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Abstract

Background: In bioprocess development, the needs of data analysis include (1) getting overview to existing data
sets, (2) identifying primary control parameters, (3) determining a useful control direction, and (4) planning future
experiments. In particular, the integration of multiple data sets causes that these needs cannot be properly
addressed by regression models that assume linear input-output relationship or unimodality of the response
function. Regularized regression and random forests, on the other hand, have several properties that may appear
important in this context. They are capable, e.g., in handling small number of samples with respect to the number
of variables, feature selection, and the visualization of response surfaces in order to present the prediction results in
an illustrative way.

Results: In this work, the applicability of regularized regression (Lasso) and random forests (RF) in bioprocess data
mining was examined, and their performance was benchmarked against multiple linear regression. As an example,
we used data from a culture media optimization study for microbial hydrogen production. All the three methods
were capable in providing a significant model when the five variables of the culture media optimization were
linearly included in modeling. However, multiple linear regression failed when also the multiplications and squares
of the variables were included in modeling. In this case, the modeling was still successful with Lasso (correlation
between the observed and predicted yield was 0.69) and RF (0.91).

Conclusion: We found that both regularized regression and random forests were able to produce feasible models,

and the latter was efficient in capturing the non-linearity in the data. In this kind of a data mining task of
bioprocess data, both methods outperform multiple linear regression.

Background

Industrial biotechnology exploits processes that use living
cells, for instance yeast and various bacteria, to produce
products like fine chemicals, active pharmaceutical ingre-
dients, enzymes, and biofuels. The use of living material in
manufacturing processes makes the processes challenging
to develop and control. Because of the complexity of these
tasks, computational modeling and data analysis are used
to improve the yield, reproducibility and robustness in bio-
processes. On the other hand, the regulatory demands on
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pharmaceutical manufacturing processes are increasing
and, for example, the United States Food and Drug
Administration emphasize the importance of model-aided
process development in its process analytical technology
(PAT) initiative [1]. One of the important steps in process
development is maximizing the product yield. In practice,
the process optimization includes (1) identifying the pro-
cess parameters that have most impact to the product
yield and, (2) determining their optimal values. This data
analysis task includes few features that are specific to
the application area. For example, the number of process
parameters (predictors) may be large with respect to the
number of samples, the predictors may contain either
numerical or categorical values, the datasets may contain
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missing values and, finally, the relationship among the pre-
dictors and product yield may be non-linear.

To build a model for data analysis requires selection
of important features while leaving out the rest. Several
feature selection methods have been proposed but the
results tend to vary, as generalization of the solution is
problematic. Typical issues are data redundancy, outliers
and feature dependencies [2,3].

Methods

In this work, we have used three alternative approaches to
model bioprocess data: multiple linear regression, regular-
ized regression and random forests. The analyses were
performed using MATLAB [4] and RF-ACE tool [5].

Multiple linear regression

In multiple linear regression, the response variable is
modeled as a linear combination of multiple predictor
variables. The general model can be expressed as

y=,80+a1,81+a2ﬁ7_+a3,33+...+ap,3p (1)

where y is the response variable, and a; and §; (i = 1, ..., p)
are the predictor variables and their coefficients, respec-
tively. The intercept is represented by f3,. Alternatively,
Equation (1) can be represented in vector notation by y =
H6, where H is augmented predictor vector given as [1 a;
a; ... a,) and 0 is the parameter vector.

In spite of being linear with respect to the predictor
variables, multiple linear regression models fail to incor-
porate the underlying non-linear relationships, if it
exists, between the predictors and the response variable.
However, the model restricts only the coefficients to be
linearly related, while the predictor variables can be
non-linear. This gives a provision of including additional
non-linearly transformed predictor variables in the linear
regression modeling. The advantage of using such vari-
ables in regression analysis is that the non-linear beha-
vior in data and interaction between different variables
are incorporated while the model remains linear and
easily interpretable. This is a typical procedure applied
in traditional response surface modeling when con-
structing models with quadratic terms and interactions
of terms. Increasing the number of parameters in this
way, however, causes high-dimensional predictor vector
which results in over-fitting and the loss of generality.
Moreover, if the number of samples is small, increasing
the parameter vector size by these transformations may
cause rank deficiency or multicollinearity of the predic-
tion vector. In such cases, standard regression modeling
may either fail, rank deficiency may cause non-invertible
matrix thus making parameter estimation difficult, or
the estimates it gives for parameter vector are prone to
give low prediction accuracy. Hence, regularization is a
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key process in solving such cases. It produces a sparse
parameter vector and also shrinks the coefficients
towards zero as well as towards each other [6].

Regularized regression

The research on sparse and regularized solutions has
gained increasing interest during the last ten years [7].
This is partly due to advances in measurement technol-
ogies, e.g., in molecular biology, where high-throughput
technologies allow simultaneous measurement of tens of
thousands of variables. However, the measurements are
expensive, so typically the number of data points is
small. In the field of bioprocess development, the num-
ber of variables is not that large but yet enough to hin-
der the use of many standard data analysis methods.
Conventional regression and classification methods are
unable to process data with more predictor variables
than samples (so called p >>N problem). Regularization
methods help in defining a unique solution in this ill-
posed problem. These methods shrink some of the coef-
ficients to zero. This not only helps in feature selection
but also decreases the variance at the cost of a small
increase in bias. However, this has the effect of improv-
ing the generalization of the estimate.

In regularized regression, a penalty on the size of the
coefficients is added to the error function. Least abso-
lute shrinkage and selection operator (LASSO) [3] is
one such technique which uses the L; norm of the coef-
ficients as the penalty term to produce sparse solutions,
i.e., prediction models with several coefficients equal to
zero. Since variables with zero coefficients are not used,
this procedure essentially acts as an embedded feature
selection.

From the description of Equation (1), the L; penalized
coefficient vector for our linear model is defined as

0= |ly—Ho|3+2r0] )

where lambda (A) is the regularization parameter, ||6||;
is the L;-norm of the parameter vector. There exist effi-
cient algorithms for finding solutions for different values
of regularization parameters [3].

The result of the regularized regression is quite sensi-
tive to the selection of the parameter A. In order to
appropriately assess the performance, the selection has to
be done based on data. The usual approach is to estimate
the performance with different A using a cross-validation
approach. Since we also use cross-validation for estimat-
ing the performance of the overall method (including the
algorithm for selecting A), this results in two nested
cross-validation loops, one for model selection and one
for error estimation. More specifically, the outer loop is
used for estimating the performance for new data, while
the inner loop is used for selection of A.
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Random forests

Decision trees have been studied for decades as a model
for various prediction problems. The tree can be either
a classification tree or a regression tree, and a common
term including both is classification and regression tree
(CART). A decision tree is a hierarchical structure,
which decides the class (in classification) or the pre-
dicted output (regression) by hierarchically comparing
feature values with a selected threshold, thus producing
a hierarchy of if-then rules. Such combination of rules is
most conveniently expressed as a tree, where each input
feature comparison corresponds to a node in the tree.
Eventually, the leaves of the tree describe the actual out-
put value.

The decision trees can be learned from the data, and
the usual approach is to add nodes using a top-down
greedy algorithm. In essence, this means dividing the
search space into rectangular regions according to the
splitting points. The drawback of decision tree is that
they are very prone to overlearning. This is one reason
why regression trees have later been extended to ran-
dom forests [8], whose prediction is obtained by aver-
aging the outputs of a large number of regression trees.
Due to averaging, random forests are tolerant to over-
learning, a typical phenomenon in high-dimensional set-
tings with small sample size, and have thus gained
popularity in classification and regression tasks espe-
cially in the area of bioinformatics.

In our experiments, we use the RF-ACE implementa-
tion in [5]. This implementation is very fast and it takes
advantage of the Random Forest with Artificial Ensem-
bles (RF-ACE) algorithm, which enables both feature
ranking and model construction. In our approach, a set
of significant features was first selected from the experi-
mental data using the RF-ACE tool. Then, a model was
constructed using the given data.

Experimental data

In order to test our modeling methodology we examined a
dataset produced in a study related to culture media opti-
mization (unpublished data, Rahul Mangayil et al.). There,
an enriched mixed microbial consortium was used in the
bioconversion of crude glycerol to hydrogen, and the pro-
cess was optimized in serum bottles by optimization of
media components. The concentrations of five media
components (NH,CI, K,HPO,, KH,PO,4, MgCl,.6H,0,
and KCl) were varied with the help of statistical design of
experiments (Plackett-Burman, steepest ascent, Box-Behn-
ken), and the resulting hydrogen production was measured
(in mol-Hy/mol-glycerol). The data was modeled using
first and second order polynomials in multiple linear
regression. This data containing 35 samples is a typical
data set produced during bioprocess modeling and
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optimization. Multiple linear regression is a useful tool for
modeling the data from individual designs of the study but
other methods are needed in order to model the entire
data set at once.

Visualization and validation of models

In order to provide an overview to the models and the
experimental data, visual representations were produced
for the regularized regression model and the random
forest model. Since visualization of the high dimensional
variable space (five dimensions in our case study) is not
feasible, the variables are visualized pair-wise. The values
of remaining variables (three) are set in their average
values calculated from the data. In addition, each model
is assessed with leave-one-out (LOQO) cross validation
technique which estimates the accuracy of the predic-
tions in an independent dataset.

Results and discussion

In our case study, we used multiple linear regression, regu-
larized regression and random forests to predict the yield
of hydrogen production. The performance of each method
is evaluated by original dataset as well as transformed
dataset with pairwise interactions and quadratic forms.
Therefore, the original dataset contains 5 variables while
the transformed dataset contains 20 variables.

Yield prediction using multiple linear regression

Multiple linear regression is used with and without non-
linearly transformed predictor variables to model the
response variable. Without the transformed predictors, i.e.,
the simple model, the estimated correlation value (using
the LOO cross-validation) was 0.65. However, using the
transformed polynomial model the estimate for correlation
decreased to a very low value of 0.012 and resulted in an
insignificant model. This is mainly due to the aforemen-
tioned shortcomings of the multiple linear regression. It
basically over-fits the model to the training samples and
thus produces less accurate estimates for unseen data sam-
ples. Table S1 lists the model coefficients for the trans-
formed polynomial regression model [see Additional file
1]. It can be noted that zero entries have been inserted to
remove linearly dependent observations.

Yield prediction using regularized regression

First, we evaluated the simple model without the trans-
formed variables. In this case, the parameter A for the
regularized regression is chosen by both manual selec-
tion and proper cross validation. In other words, we
wanted to see if the results improve by manually select-
ing the lambda value optimally for each LOO cross vali-
dation fold. Although this is not possible in practical
applications, it may give insight on the efficiency of
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parameter selection using cross-validation with small
sample size, and on the general applicability of a linear
model for our problem.

As a result, the LOO correlation estimate becomes
0.85 with manual selection instead of 0.60 using proper
cross-validation. The large gap between optimal and
estimated correlation is at least in part due to the inac-
curacy of the cross-validation type error estimators with
small sample size; see, e.g., [9].

In the case of transformed polynomial regression
model, the estimated value for correlation was found to
be 0.69 which is higher than the case of the simple
model. This clearly indicates the non-linear behavior of
the original dataset. Table S1 shows the resulting coeffi-
cients in the constructed model where regularization
has forced 5 out of 21 coefficients to zero [see Additional
file 1]. Although, the same number of non-zero coeffi-
cients were obtained from the multiple linear regression
as well but the main difference is the regularized coeffi-
cients. That is, the non-zero coefficients from regularized
regression were also shrunk towards zero. This results in
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generalized models with higher overall prediction accu-
racy [3]. The yield predictions are visualized in Figure 1
as a response surface. In addition, the significant variables
for the model and their corresponding coefficients are
listed in Table 1.

Yield prediction using random forests

The RF-ACE tool [5] is used to build the random forests
model. In our experiment, the type of the forest, the
number of trees in the forest, and the fraction of ran-
domly drawn features per node split are set to “RF”, 20,
and 10, respectively. All other parameters were kept to
their default values. The results indicated that all vari-
ables were significant in the model. The yield predictions
of the constructed model are visualized in Figure 2. In
the accuracy examination, the RF-ACE model resulted in
correlation of 0.88 (using LOO cross-validation). The
capability of modeling non-linear relationships is the pri-
mary reason for high prediction accuracy in the con-
structed model. On the other hand, the model provided
correlation value of 0.91 if the variable transformations
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Figure 1 Yield predictions using the regularized regression model. The yields are presented by different colors according to the colorbar.
The plots in the diagonal (i.e, variables are plotted against themselves) are left empty.
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Table 1 Significant variables and their coefficients in the
regularized regression model

Significant variables Coefficient values

NH,CI 0.1254
K,HPO, -0.0383
KH,PO, -0.1061
MgCl,.6H,0 -0.1418
KCl -0.0562

were used as additional predictor variables. Eventually,
the increase is quite small, and may thus be a due to ran-
dom fluctuation.

Method comparison

Both regularized regression with transformed variables
and random forests produced results that are useful in
bioprocess data mining. In particular, both methods
determined all the variables significant and can be used
to determine an advantageous control direction for them.
The most notable difference in the results is the linearity
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that was in use in the regularized regression versus the
nonlinearity that is inherent in random forests (see
Figures 3 and 4). Simple linear models cannot fit to the
nonlinearity of the data and, thus, the maximum
response cannot be detected inside the examined space
although it would be located in there. However, regular-
ized linear regression with transformed variables was
found successful in modeling the nonlinearity of the data
to some extent. On the other hand, the random forest
model is able to capture the nonlinearity. Here, the maxi-
mum response was determined approximately at the
same point as in the media optimization study performed
using the methods of statistical design of experiments.
Figure 3 and 4 show the performance of the three meth-
ods in yield prediction. It is clear that regularized linear
regression failed to cope with data non-linearity unless
transformed variables were used in regression. On the
other hand, the use of transformed variables causes the
multiple linear regression to fail. Thus, multiple linear
regression is an efficient tool in the analysis of individual
datasets designed by statistical design of experiments (e.g.,
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Figure 2 Yield predictions using the random forest model. The yields are presented by different colors according to the colorbar. The plots
in the diagonal (i.e, variables are plotted against themselves) are left empty.
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Figure 3 Comparison of prediction performance of models obtained by three methods for original dataset. (A) Multiple Linear
Regression; (B) Lasso; (C) Random Forest. The straight line depicts perfect predictions should lie. The prediction accuracy for each model is
estimated using LOO cross-validation.
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Plackett-Burman and Box-Behnken) but not useful in data
mining of more complicated datasets like the one exam-
ined in here.

The LOO estimates for correlation ascertain that the
RF-ACE provides a more accurate solution than the reg-
ularized regression. This, however, should not totally
renounce the idea of using regularized regression as it
mainly proves its worth in more complicated and high-
dimensional data analysis. Moreover, linear regression
has a useful feature of producing easily interpretable
models and, on the other hand, the models are capable
in producing predictions beyond the already examined
parameter space.

Conclusions

In this study, we applied two novel data analysis methods
(regularized regression and random forests) in bioprocess
data mining and compared them to multiple linear
regression that is commonly applied in relation to statis-
tical design of experiments. Both of the studied methods
were able to produce models that fit to the examined
data. In particular, the non-linearity of the data was well
modeled by random forests. This property is very valu-
able in data mining of multiple integrated data sets. As
the results demonstrated, traditionally used multiple lin-
ear regression does not perform satisfactorily in non-
linear input-output relations. The traditional approach
using the first and the second order polynomial models
would face further problems if the data was multimodal.
In the future, it would be of interest to further study reg-
ularized regression and random forests in bioprocess
data mining. This could mean, for example, the inclusion
of categorical variables in the data and studies with dif-
ferent types of bioprocesses.

Additional material

Additional file 1: as PDF - Table S1: Significant coefficient values in
different methods using transformed data. This file contains a table
describing the coefficient values generated by Lasso and multiple linear
regression methods for the transformed dataset. Here, the coefficient 3,
represents the intercept, ; corresponds to variable NH,Cl, B8, to K;HPO,,
B; to KH,PO,, B, to MgCl,.6H,0 and Bs to KC, respectively.
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