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Abstract

Background: This paper presents a novel model for proliferating cell populations in labeling experiments. It is
especially tailored to the technique of Bromodeoxyuridine (BrdU), which is taken up by dividing cells and thus
accumulates with increasing division number during uplabeling. The study of the evolving label intensities of BrdU
labeled cell populations is aimed at quantifying proliferation properties such as division and death rates.

Results: In contrast to existing models, our model considers a labeling efficacy that follows a distribution, rather
than a uniform value. It thereby allows to account for noise as well as possibly space-dependent heterogeneity in
the effective label uptake of the individual cells in a population. Furthermore, it enables more informative
comparison with experimental data: The population-level label distribution is provided as a model output, thereby
increasing the information content compared to existing models that give the fraction of labeled cells or the mean
label intensity.

We employ our model to study some naturally arising examples of heterogeneity in label uptake, which are not
covered by existing models. With simulations of noisy and spacially heterogeneous label uptake, we demonstrate

that our model contributes a more realistic quantitative description of labeling experiments.

Conclusion: The presented model is to our knowledge the first one that predicts the full label distribution for
BrdU labeling experiments. Thus, it can exploit more information, namely the full intensity distribution, from
labeling measurements, and thereby opens up new quantitative insights into cell proliferation.

Introduction

The proliferation of cells is a central process in biology
and life, and as such a major topic in systems biology.
Labeling techniques using, e.g., Bromodeoxyuridine
(BrdU), deuterium, or Carboxyflourescein succinimidyl
ester (CFSE), are successfully applied to study cell prolif-
eration. Mathematical models have been developed espe-
cially for these labeling experiments and enable the
quantitative evaluation of cell proliferation data [1-5].
BrdU is a DNA label that is commonly applied in vivo
over a time span of days or weeks, during which it is
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taken up by proliferating cells. Thus it slowly accumu-
lates in the cell with increasing number of divisions dur-
ing this so-called “uplabeling”. Spatial heterogeneity with
respect to the label concentration throughout the organ-
ism, temporal variations due to label dosing over weeks,
as well as the stochasticity inherent to biochemical pro-
cesses, may cause varying label uptake in cells [1]. The
significance of heterogeneity in label uptake is supported
by experimental data [6], where cells of similar division
number indeed show varying label intensities. This shows
that there is no trivial relation that would allow to deduce
proliferation properties directly from label intensities.
Existing models for BrdU-labeling [1,4,7] assume a uni-
form value of label uptake. Thus they fail to reproduce a
realistic label distribution, since a uniform labeling value
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would result in sharp peaks each corresponding uniquely
to a certain number of undergone divisions. What is
more, they neither reflect noise in label uptake, nor spa-
tial heterogeneity such as label concentrations differing
between organs, nor temporal label variations.

This paper presents a novel, more general model for
label distributions in proliferating cell populations,
which overcomes these drawbacks and contains existing
models as a special case. The mathematical model pre-
sented here is the first to the authors’ knowledge to
account for heterogeneity in label uptake. The model is
formulated for general labeling efficacy distributions,
such that it can reflect noise, time intervals with differ-
ent labeling conditions, as well as heterogeneity arising,
e.g., from spatially different label concentrations.

The general model is developed in the Methods sec-
tion. We demonstrate how our model serves to simulate
relevant examples of noisy and spatially heterogeneous
labeling conditions in the Results section. A short sum-
mary and discussion is provided in the Conclusions.

Notation: In this paper, p (x|y) denotes the probability
density of property x, given y, with the integral over the
whole domain equal one. n(x|y) denotes the number
density of property x, given y. d(x) denotes the Dirac
delta distribution. |.A| denotes the cardinality of a set 4.
e/ denotes the unit row vector with k-th entry one.

Methods

In order to develop a model for the label distribution of
proliferating cell populations, we choose an intuitive
approach of modeling two separate processes: The
dynamics of proliferating cells are given by a population
model describing cells by their division number (hence,
called “division-structured”), whereas for the label con-
tent expected after a certain number of divisions we
introduce a novel label distribution model. Finally, both
are combined into a model for the cell population’s
label distribution.

Modeling the number of cells

To model the number of cells that have divided a cer-
tain number of times, we make use of an established
division-structured population model [3,5], and extend
it to a finite number of subsequent time intervals. This
is important since BrdU labeling experiments comprise
at least two, but possibly more, time intervals with dif-
ferent labeling conditions (e.g., uplabeling and delabeling
phase), as will be exemplified later. Let these time inter-
vals be given by (Ty.,, T¢], with Ty = 0 and positive
Ty, € R,,, and with increasing time points Tj_; <7}, for
all k=1,:::, K The vector i = [i, ..., ix] denotes a
sequence of division numbers during these time inter-
vals. Then, the model’s state variable N(i|t) represents
the number of cells which have divided i, times during
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the time intervals (T 1, Ti], respectively, at a certain
time £. The dynamics of N(i|?) are given by a system of
ordinary differential equations (ODEs), Vi € NK:

vt € (Tr-1, Ti] :
dN(i
d(!tllt) = —(ai(t) + Bi())N(ilr) ©
0 ,ix=0
’ {2ai—e{(t)N(i - e{lt) , =1

where ¢;(f) denotes the cell division rate, B;(¢) the cell
death rate, at time ¢ of cells which have divided i times,
and with initial conditions

Nipi , i=0T

0 ,i%OT (2)

N (i0) = {
which means that at the beginning of the experiment,
no cells have divided yet in the presence of label. For
several cases there exist analytical solutions for this
ODE system, which have been reported elsewhere [3,5].
Moreover, several extensions for this model are avail-
able, for example if cell types [8] or age structure [9] are
of importance, which allows to generalize the model
class to cover a wide range of biological systems. Instead
of the infinite dimensional ODE system (1), it is often
desirable to use a finite dimensional ODE system similar
to (1) but with i L{0, . . ., S}X. This allows for example
an efficient numerical solution of the ODE system. The
accompanying truncation error can be made arbitrarily
small by choosing a sufficiently high S [5]. With this
broadly general model class at hand, one can pick an
appropriate model when analyzing a specific biological
cell population system.

Modeling the label content

Next, we develop a model for the label content of cells
in dependence of undergone divisions. Then, in combi-
nation with the model of cell numbers we derive a
model for the emerging label distribution in the overall
cell population.

For BrdU labeling, at least two time intervals need to
be distinguished: During uplabeling, the label is intro-
duced into the organism and therefore incorporated at
each cell division into the newly synthesized DNA
strands. In contrast, when the label is withdrawn from
the organism the label content of a cell is diminished
upon each division.

Labeling efficacy

Let the random variable Ui(k) denote the amount of
incorporated label for newly built DNA strands, i
received at a particular i-th cell division event that takes
place in the time interval (T%_1, T]. This random vari-
able is drawn from a labeling efficacy distribution:
Ul(k) ~ pg;f)(x) € R,, which is a probability density,
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defined over possible values of label content x € R. This
probability density will determine the label content of
newly built DNA, as we will see in the following.
Label content of an individual cell
The label uptake during subsequent divisions then
resembles a repeated sampling from this distribution for
the newly built DNA strands. These newly labeled
strands make up half of the total DNA of each daughter
cell, such that the cell receives JU®) ~ 2pg;f) (2x) label
content. The old labeled strands can be viewed as about
equally distributed to both daughter cells: Since cells
contain typically 46 (humans) or 42 (rhesus macaques)
chromosomes, it is unlikely that two daughter cells
receive strongly deviating amounts of labeled strands
from the same mother cell. If we denote the current
label content of a dividing cell by X(i), its two daughter
cells receive via the old strands the label content ;X(l)
Taken together, for one time interval, the label content
of a new cell is assembled from label contents of old
and new strands as X(i+ 1) = ;UM + ;X(i), where X(i)
denotes the label content of a cell after i divisions. With
this recursive definition and X(0) = 0, we arrive at
X(>i) = ZLI 277U for the label content after i divisions.
Note: The special case of pg;f) (x) = 8(x — p) represents a
uniform labeling value as used in previous models [4].
Label dilution during delabeling (i.e., when there is no
label in the environment) can be modeled as the special
case of zero labeling efficacy, p i (%) = d(x). Then, the
label content of cells during delabeling gets halved upon
each division. In summary, considering K time intervals,
the label content after i divisions during the time inter-
vals (Ty.1, Tx] with k = 1, ..., K is given by the random
. . K e (K i k
variable  X(i) = Zk=1 (ZH 2~ Er )Ul( )>. For
example, for two time intervals, the label content after
i, divisions during uplabeling and i, divisions during
delabeling is given by X(ij, iy) = 27" Z}ll 27k U].(l). In
general, the random variable of label content follows a
distribution X(i) ~ p (x|i). This distribution can be
obtained from the labeling efficacy distributions, pg;f) (x)

recursively as follows, for all i € N x NK~
X(i) ~ p(xli)

RN . 3
= 2/ 2p%) (2x — 250 p (2x1i — € ) dx,

and with p (x|0") = 6(x). That is, p(x|i) € R, is a prob-
ability density defined over values x € R.

Overall label distribution of the population
The output of labeling experiments consists of a sample
of measured label intensities {{")}, v = 1, . . ., M, with
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M the number of measured cells. This corresponds to a
sample from the overall label distribution. Typically this
distribution sample is collapsed into the fraction of
labeled cells, |{I"]I") > I,}|/M , by setting a threshold [,
above the background signal. Some additional informa-
tion can be exploited by computing the mean fluores-
cence intensity, va_l 1M/M [1, 4],

The fraction of labeled cells or the mean fluorescence
intensity is the maximum information that is used by exist-
ing models to infer proliferation parameters from BrdU
data [1,4,7]. This means that the detailed information, how
many cells contain how much label, is available in the data
but not exploited in these models. What is more, this
thresholding approach has the severe drawback that the
fraction of labeled cells is highly sensitive to the value of
the threshold, which can usually not be determined exactly,
impeding a reliable estimation of proliferation parameters.

A considerable advantage of our model is that the com-
plete label distribution is indeed available as a model out-
put. This provides a more detailed and less sensitive
option for fitting a model to the data and inferring prolif-
eration parameters. We will shortly outline how the overall
label distribution m(x|t) is obtained in our model.

The probability of observing at time ¢ a cell with label
intensity ¥ and division number sequence i is expressed
by the number density n(x, i|t), which is defined
over(x, i) € R x NX. These number densities in turn can
be assembled as

n(x, ilt) = N(ilt) - p(xli) (4)

where N(i|z) are the solutions of the ODE system (1),
and p (x|i) are the probability densities (3). The
dynamics of n(x, i|t) can be written as a system of par-
tial differential equations (PDEs):

on(x, it .
(Bt ) = —(ai(t) + Bi(t))n(x, ilt)
O ’ ik = O (5)

k
+ oo (1) 5 2050 (26 — 2%).
n(2x, i—ellt)dy , i, > 1

which solution n(x, i|f) can be shown to be equivalent
to (4).

Finally, these individual number densities can be
summed up over all division numbers to arrive at the
overall label distribution:

K oo
m(x|t) = Z n(x, it) = ZZn(x, ilt)

ieNK k=1 i;=0

© ©6)
=Y ) ON(ln)p(i).

k=1 i,=0
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Using the truncated model, this becomes a finite sum

K S
m(xl) = Y Y N(ilt)p(xli) (7)

k=1 1,=0

which can be made arbitrarily close to the infinite sum
m(x|t) by sufficiently high S, which are usually in the
moderate order of S = 20.

Achieving the label distribution via the decomposed
approach (4) has the clear advantage that, instead of sol-
ving a PDE system, one only has to solve a system of
ODEs, and convolutions of probability densities. Circum-
venting the need to solve a system of PDEs offers a more
efficient solution and simulation.

Results

We now demonstrate the value of the presented model by
studying two relevant scenarios of labeling, which are not
covered by any existing models that we are aware of. The
assumed cell population properties are the same for both
scenarios, which only differ in the labeling conditions. We
simulate a hypothetical cell population of 1000 cells with
division and death rates o;(¢) = o = Bi(¢t) = B = 0.1[1/d].
An uplabeling phase of 10 days is assumed, with labeling
efficacy specifications as pointed out in the respective sce-
nario. The labeling conditions are now specified in the
respective scenario, and the arising label distribution is
investigated.

Noise in label uptake

An important property of biochemical processes is their
inherent noise and resulting uncertainties. This can also
be expected to be present in label uptake, for example
because the local concentrations of label molecules are
exposed to stochastic fluctuations. These deviations
from the expected label uptake can be reflected by a
normally distributed labeling efficacy N '(u|1, o2). The
mean ¢ = 1 denotes the expected label uptake, and the
standard deviation ¢ determines the magnitude of noise
in the label uptake. To illustrate a simple scenario with
noisy label uptake, we assume two time intervals: Firstly
the uplabeling phase with a normal distributed labeling
efficacy, pgf) (1) = N'(u|1, o?), and secondly the delabel-
ing phase with zero labeling efficacy ng) (u) = §(x)- Due
to the properties of convolutions of normal- and Dirac
delta distributions, the arising probability densities can
be analytically expressed as

o 1—20 Y 27%
p(axli, 12)=N<x| o M ’21.2 o’ . (8)

The obtained label distribution is shown in Figure 1
for 0 = 0.2. The left panel in Figure 1 depicts the
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simulated overall label distribution in the cell population
during uplabeling. Although the population and thus its
label distribution is composed of cells with (more than
two) different division numbers, the distribution exhibits
only one peak (day 2, 4) or two peaks with a strong
overlap (day 6, 8, 10). This highlights that under such
labeling conditions, it is hardly possible to determine
the number of cells that have divided once apart from
cells that have divided more than once. The right panel
in Figure 2 shows the overall label distribution during
delabeling. In this phase, separated peaks occur, but
only at very low label intensities. These may, in real
experiments, well lay below the detection threshold and
thus not appear in the data [4].

Overall, these simulations reveal that noise in label
uptake is a potential reason for the fact that BrdU inten-
sity profiles in experimental data do not show separable
peaks, and thus can hardly be interpreted in a straight-
forward way. It illustrates that, in order to make the
estimation of proliferation parameters robust against
noise, it will be important to explicitly model the full
intensity distribution.

Spatially heterogeneous labeling efficacy

Besides noise in label uptake, our model can also handle
more general distributions as they may arise, for exam-
ple, from spatial heterogeneities. A possible scenario is
that in certain organs or tissue the label concentration
deviates. Then, cell division events result different label
uptakes depending on the location where they take
place.

We consider a simple scenario in which the organism
is partitioned into two compartments with different
labeling efficacy. Two thirds of all cell divisions are
assumed to happen in locations with full labeling effi-
cacy, whereas one third of cell divisions happens in loca-
tions with only half of the labeling efficacy:

Pefr(x) = ;N(x|0.5, %)+ i./\/'(xll, o?). 9)

The simulation results are depicted in Figure 2. The left
panel shows the overall label distribution m(x|£) in the cell
population during the uplabeling phase. The distribution
exhibits multiple peaks, which importantly do not corre-
spond to different division numbers but instead result
from cell division events in different compartments.

The right panel of Figure 2 depicts the individual
probability densities p (x|i;) for different division num-
bers i;. According to the probability density, a cell that
has divided can exhibit highly different values of label
content, depending on whether and which of its divi-
sions happened in the compartment with high or low
labeling efficacy. In contrast, the probability density for
a cell of division number 3 and that of division number
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Figure 1 Noisy label uptake. Simulations of a proliferating cell population, assuming noise in labeling efficacy. Predicted overall label
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7 are almost identical. This means that cells of highly
different division number can have similar label inten-
sity, whereas two cells of the same division number can
possess highly differing label intensities. In summary,
this demonstrates that if labeling efficacy is spatially het-
erogeneous, from the label content of a cell one can not
conclude about the number of undergone divisions.
Again, this points to a possible reason why BrdU inten-
sity data may impede the direct extraction of division
numbers, and suggests that this may be partly overcome
by considering whole BrdU distributions in modeling.
Although this example considers a simple compart-
mental setup, more complex heterogeneities can be easily
realized by using a corresponding distribution for the

labeling efficacy. Our model can thereby achieve the
probability densities, given arbitrary distributions, by sol-
ving SX convolution integrals (3).

Conclusions

By modeling the label uptake as a random variable
sampled from a distribution, rather than by a uniform
value, our model can cover noise, heterogeneities, and
temporal variations simultaneously. This creates several
degrees of flexibility in our model, which enables a more
realistic mathematical description of the biological labeling
process. Importantly, it explicitly provides the population’s
label distribution as model output, which can be compared
to experimental data in more detail. This renders our

5000,
——day 2
fl day 4
4000+ day 6
——day 8
o —day 10
<3000+ R
& 2000+
‘]-‘!
1000+
0 L
0 05

1
label content z

\

Figure 2 Spatially heterogeneous labeling efficacy. Simulations of a proliferating cell population, assuming two compartments with different
labeling efficacy. Predicted overall label distribution m(x|t) during uplabeling (left), and probability densities p (x|i;) for particular division numbers
iy =1...7 (right). For illustrative reasons, a low standard deviation within each compartment ¢ = 0.05 is assumed.
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model less sensitive against uncertainties, and enables to
exploit the full information from data. Yet, the model is
computationally efficient, as the system of ODEs is easy to
solve, and the probability densities can be obtained from
convolutions which may be solved numerically or even
analytically.

As we demonstrated in the Results section, simulations
of labeled cell populations assuming noise or heterogeneity
in label uptake predict label distributions that qualitatively
resemble experimental data. This suggests that these fac-
tors potentially may play a crucial role for the readout of
DNA labeling assays, and should be incorporated in mod-
els. Our model is thereby able to take noise, heterogeneity,
and temporal variations in labeling into account.

While this paper focused on the detailed presentation of
the new model, the authors plan to use the presented
model in future work to estimate cell proliferation para-
meters from real data which was out of the scope of this
contribution. This will eventually reveal whether noise in
label uptake needs to be considered for the correct inter-
pretation of BrdU labeling data. If so, the presented model
promises a more reliable estimation of proliferation para-
meters and offers new quantitative insights about cell
proliferation.
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