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Abstract

Background: RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the
representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can
acquire much more information like differential expression and novel splice variants from deep sequence analysis
and data mining. But the short read length brings a great challenge to alignment, especially when the reads span
two or more exons.

Methods: A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to
reference with unspliced aligner - BWA; second, split initial unmapped reads into three equal short reads (seeds),
align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete
match.

Results: Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in
call rate and efficiency, but its results do not as accurate as the other software to some extent.

Conclusions: HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.
com/vlcc/HSA.

Background
With next generation sequencing technology has made
steady progress [1-3], both time and money costs on
sequencing have decreased dramatically in recently. It
means that we can obtain big sequencing data in a very
short time. It is really good news to biological research,
almost every branch of biology could benefit from the
ex-scale data mining of genomics, transcriptomics, epige-
netics, and so on. In the other side of this coin, big
sequencing data processing is becoming a new bottleneck
and costs great amount of manpower [3-8]. RNA-Seq [2]
is a next generation transcriptomics sequencing technol-
ogy sequencing whole transcriptome data. Due to the big
data property, much comprehensive RNA information like
expression of genes or splice variants are available for us
to investigate. Compare with previous RNA research
method, expressed sequence tags (ESTs) or microarray,
the advantage of RNA-Seq method is lower sequencing

cost and big data. More and more researchers select RNA-
Seq technology as their main method in transcriptomics
research [9]. However, the bioinformatics-analyzing barrier
for NGS data also exists in RNA-Seq data processing.
Splice junctions are points on a DNA strand at which an

intron is cut out in gene expression, right before the tran-
scripts are translated into protein [10]. It means that
RNA-Seq reads may span two or more exons, reads com-
ing from splice junction region is steady increasing with
RNA-Seq read length expanding. This situation exacer-
bates the difficulty of short reads data mining. Short reads
mapping always carry a crucial role in sequencing data
processing pipeline, especially when we process RNA-Seq
data with de novo assembly method. But most short read
assemblers do not track each individual read back to the
assembly [11]. It is a big challenge in designing an effi-
ciently program to finish reads mapping and splice junc-
tions finding with high throughput sequencing data as
well as combining with genome region location.
Based on whether the aligner support splice reads

alignment, we can divide aligner into two categories:
unspliced aligner and spliced aligner. Unspliced aligner
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can handle common reads which come from major part
of genome, certainly allow reads have errors or indels,
the highest-profile software are BWA [11], Bowtie [12],
SOAP2[13], and so on. Spliced aligner can support com-
mon and splice junction reads, which can provide speci-
fied results in genome structural annotation [14]. Several
professional spliced aligners designed their algorithms by
consulting different strategies, like statistical way or
divide and conquer principle etc. Tophat[15] is the most
common tool for spliced mapping by means of using an
‘Exon-fist’ method [7], this method contains two steps:
first, mapping read with Bowtie and assembling the
mapped reads into consensus by MAQ [16]; second,
splice junctions are generated from adjacent exons, and
the unmapped reads (IUM reads) are mapped to the joint
sites. Hence, Tophat is suitable for detecting splice junc-
tions with high sequencing coverage. Q-PALMA[17] is
an implement of statistical way, it detects splice junctions
using machine-learning method and predict splice sites
using mapped reads as training model. Meanwhile, biases
have been brought in the predicted splice sites when
model training carried out. Divide and conquer is also a
major strategy for spliced aligner algorithm designer to
choose. All of SpliceMap [18], MapSplice [19] and
SOAPsplice [20] are chosen it as their start point of
designing a spliced alignment pipeline, but their imple-
ment of the strategy is totally different. SpliceMap divides
IUM reads into two halves, and filter unspliced aligner
mapping results of each half by paired-ends information
and canonical form of intron. Unlike SpliceMap, MapS-
plice splits IUM reads into several segments, and searches
spliced sites from mapped segments, finally merges all seg-
ments results. SOAPsplice divides IUM reads shorter than
50 bp into two segments, which is similar to SpliceMap.
The other IUM reads are split into multiple segments, and
known splicing motifs are used to filter mapping result.
Different divide methods have different effect on accuracy,
call rate and difficulty of subsequent processing: too little
segments may reduce call rate; too many segments may
decrease accuracy; too short segment may have multiple
aligned result, which is hard to identify. In addition,
gapped alignment is more important than ungapped align-
ment in variant discovery [11].
In brief, we find that the crucial points are how to design

an appropriate IUM reads division strategy and how to
search the spliced site from the segments mapping results.
Here, we introduce a heuristic method based spliced
aligner special for detecting splice junctions, named HSA.
A two-step approach is carried out to search splice junc-
tions, which contain both nonconservative and conserva-
tive motifs. The first step, we use BWA as an unspliced
aligner to map reads; the second step is heuristic align-
ment stage, where a seed and extension strategy is applied
for spliced alignment. We pick trichotomy as division

strategy; three equal segments are regard as seeds and the
unspliced mapping are performed. We try to search splice
site and finish spliced mapping by filtered segments
results. Gapped alignment is allowed in the two stages.
Performance measurement comparison is carried out
among HSA, SOAPsplice, Tophat2, MapSplice and Splice-
Map, based on the simulated data sets. We evaluate from
three angles, cost (running time), sensitivity (call rate) and
accuracy. HSA shows better performance in the first two
respects with an acceptable accuracy.

Methods
Heuristic algorithm
Heuristic technique is designed for solving a problem
quicker when classic methods are too slow, by trading
optimality, completeness, accuracy, and/or precision for
speed [21]. Seed and extend strategy is one of the most
popular heuristic algorithms; here we use it to solve
spliced alignment problem. IUM reads are split into three
equal segments working as seeds, and then they are
aligned to the reference; candidate seeds alignment results
are examined with more sensitive criteria; iterative exten-
sion and merging of initial seeds determine the exact
spliced alignment for the read.

Pipeline
HSA takes two stages of process to map RNA-Seq reads to
the reference, so called normal alignment stage and heur-
istic alignment stage. The details are shown as follow.
(1) Normal alignment stage
HSA aligns the original reads by means of BWA, a popular
unspliced aligner. Bi-direction BWT [22] is used to index
the reference sequence, and each sequence is scanned
from both 5’ and 3’ ends. Breadth first search (BFS) is car-
ried out to consider mismatch and gap; user could config-
ure the tolerance number of mismatch and gap. IUM
reads generated from this process will be put into the next
stage, heuristic alignment stage.
(2) Heuristic Alignment stage
A seed and extension strategy is applied for heuristic
alignment. The pipeline of this step is shown as Figure 1,
containing six steps. Each IUM read are cut into three
equal segments, which is considered as seeds in heuristic
strategy. Here, all the segments are mapped to both posi-
tive and negative strands of the reference. We filter the
mapped segments, which we call them hits, with the
known splice junction information. After searching split
positions of reads, we extend segments to a hypothetical
junction site. Gapped alignment is allowed in both normal
alignment stage and heuristic alignment stage.
Step 1: Reads division. All IUM reads longer than 60 bp

are split into three equal segments, because too short and
too many segments lead to inaccuracy of our filter result.
These segments represent seeds in our algorithm.
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Figure 1 Pipeline of splice alignment. Splice alignment contains six steps. We use trichotomy as divide method, three equal segments are
regarded as seeds and finish unspliced mapping by BWA - an unspliced aligner. Segments results are filtered based on the mapping results and
known splice junctions’ information. Then, we try to search splice sites based on mapped segments information and known splicing motifs.
Splice alignment will be finished after segments extension, and all splice sites are recorded. Gapped alignment is allowed in both initial
alignment stage and heuristic alignment stage.
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Step 2: Segments alignment. BWA is used here to map
all the segments with the permission of mismatches, but
without the permission of gaps. And the number of mis-
match is decided by RNA-Seq read error rate and segment
length. At least two mapped seeds of three seeds are
required in splice alignment (if all of them can mapped to
reference, we will filter false seed alignment in next step).
Step 3: Segments mapping results filtering. Segments

mapping results are multiple or false strand in some
cases. Two-filter strategy is performed here. First, check
all the overlapped mapped segments are on the same
chromosome and strand; second, distance of two adja-
cent segments should be 50-50,000 bp, which may locate
on two exons [18].
After all alignments are filtered, we will try another

directional strand of the reference. Experiment results
shows that the filter results have significant impact on
leaving steps, because if seeds’ alignment on the false
strand of reference we may get a false splice junction.
Step 4: Splice sites searching. If at least two segments

coming from the same IUM read are survived from the fil-
tering, we select one of them as a seed to find possible
splice sites. Canonical motif (GT-AG) and non-canonical
motifs (GC-AG and AT-AC) are used for searching the
candidate splice sites. We use the edit distance of read and
reference sequence to filter candidate splice sites; this
method helps us in finding the most accuracy splice sites.
Step 5: Segments extension. Seeds are extended to those

candidate splice sites, and then checked if the motif type is
match to confirm the splice sites. If the unmapped part is
short, less than 10 bp, or the unmapped segment is the
first or the last one, we use the longest extension as the
splice alignment. If we do not have a suitable accuracy
extension result, we will treat the read as nonconservative,
and extend seeds freely, mismatch number is determinate
by RNA-Seq read error rate and length, we will refine the
freely extension result in result output stage. Mismatch
and gap are allowed in the extension with default number
of 3, and users can configure it by themselves.
Step 6: Check and record. All the splice sites are dou-

ble checked with this data set to make sure and record.

Implementation
HSA is written in C language and runs on Linux system.
We choose bi-direction-BWT [22] as the index method
and BWA as an unspliced aligner owing to its good per-
formance on both mapping efficient and gap support.
Now, HSA is open access at https://github.com/vlcc/HSA.

Results
We extract 5153 transcripts and 17661 known splice
junctions from human chromosome 17 downloaded
from Ensemble database. All the transcripts are longer
than 350 bp. We use wgsim [23] as read simulator to do

a simulation test for HSA and four other spliced
aligners, with mutation rate and base error rate and
mutation rate of 0.001 and 0.02. Three read lengths, 75,
100 and 150 bp are used to measure the algorithm per-
formance under different read length. To test the per-
formance of algorithm on different coverage, we
generate datasets with eleven kinds of coverage (0.1, 1,
5, 10, 20, 30, 40, 50, 60, 80 and 100 fold). The quality of
methodology are measured in three ways, cost (shown
as running time), sensitivity (shown as call rate) and
accuracy. All statistical results are shown in Figure 2.
Figure 2A, B and 2C describe the running time cost by

five software with three read lengths, 75, 100 and 150 bp,
respectively. All these works have been done on the same
platform (a single core of 2.8 G AMD Opteron 2220 pro-
cessor, Centos 5.1 operation system). Tophat2 is always
the top cost in all three figures. SOAPsplice follows
Tophat2 and running time goes higher with increasing
read length. HSA costs least at read length 75 bp together
with MapSplice and SpliceMap, but goes up higher and
much higher than those two aligners when comes to read
length 100 and 150 bp.
Figure 2D, E and 2F shows the call rate results with

three different read lengths. HSA performs best among
all test aligners, follows by SOAPsplice, MapSplice,
Tophat2 and SpliceMap. This trend always keeps in all
three kinds of read lengths.
Although the call rate results decrease with read

length increasing in all five software, HSA still holds
great sensitivity with longer read length. For instance,
the call rate value of HSA at the coverage of 30 fold are
97.21%, 94.47% and 82.77% for 75, 100 and 150 bp read
length, while the call rate value of SOAPsplice are
92.11%, 88.48% and 76.26% and the call rate value of
Tophat2 is 86.41%, 70.07% and 41.52%. One reason of
HSA has the highest call rate is it supports nonconser-
vative splice alignment.
Seen from Figure 2, all five aligners show great perfor-

mance on accuracy, and all the test results are higher
than 90%. With the read length increase, the accuracy
value of all software increases, too. SOAPsplice get the
top seat in all three read lengths. HSA follows SOAPs-
plice in 75 bp case, but falls behind SpliceMap and
MapSplice in 100 and 150 bp cases.
In seed and extend strategy, seeds may have multi

alignment that it’s hard to exclude false result. Or the
seed may be the splice junction region, and still have
aligning result. This will reduce the accuracy of HSA, but
it is fairly acceptable. And when we try to locate the
major reason for accuracy reduce by checking false map-
ping results, we find that about 82% false results are
caused by mapped to a reverse strand of the reference,
which means the reference have duplicate regions on two
complement strands. From the chart, we also find that
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accuracy of mapped reads increase when read length
grows, but the call rate decrease. The increase of seeds
uniqueness induces the decrease of seed alignment false
rate. Another reason is human has much more short
exons, 25% are shorter than 100 bp. That makes the read
longer than 100 bp has a great probability to span more
exons, which cause more difficulty to mapping. We aban-
don genes which exon length less than 100 bp, and test
the tool again, the test result shows that the accuracy
improved 4% (from 93.94% to 97.41%).

Conclusions
HSA is an effective spliced alignment tool for RNA-Seq
data, and it supports the alignment of both nonconservative

and conservative alternative splicing. To make the mapping
results available and compatible for other software, we pick
SAM format [24] as standard to output results. Compare
with other existing tool, HSA shows great performance on
cost and sensitivity under different read lengths and
sequencing depth. But HSA has a lower accuracy results
based on the simulation test with the other five software.
This is mainly because the existence of duplication region
of gene, which leads to a false result when reads comes
from the two complement strands. Compared with half
divide strategy like MapSplice, short length of seed will
reduce the iteration if we apply unspliced alignment allow
mismatches and gaps. And if the read spans two exons, at
least two of the seeds must have alignment result.

Figure 2 Simulated dataset test result. The statistical results on 75, 100 and 150 bp simulated reads in BAsplice, SOAPsplice, Tophat2,
MapSplice and SpliceMap under different coverage of transcript. A, B and C show the running time results. D, E and F show the call rate results.
G, H and I show the accuracy result. Three columns are the statistical results of 75, 100 and 150 bp simulated reads.
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