
whereas Monte-Carlo simulations with changes of rate constants between branch points around proline biosynthesis, lysine degradation,
methionine salvage pathway, aliphatic GSL biosynthesis (yellow zone in Figure 5), in which parameters are 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and
50, are represented in rainbow-colored lines varying from red (0.005) to blue (50), respectively (lower boxes). a, serine (X23); b, proline (X50); c,
methionine (X85); d, S-adenosyl-methionine (X86); e, pipecolate, (X141); f, saccharopine (X144). The results for other metabolites are shown in
Supplementary Figures (additional file 3).
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constants may be too large whereas others may be too
small compared with the real ones. To prove the hypoth-
esis that it is possible to roughly adjust rate constants, the
flux-split ratios at the branched point associated with
methionine salvage pathway, aliphatic glucosinolate (GSL)
biosynthesis, lysine degradation and proline biosynthesis
(yellow zone in Figure 4) were varied. Specifically, the rate
constants from these branched points to other branched
points were varied at 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, and
50, respectively, on the basis of Monte-Carlo simulations.
Some calculation results satisfactorily agreed with the mea-
sured data although there were some differences. The cal-
culation results indicated that simulated concentrations
of serine (X23) (Figure 5a) does not vary whereas those of
proline (X50) (Figure 5b) clearly alter. This is because the
rate constants of fluxes nearby serine (X23) (pink zone in
Figure 4) were kept constant whereas those nearby proline
(X50) (yellow zone in Figure 4) were varied. Similarly, with
high rate constants (between 0.5 and 50), the simulated
concentrations of methionine (X85) (Figure 5c) and Ado-
Met (X86) (Figure 5d) temporarily decreased and increased
back, whereas those of pipecolate (X141) (Figure 5e) and
saccharopine (X144) (Figure 5f) increased and remained
constant during the observation period. At the same time,
their metabolic responses seemed to slow down with lower
values of rate constants, although they would behave in the
same manner if longer period of time were observed.
These findings implied that it is possible to adjust the time
scale of calculated metabolite concentrations in the
U-system model by adjusting the rate constants of
fluxes at branched points. Thus, rate constants between
branched points were roughly adjusted using some of
the time course of relative metabolite concentrations for
the coarse prediction of the metabolites concentration
and this system was named modified U-system. The

results for modified U-system (black lines in Figure 5)
showed reasonable metabolic behaviors useful for
further analysis.
Evaluation of the modified U-system approach for
metabolic responses in Arabidopsis
The modified U-system includes various approximations
so that it is necessary to validate whether it is practicability
and conformable to experimental data. Figure 6 (upper
boxes) shows the time courses after lysine and threonine
application of the relative concentrations of four amino
acids measured in metabolome analysis. The threonine
concentration (X26) exhibited small biological fluctuations
among sample replicates, increasing from its steady-state
level to a maximum at around 24 h, from where it
decreased back to its steady-state level. The lysine concen-
trations (X93) contained more biological fluctuations
among the sample replications, but it is still possible to
detect a clear pattern over time. The glutamate concentra-
tion (X37) increased within 2 h and then seemed to be
constant. The aspartate concentration (X78) increased
slightly, then decreased, and finally tended to increase
considerably.
The red lines in Figure 6 (a1 and b1) indicate that the

simulated concentrations of threonine (X26) and lysine
(X93) agreed with the metabolic behaviors of experimen-
tal data obtained by metabolome analysis with significant
correlations (p-values < 0.005; detailed in Supplementary
Model - additional file 2). However, the simulated concen-
tration of aspartate (X78) was not consistent with metabo-
lome data (Figure 6d1). It could be that, although the
metabolic reaction network used for model construction is
correct, the U-system approach might fail to predict
the appropriate metabolic behavior. To assess this possibi-
lity, a specific measurement only for amino acids using
another analytical instrument gas chromatography-mass

Figure 6 Simulations from modified U-system approach compared with relative concentrations obtained by metabolome and amino
acid analyses. The red and blue dots represent relative concentrations (see Materials and Methods) of lysine and threonine supplementation
experiment with coefficient of variations less than or more than 20%, respectively, which are obtained by metabolome (upper boxes) and amino
acid (middle boxes) analyses. Red lines represent simulations from the modified U-system approach. The normalized peak intensities of lysine
and threonine-supplemented samples and control samples are shown as red dots and black dots, respectively (lower boxes). a, threonine (X26); b,
lysine (X93); c, glutamate (X37); d, aspartate (X78).
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spectrometry (GC-MS) was performed using the identical
samples (Figure 6, middle boxes). The results from amino
acid analysis seemed to provide better metabolite trajec-
tories with lower fluctuations. With respect to the concen-
trations of threonine (X26), lysine (X93) and glutamate
(X37), both methods yielded similar results in terms of the
metabolic trajectories, although the simulations were in
better agreement with the time-courses of metabolite con-
centrations measured by amino acid analysis. For example,
lysine concentration (X93) measured by metabolome analy-
sis (Figure 6b1) increased and maintained its level from
t=24 to t=60 h before increasing again. The U-system
simulation pinpointed that four data at t=24, 36, 48 and
60 h obtained by metabolome analysis may contain errors.
Actually, the data at t=24 and 36 h (shown as blue dots)
exhibited high standard deviations. This assumption may
be indirectly supported by the results of correlation analy-
sis. For example, the correlation between the U-system
simulation and the time-series data obtained by the amino
acid analysis (Figure 6b2) is 0.991, which is higher than
the correlation of the value, 0.881, between the U-system
simulation and the data obtained by metabolome analysis.
The result indicates that if a relatively reliable metabolic
reaction network diagram is available, the prediction of
time-dependent changes in metabolite concentrations
using the U-system is beneficial for judging the likely cor-
rectness of data measured by metabolome analysis (see,
e.g., green dots in Figure 1a), which is designed to provide
massive datasets of metabolite concentrations sometimes
at the expense of absolute concentration accuracies for all
metabolites. By contrast, if the predicted behaviors are sig-
nificantly different in some of the metabolites (see, e.g., blue
dots in Figure 1a), there may be an unknown metabolic
pathway associated with these metabolites or an unidenti-
fied regulatory signal. Thus, one may attempt to test a pos-
sible system by modifying a pathway or regulation, which
can provide a consistent result to predict an unknown can-
didate before performing a next experiment.
As mentioned above, the relative concentrations

observed for several amino acids such as aspartate and
glutamate were scattered mainly because of biological
variability and possibly due to analytical limitations, and
it was difficult to precisely capture the time courses of
their concentrations (Figure 6c and 6d). In fact, signifi-
cant fluctuations in actual metabolite concentrations
were observed even in the control samples without lysine
and threonine supplementation (Figure 6c3 and 6d3,
black dots). However, the computational results sug-
gested that when lysine and threonine were applied as
supplements, the aspartate concentration (X78) slightly
increased and then decreased to its initial concentration
level or steady-state (Figure 6d1 and 2). This estimation
can be supported by the previous experiment related to
aspartate kinase (AK) [11]. AK is the first committed

enzyme of aspartate-family amino acid biosynthesis and
regulated by the feedback inhibition by lysine and threo-
nine (Figure 4). The flux analysis in Lemna revealed that
the deregulation of AK, i.e., the increase of AK activity,
caused accumulation of lysine, threonine, methionine, and
AdoMet and decrease in the aspartate concentration [11].
Thus, in our study, a reduction in the AK activity through
the feedback inhibition by supplementation of lysine and
threonine might lead to an initial increase in the aspartate
concentration as predicted in modified U-system. The
transient increases in glutamate and aspartate concentra-
tions (X37 and X78, respectively) after lysine and threonine
supplementation were also indirectly supported by the
increase of proline (X50) observed both in simulation and
metabolome analysis (Figure 5b). One could assume that if
the simulated behaviors of dead-end metabolite concentra-
tions (proline (X50) in this case) agree well with the experi-
mental data, those of intermediate metabolites (glutamate
(X37) and aspartate (X78) in this case) are likely to be cor-
rect. This consistency implies that the prediction of meta-
bolic behavior by our approach is reliable even if the
quality of the experimental data for some metabolites is
not very high.
Prediction of dynamic behaviors of unmeasurable
metabolite concentrations
The 86 out of 268 metabolite concentrations measured by
metabolome analysis (purple and blue boxes in Figure 4)
were included in the U-system model. The 66 out of 86
metabolite concentrations (blue boxes in Figure 4) showed
unclear dynamic patterns changing throughout the period
of 96 h after the supplementation of lysine and threonine
(Supplementary Figures - additional file 3). One may note
that these metabolite concentrations showing no signifi-
cant variations do not change or change only slightly to
the extent that cannot be experimentally observed due to
biological fluctuations and analytical constraints. Thus,
although a large number of metabolite concentrations in
metabolic pathways can be simultaneously measured, the
metabolic behaviors assumed from measured metabolite
concentrations may sometimes not be entirely reliable.
Also, the 265 out of 351 metabolites incorporated in the
U-system model could not be detected by this metabo-
lome analysis. Given a computational model, we may be
able to predict the dynamic responses of metabolites that
cannot be measured reliably nor detected at all. The com-
putational results also have a potential to provide some
types of theoretical validation on the accuracy of the
experimental data.
Figure 7 illustrates that the relative concentration of

1-hydroxy-3-indolylmethyl GSL (X257) measured by
metabolome analysis (Figure 7a) did not change
throughout the period of 96 h whereas that of 4-meth-
oxy-3-indolylmethyl GSL (X261) (Figure 7b) started
increasing at t=60 h. Interestingly, in the U-system
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simulations 1-hydroxy-3-indolylmethyl GSL concentration
(X257) started increasing at around t=55 h and then
4-methoxy-3-indolylmethyl GSL concentration (X261)
increased around t=60 h. In this case, the dynamic beha-
viors of 1-hydroxy-3-indolylmethyl GSL (X257) from
model prediction were inconsistent with the relative con-
centrations obtained by metabolome analysis. In the meta-
bolic map, the reactions between X257 and X261 are
linearly connected without any regulations, i.e., inhibition
and activation (green zone in Figure 4) so that X257 and
X261 are expected to behave in the similar manner as
observed in the predictive simulations. This inconsistency
between actual data and computational prediction sug-
gests two possibilities; that is, an unknown regulatory
mechanism may exist or 1-hydroxy-3-indolylmethyl GSL
concentration (X257) might have not be reliably analyzed.
Moreover, we were able to predict the behaviors of con-

centrations of aspartate-4-semialdehyde (X80) (Figure 7d)
and O-phospho-homoserine (X82) (Figure 7e), which can
hardly be detected due to technical limitations. They are
not only located at important branched points in the
metabolic map but also related to many regulations
including both inhibitions and activations (Figure 8).
Thus, the information of these metabolites could allow us
to comprehend metabolic system. Again, the aspartate-
family amino acid biosynthesis includes various inhibitions
and activations, so that these dynamic behaviors will not
be reasonably observed by normal mass action equations.

Prediction of “unpredictable” metabolic behaviors
The modified U-system enables us to mathematically
model a relatively large-scale metabolic system, and hence
simulations based on the modified U-system provide pre-
dictive dynamic behaviors of metabolite concentrations
which are hardly provided by existing methods. The modi-
fied U-system model for the Arabidopsis metabolic system
predicted that the supplementation of lysine and threonine
did not affect 4-methoxy-3-indolylmethyl GSL concentra-
tion (X261) until t=60 h (Figure 7b), nor dihydrouracil con-
centration (X333) in pyrimidine biosynthesis until t=40 h
(Figure 7c). These results suggested that the supplementa-
tion of lysine and threonine influenced X261 and X333 in a
delayed fashion due to metabolic flow passing through
various reactions in long and complicated pathways (see
Figure 4). The U-system predictions of the time-transient
behaviors of metabolite concentrations were reasonable
and this kind of metabolic relationship between distant
metabolites on metabolic map cannot be examined by
either statistical methods or typical mathematical model-
ing without delay functions. Furthermore, similar predic-
tive simulations of several metabolite located in long and
complicated pathways such as xanthine (X299) and ureido-
proprionate (X344) in purine and pyrimidine biosynthesis
(gray zone in Figure 4), and aminoadipate (X153), glutarate
(X152), and pipecolate (X141) in lysine degradation (yellow
zone in Figure 4) reasonably agreed with the experimental
results (Supplementary Figures - additional file 3). The

Figure 7 Predictive simulations from modified U-system approach compared with relative concentrations obtained by metabolome
analysis. The red and blue dots represent relative concentrations (see Materials and Methods) of lysine and threonine supplementation
experiment with coefficient of variations less than or more than 20%, respectively. Red lines represent simulations from the modified U-system
approach. a Simulation compared with relative concentration of 1-hydroxy-3-indolylmethyl GSL (X257). b Simulation compared with relative
concentration of 4-methoxy-3-indolylmethyl GSL (X261). c Simulation compared with relative concentration of dihydrouracil (X333). d Simulation
for aspartate-4-semialdehyde (X80). e Simulation for O-phospho-homoserine (X82).
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results could be an example for a large-scale system to
indirectly validate the U-system approach. They also imply
that predicted behaviors of unmeasurable metabolites
located between detectable metabolites are probably cor-
rect, at least, qualitatively.
Qualitative predictions of consequences of gene
modifications
A challenge in systems biology, in addition to the predic-
tion of metabolic behaviors, is the prediction of metabolic
responses of an altered network structure, in which, for
instance, gene expression or enzyme activities are modified.
To assess whether the modified U-system model is applic-
able for this kind of prediction, an in silico knockdown for

MTO2 encoding threonine synthase gene of Arabidopsis in
the biosynthetic pathway of aspartate-family amino acids
(Figure 8 enlarged from Figure 4). When the flux con-
trolled by MTO2 was 90% reduced in silico, the threonine
concentration was predicted to decrease whereas the
methionine concentration was predicted to increase. In
overall, the 6 out of 7 amino acids or 85% prediction agreed
with the original result from biological experiment using an
Arabidopsis mto2 mutant [17]. The prediction was further
compared to the result from metabolome analysis [18].
Figure 8 showed that 73% correctness from 11 metabolites
showing the significant changes comparing with the wide-
type whereas the metabolome and amino acid data showed

Figure 8 Qualitative predictions of consequences of gene knockdown. The simplified aspartate-family biosynthesis pathway enlarged from
Figure 4. Metabolites (AdoMet, S-adenosyl-methionine; Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartate; AspSA, aspartate-semialdehyde;
Cit, citrate; CisAc, cis-aconitate; Cys, cysteine; CysTA, cystathionine; DHDP, dihydrodipicolinate; Fum, fumalate; Gln, glutamine; Glu, glutamate; Gly,
glycine; G6P, glucose-6-phosphate; Hcys, homocysteine; HSer, homoserine; His, histidine; Ile, iso-leucine; IsoCit, iso-citrate; a-KG, a-ketoglutarate;
Leu, leucine; Lys, lysine; Mal, malate; Met, methionine; OAc, oxaloacetate; OPH, O-phosphohomoserine; Orn, ornitine; Phe, phenylalanine; Pro,
proline; Pyr, pyruvate; Ser, serine; Suc, succinate; SucCoA, succinyl CoA; Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Val, valine) are represented in
black letters whereas the knocked-down gene (mto2, MTO2 encoding threonine synthase) is represented in green letters. Two squares boxes
indicate the comparisons between experimental results (the former) and in silico prediction (the latter).
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only 50% agreement among 6 amino acids. The incorrect
prediction might be because of the insufficient information
for model input which could be considered to be an uni-
dentified pathway. Nevertheless, changes of all unmeasur-
able metabolites can also be qualitatively predicted using
our model. The result suggests that the U-system approach
is capable of predicting metabolic levels when the system is
modified, even if specific information on complicated regu-
latory mechanisms is not available. This information can
aid the design of next-step experiments.

Conclusions
The U-system approach is simple, flexible and can be
practically exploited to predict the coarse time-transient
behavior of metabolites in a large-scale metabolic system.
It is also capable of predicting metabolic behaviors when
the system is modified. The U-system approach has two
major characteristics: 1) the U-system model is presented
in a normalized form, and 2) the U-system model con-
structed only using partial, currently-available metabolic
pathways. Recent advances in metabolomics technology
have enabled us to obtain large-scale semi-quantitative
datasets for hundreds of metabolite concentrations. The
first characteristic is essential to establish mathematical
models for actual metabolic systems consisting of hun-
dreds to thousands of metabolites, whose concentrations
cannot be measured practically by existing methods of
measurement other than metabolomics. The second char-
acteristic is desirable for the coarse characterization of
complicated systems, because metabolic responses mainly
depend on the network structure, rather than parameter
values, as we have shown in this study. Thus, the U-system
approach is not only informatively useful for data analysis
and model diagnostics but it also can aid the design of
next-step experiments.

Methods
Background on Biochemical Systems Theory (BST)
1. Structure of equations
BST uses ordinary differential equation systems of a spe-
cific format: Each process is represented with a product
of power-law functions. This format is the result of Tay-
lor approximation in a logarithmic space [4,9,19,20].
The change in each variable of a system is thus repre-
sented as a so-called Generalized Mass Action (GMA)-
system as follows:

dXi

dt
−

p∑

k=1

αik

n∏

j=1

Xj
gijk

m∏

j=1

YjGijk−
q∑

k=1

βik

n∏

j=1

Xj
hijk

m∏

j=1

YjHijk i = 1, 2, ...,n (5)

Here, Xi (i=1,..., n) are dependent variables (typically
metabolite concentrations), Yj (j=1,..., m) are independent
variables (typically external substrates or enzyme activ-
ities), aik (i=1,..., n; k=1,..., p) and bik (i=1,..., n; k=1,..., q)

are the non-negative rate constants for influxes and
effluxes, respectively, gijk (i=1,..., n; j=1,..., m; k=1,..., p) and
hijk (i=1,..., n; j=1,..., m; k=1,..., q) are real-valued kinetic
orders associated with dependent variables in influxes
and effluxes, respectively, while Gijk (i=1,..., n; j=1,..., m;
k=1,..., p) and Hijk (i=1,..., n; j=1,..., m; k=1,..., q) are those
associated with independent variables. n and m are the
numbers of dependent and independent variables, respec-
tively, p and q are the maximum numbers of influxes and
effluxes, respectively, and t is time. Details have been
documented in the literature many times, e.g. in [6,7,9,21].
2. Validity and accuracy of BST for modeling biological
systems
Since the power-law format in BST appears to be quite
restrictive, the accuracy of different model variants within
BST has been assessed many times. As Taylor approxima-
tions, the models are mathematically guaranteed to be cor-
rect at an operating point of choice, but their ranges of
validity were also tested against results from more tradi-
tional formulations like the Michaelis-Menten formalism.
These comparisons demonstrated sufficient accuracy of
BST models over quite large ranges in variation of the
involved variables [22-25]. Applications of BST models
were also demonstrated with various large-scale systems,
including the TCA cycle [26], ethanol fermentation [27],
purine metabolism [28], and sphingolipid metabolism [29].

Meaning of parameters and U-system approach
Model parameters of pathway systems are usually esti-
mated from kinetic information or from metabolic time
series data. In Eq. (5), the familiar kinetic parameters
involved in Michaelis-Menten kinetics (maximum reac-
tion rate Vmax, Michaelis constant KM, etc.) are not
explicitly visible, but they are instead distributed to the
rate constants and kinetic orders. The BST parameters
have their own meaning either as turn-over rates or as
the specific effect that a variable has on the flux term in
which it is involved. Thus, if a kinetic order is negative,
the variable with which it is associated has a negative
(inhibitory) effect on the flux term. This effect is given
exclusively by the one appropriate kinetic order, thereby
reducing the number of kinetic parameters in the sys-
tem, which can be much higher in traditional rate func-
tions. Still, the simplified BST parameters are able to
capture time-transient behaviors of metabolite concen-
trations and other characteristics of metabolic reaction
systems very well.
A consequence of the direct meaning of kinetic orders in

BST is that it is possible to set up differential equations in
symbolic notation, solely based on the structure of a meta-
bolic pathway and its regulatory structure, whereas deep
knowledge of their regulatory mechanisms is not needed.
Furthermore, the kinetic parameters in Eq. (5) can be
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estimated directly from time-series data of metabolite con-
centrations, and subsequently convey important informa-
tion about the system characteristics. In some cases,
traditional kinetic parameters from the literature, such as
Vmax, can be converted into BST parameters, but this is
seldom possible on the basis of metabolome data, which
are often presented as relative rather than absolute
concentrations.
It was recently shown [30] that a coarse grid of kinetic

orders is sufficient to fit time developments in pathway
systems with surprisingly high accuracy. Expanding on
this idea, we here fix all kinetic orders to 1, 0.5 or -0.5
to represent enzyme kinetics, positive or negative effects
of metabolites, respectively. In other words, we use a
hybrid between a pure mass action system and a GMA
system, which allows for inhibitory and activating effects
that are modeled with kinetic orders of -0.5 and 0.5.
The rate constants are at first also set to 1, but may be
later subjected to order-of-magnitude adjustments,
which obviously improve the model representation of
the data. Thus, at branched points, the equations are
adjusted based on stoichiometry. For example, in a
branched reaction of the type shown in Figure 1c the X1

is converted into X2 and X4, so that the equation is
dX1/dt = VinX1 - VoutX1-1 - VoutX1-2. Since most of the
parameters are set at unity in the proposed approach,
we name this system as Unity-system or U-system.
Fixing the parameters values is to some degree com-

pensated by adjustments in metabolite concentrations.
In other words, if the kinetic orders are forced to be 1,
+0.5, or -0.5, a data fit will lead to adjusted metabolite
concentrations.

Monte-Carlo simulations
Monte-Carlo simulations were employed to test in an
unbiased manner whether the qualitative behavior of a
model is consistent with the U-system representation.
Most Monte-Carlo simulations were calculated for 1,000
loops. The parameter values were generated randomly
from uniform distributions. The ranges for rate constants
and kinetic orders were between 0.5 and 20, and ±0.2
and ±0.8, respectively.

Calculation method
Differential equations were solved using automatic switch-
ing for stiff and non-stiff problems (LSODA) [31] using
the ODE integration package from SciPy (Scientific Tools
for Python) [32]. All visualizations were created using
Matplotlib [33].

Details of the Arabidopsis system
Arabidopsis callus culture
Arabidopsis thaliana liquid callus culture derived from
accession Col-0 was prepared as described in Murota et al.

[34] with slight modifications. For callus induction,
minced seedlings were incubated in RM28 medium under
constant light. The medium was changed every 6 days. For
a metabolic perturbation experiment, RM28 medium sup-
plemented with 10 mM L-lysine and 1 mM L-threonine
[35] was used at the third medium change. For a control
experiment, RM28 without supplementation was used.
Sucrose in RM28 medium was a sole carbon source for
callus culture. The experiments were carried out in
triplicate.
For both metabolome and amino acid analyses, calli

were collected prior to lysine and threonine treatment (0
h), and 2, 6, 12, 24, 36, 48, 60, 72, 84 and 96 h after the
treatment. The calli were immediately frozen in liquid
nitrogen and stored at -80°C. Prior to analyses, the frozen
samples were lyophilized using a freeze dryer (FDU-2100,
EYELA) in a vacuum.
Metabolome analysis
Metabolites were extracted by homogenizing lyophilized
callus in 500 uL 80% methanol in 0.1% formic acid per
2 mg dry weight callus with 5 mm zirconia beads
(no.5-4060-13, AS ONE Co. Ltd.) in 2.0 mL sampling
tubes (no.132-620C, WATSON Co., LTD) for 5 min
using shake master NEO (Bio Medical Science, Tokyo,
Japan). After centrifugation using a high speed refriger-
ated micro centrifuge (TOMY MX-300) at 14,000 r.p.m.
at 4°C, 250 uL supernatant was dried up in 96 well plate
and the residue was dissolved in 120 uL ultrapure water
(no. 210-01303, Wako Pure Chemical Industries, Ltd.).
One uL of the solution was subjected to widely targeted
metabolome analysis [36] by LC-MS using UPLC-TQD
system (Waters, Milford, MA, USA). The peak intensi-
ties were normalized by those of internal standards
(10-campher sulfonate and lidocaine). For mathematical
modeling, the normalized peak intensities of treated
samples were subtracted from those of control samples
to eliminate effects of cell growth and obtain relative
metabolite concentrations.
Amino acid analysis
Metabolites were extracted by homogenizing lyophilized
callus in 500 uL of the extraction solution (methanol:
milliQ water = 4:1) per 2 mg dry weight in 2.0 mL sam-
pling tubes using Mixer Mill MM300. After centrifuga-
tion at 15,000 r.p.m. at 25°C for 10 min, the 400 uL
supernatant was used for the analysis performed accord-
ing to the protocol based on the EZ:faast amino acid deri-
vatization technique for GC-MS (Phenomenex, Torrance,
CA) with slight modification. The reagent 1 (internal
standard solution) was diluted to 10-fold while the
reagent 6 (re-dissolution solvent) was added only 50uL to
concentrate amino acid concentrations in samples. Then,
1 uL of solution was subjected to amino acid analysis by
GC-MS using GCMS-QP2010 Plus (Shimadzu, Kyoto,
Japan).
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Statistical evaluation
The correlation coefficients, testing for the significance of
the correlation coefficients, and student’s t continuous ran-
dom variable based on a survival function were calculated
for comparing model simulations with experimental data.
Arabiodopsis callus model
Information for metabolic pathways including their inhibi-
tion and activation was assembled from KEGG (http://
www.genome.jp/kegg/) [37,38] and AraCyc (http://arabi-
dopsis.org/tools/aracyc/) [39] databases. A mathematical
model was constructed based on the metabolic reaction
network including 351 metabolites and 441 fluxes, which
cover a wide variety of metabolic pathways related to amino
acid biosynthesis, glycolysis pathway, TCA cycle, pentose
phosphate pathway, GSL biosynthesis, and purine and pyri-
midine biosynthesis (Figure 4; Supplementary Model - addi-
tional file 2). The relative concentrations of 86 metabolites
among 268 analyzed in metabolome analysis were included
in the model. Twenty (square purple boxes in Figure 4) out
of the 86 metabolite concentrations included in the model
(23.2%) showed considerable changes.

The present study employs a GMA-system model to
which the U-system approach was applied for character-
izing metabolic behaviors in a large-scale metabolic
reaction network related to aspartate-derived amino
acids, namely, aspartate, lysine, threonine, and methio-
nine. The effects of feedback inhibition and activation
were also included based on information available from
the literature and pertinent databases [12,40]. Kinetic
orders of metabolites were set to 1, while kinetic orders
for inhibition and activation signals were set to -0.5 and
0.5, respectively. In the experiments to obtain relative
metabolite concentrations, lysine and threonine was
supplemented to the culture medium and transported
into the callus cells. Then Fick’s law of diffusion [16]
was included in the equations for the supplemented
metabolites lysine and threonine. Also, their parameters
were appropriately fitted with available data of Lys and
Thr obtained by metabolome analysis. Metabolite con-
centrations at the steady state were calculated by simul-
taneously solving the ordinary differential equations for
all 351 metabolites (Figure 4). Since these concentra-
tions were optimized according to the mass balance of
the system, the magnitude of the concentration values
become smaller as the location of metabolites on the
metabolic map were farther away from glucose, which
was the main initial metabolite in the present study. It
is noted that time-series metabolome data from the
experiment were given in relative rather than absolute
concentrations. Thus, it is reasonable to take into
account the magnitudes of metabolite concentrations
while considering predicted behaviors of the metabolite
concentrations.

Additional material

Additional file 1: Usystem_SupplementaryInformation.pdf. Additional
figures for the branched pathway model. Figure S1. Linear pathway with
inhibition (⊖). X1 and X2 represent metabolites whereas Y1 and Y2
represent enzyme activities for the X1 influx and X2 efflux, respectively.
Figure S2. Comparisons of time courses of X1 and X2 obtained by the
Michaelis-Menten model and those by the simplified U-system approach
of the corresponding GMA model. The x-axis represents time, while the
y-axis represents the concentrations of Xi. The red lines pertain to the
actual system in left and bottom axes whereas the blue dotted lines are
for U-system in right and top axes. a The X1 U-system concentration
compared with real concentration when the values of X1 was increased
two-fold at t=0. b The X2 U-system concentration compared with real
concentration when the values of X1 was increased two-fold at t=0. c
The X1 U-system concentration compared with real concentration when
the values of X2 was increased two-fold at t=0. d The X2 U-system
concentration compared with real concentration when the values of X2
was increased two-fold at t=0. Figure S3. Normalized concentrations of Xi
with variations of parameters ai which value from 0.5 (red), 1, 5, 10, 15,
20, 25, 50, 75 to 100 (blue). Figure S4. Normalized concentrations of Xi
with variations of parameters bi which value from 0.5 (red), 1, 5, 10, 15,
20, 25, 50, 75 to 100 (blue). Figure S5. Normalized concentrations of Xi
with variations of parameters gij which range from 0.1 (or -0.1; red) to 1.0
(or -1.0; blue). Figure S6. Normalized concentrations of Xi with variations
of parameters hij which range from 0.1 (red) to 1.0 (blue).

Additional file 2: Usystem_SupplementaryModel.pdf. The details for
Arabidopsis model.

Additional file 3: Usystem_SupplementaryFigures.pdf. The U-system
simulations comparing with experimental data from metabolome and
amino acids analysis.
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