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Abstract

We explore whether the process of multimerization can be used as a means to regulate noise in the abundance of
functional protein complexes. Additionally, we analyze how this process affects the mean level of these functional
units, response time of a gene, and temporal correlation between the numbers of expressed proteins and of the
functional multimers. We show that, although multimerization increases noise by reducing the mean number of
functional complexes it can reduce noise in comparison with a monomer, when abundance of the functional
proteins are comparable. Alternatively, reduction in noise occurs if both monomeric and multimeric forms of the
protein are functional. Moreover, we find that multimerization either increases the response time to external signals
or decreases the correlation between number of functional complexes and protein production kinetics. Finally, we
show that the results are in agreement with recent genome-wide assessments of cell-to-cell variability in protein
numbers and of multimerization in essential and non-essential genes in Escherichia coli, and that the effects of
multimerization are tangible at the level of genetic circuits.

Introduction
Proteins regulate various cellular processes. There are sev-
eral mechanisms responsible for regulating their numbers
in cells, which act at various stages of protein production
[1-4], activation [5], and degradation. A recent study has
provided genome-wide information on protein numbers in
Escherichia coli along with their cell-to-cell variability [6].
In total, 121 were classified as essential, while 894 were
classified as non-essential. Addressing multimerization, it
was found that 719 proteins are functional in a mono-
meric form, while 198 function in a dimeric form, 16 in
trimeric, 47 in tetrameric, and the remaining in higher-
order forms. Multimerization is likely to arise from the
need for functionality, and such a need varies significantly
between proteins. Some proteins are functional both in
monomeric as well as in various multimer forms [7,8],
while others are only functional in a specific form [9].

The process of multimerization, aside from being
related to the functionality of the proteins, may also
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affect the dynamics of the processes that the proteins
regulate. This is expected given that multimerization
necessarily affects the mean numbers of functional pro-
teins, the response times of the cell (e.g. to external sig-
nals), and the degree of correlation between RNA
numbers and the corresponding functional protein com-
plex numbers, i.e. the degree of control that transcription
factors have on the protein complex numbers over time.
These effects can be expected to propagate to the net-
work level. For example, in genetic switches, where sto-
chastic fluctuations in protein numbers determine,
among other factors, the switching frequency [10,11],
cooperative binding of the proteins enhances the range of
conditions for which bistability is observed [12].

The dynamics of protein abundance depend on the tran-
scriptional and translational dynamics as well as on the
kinetics of degradation of RNA and proteins. Therefore, to
assess the effects of multimerization on the dynamics of
gene expression and of genetic circuits one needs to
model the kinetics of these processes in detail. The RNA
production rate of a gene is mainly controlled during the
process of transcription initiation, at the promoter region
(see [1] for a review). Recent in vivo measurements of the
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intervals between the production of individual transcripts
[13,14] suggest that, under normal growth conditions,
there are two to three significant rate-limiting steps at the
initiation stage that, aside from determining the mean rate
of production, also determine the degree of noise in
the process of RNA production. In prokaryotes, these
observations relate directly to protein copy numbers,
which tend to follow closely those of RNA [15]. To
account for the stochasticity and the rate limiting steps of
the underlying steps in the process of gene expression, we
use the delayed stochastic modeling strategy [16] to drive
the dynamics of the models, as it allows the use of non-
Markovian dynamics to model the non-instantaneous pro-
cesses underlying transcription and translation [17]. The
parameters used in the models are extracted from live,
single-cell, single-molecule measurements [6,13,14].

Using the modeling and simulation techniques men-
tioned above, along with realistic parameter values, we
investigate the consequences of multimerization on mean
numbers and fluctuations and on the response time of
functional protein complex numbers to external signals.
Further, we investigate whether these effects have tangi-
ble consequences on the kinetics of a small genetic cir-
cuit. Finally, we interpret our results in the light of recent
in vivo measurements of mean and variability of protein
numbers in E. coli.

Methods

We use a stochastic model of gene expression [16] that
describes transcription, translation, degradation of
mRNA and proteins, and multimerization (binding and
unbinding of proteins). The model is implemented using
a delayed variant [17] of the Stochastic Simulation Algo-
rithm (SSA) [18], which is similar to the original SSA,
but allows arbitrary delays before the release of each of
the products of a reaction. A reaction product X with a
delay 7 is represented by X(z).

Model of gene expression and RNA and protein
degradation
Transcription is modeled by:

S i(; S(‘L’s) + M(‘L’s) s ™~ Gam ((XM, OleM) (1)

where S stands for an available transcription start site
(TSS) of a gene and M stands for the mRNA coded by
that gene. In this reaction, g accounts for the duration
of the process of transcription, including the finding of
a promoter region by an RNA polymerase, the forma-
tion of the closed complex at the transcription start site,
the open complex formation, and finally, the promoter
escape [19] and elongation. Of these, in general, the
most rate-limiting steps are the processes of isomeriza-
tion and open complex formation [1,2].
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To model this multi-step process, we set the reaction
rate to infinity, which causes the reaction to occur the
moment the reactants become available. Given this, the
parameter 7s fully determines the interval between con-
secutive productions of transcripts. In our implementa-
tion, each time this reaction occurs, a value of 7y is
drawn from a gamma distribution with mean of k"
and coefficient of variation (variance over the mean) of
a;Il/ 2, With proper parameter values, the gamma distri-
bution well approximates recent live cell measurements
of intervals between productions of consecutive RNAs
in E. coli [13,20]. We fitted the measurements of time
intervals in [20] with the three-exponential model pro-
posed in that work, and with a gamma distribution. The
latter results in (0ag (Qar kap)™') of (2.27183, 1070.57)
and (2.51171, 565.956) for the low and medium induc-
tion levels, respectively. The gamma fits have slightly
higher likelihood than the three-exponential ones, so the
fit is better.

According to this model, the transcript is released at
the same time as the promoter region becomes unoccu-
pied. This approximation assumes that the elongation
time is negligible, which relies on observation that the
durations of the closed and the open complex forma-
tions (in the order of 10® s) [1,2,13,20] are much longer
than elongation (in the order of 10! or 10% ) [21,22].
Moreover, in prokaryotes, translation is coupled to tran-
scription [23], and can initiate as soon as the ribosome
binding site region (RBS) of the RNA is formed (Shine-
Dalgarno sequence) [24]. Consequently, the RNA is
available for translation very soon after the RNA poly-
merase escapes the promoter region.

The RNA, once assembled, is subject to degradation,
which we chose to model as a first-order reaction (due
to a lack of evidence of degradation mechanisms that
depend on, for example, RNA abundance or sequence
(25]):

MY g @)

where d,; ! is the mean mRNA lifetime.

In this model, the degree of noise on the RNA pro-
duction kinetics can be tuned by varying o,. Setting
o = 1 yields Poisson distributed mRNA numbers M ~
Poi(ky; dat), while oty > 1 and oy < 1 result in sub-
and super-Poissonian distributions of RNA numbers,
respectively (both of which have been reported in E. coli
[6,20]). We note that, for integer values of ¢, the para-
meter has a physical interpretation: namely, it represents
a sequential process with o,; elementary steps, each of
duration (@a; ka)}, which is in accordance with a
sequential process of transcription initiation [1]. How-
ever, the best fit is typically obtained for non-integer
values of oy, which do not have a simple physical
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interpretation. One possible explanation is that the steps
have unequal durations or that a step has non-exponen-
tial duration (e.g. the open complex formation that
involves structural changes of the DNA). Similarly,
super-Poissonian RNA dynamics [6] (aar < 1) require
the existence of some additional mechanisms, such as a
two-state model of transcription [26].

Translation is modeled by Reaction 3, where kp is the
stochastic rate of translation initiation and M is the
number of available RNA molecules [27].

0" () 3)

where P is protein and 7p is the time it takes for the
protein to be folded and activated, after translation is
complete.

In the simulations, 7p was set to zero for simplicity, in
models of single gene expression, this parameter only
shifts the protein numbers in time. If this delay is taken to
be a random variable, it also results in increased fluctua-
tions of the protein numbers. For the long-term behavior
the time-shift is irrelevant, and the estimations of the con-
tribution to noise are considerable smaller than those
from other sources [28]. We tested adding such noise (by
setting 7p to follow a normally distributed delay) and
found no qualitative differences in our conclusions.

Finally, the degradation of proteins is modeled via
Reaction 4, a first order process [6]. (The rate of protein
degradation has been observed to be constant, and iden-
tical in different growth conditions [29].)

P g (4)

where dp! is the mean protein lifetime.

Modeling the multimerization process
In the case of homomers we consider multiple levels of
multimerization (e.g. monomers, dimers, trimers), while
for heteromers we only consider second-order multi-
mers, i.e. heterodimers. Note that, in the case of hetero-
mers, the production of each of the two monomers is
driven by a different promoter, while in the case of
homomers, we assume that there is only one promoter
driving the expression.

Heterodimerization and the reverse of this process
(which can occur by dissociation or degradation) is
modeled by the following reactions:

P1+lei>2P1,2 (5)

Py gzp1 +P, (6)
d

P, > P, 7)
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dp
P1,2—1§P1 (8)

where P; and P, represent the monomers that form
the heterodimer P; ,, when bound to one another. Reac-
tions 5 and 6 model the association and disassociation
of monomers, respectively, with a; , being the rate of
association and u; , the rate of disassociation. Reactions
7 and 8 model the degradation of monomers P; and Ps,
respectively, while in the dimeric form. We denote the
number of proteins i in either monomeric (P;) or
dimeric form (P;;) by X; = P; + P;;.

The process of production of homomers of order N is
modeled as follows:

2<n<N, k<n/2: Pixk"‘Pix(n—k)w)Pixn ©)

2<n<N k<n2: P = P+ Prw oy (10)
. ndp; (11)
2<n <N: Pixn—Pixm-1

Pi. i
where P;,; denotes <22, the kth order homomer of

proteins P;. Reactions 9krepresent the association of an
order-k homomer and an order-(n - k) homomer to
form an order-n homomer, while Reactions 10 represent
the reverse process. Reactions 11 represents the degra-
dation of any of the n proteins that are part of an
order-n homomer, resulting in an order-(# - 1) homo-
mer. The rates @ x(n-rand Uixxixmn-x)y are the associa-
tion and disassociation rates for the combinations of
different order homomers, and dp, is the protein degra-
dation rate. We define X;= 22’: 1 kPixj» as the total num-
ber of proteins in the system, regardless of their form.
This definition is analogous to that of X; and X in the
heterodimer model.

Toggle switch

We model a genetic toggle switch [30], which consists
of two genes, expressing proteins P; and P,, respectively.
The protein expressed by the first gene inhibits the
expression of the second gene, whose protein product in
turn inhibits the expression of the first gene. Interac-
tions between repressor proteins and promoters are
implemented by assigning the rate k,; in Reaction 1 to
be a function of the number of repressor molecules pre-
sent in the system, as follows:

kst = (1 + Kij ™' Pisn) ™ lengy (12)

where P;,,, is the order-» multimer of gene i, K;; is the
disassociation constant for the multimer binding to the
promoter of gene j, and ky;,” and ky;, are the maximal
and effective transcription rates of the jth gene, respec-
tively. (Here (i, j) = (1, 2) or (i, j) = (2, 1).)
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Results

All models and simulations were performed using the
simulator SGNS2 [31]. The following description of
parameter selection applies to all simulations, unless
otherwise mentioned. The protein degradation rate dp is
set to unity. This reduces the dimension of the para-
meter space: rate constants and time delays are
expressed in units of protein lifetime. The parameters
dun kar and kp are varied logarithmically within the
range [10_1, 101], o, is varied in the set {1, 2, 3, 5, 10}.
Each of the parameters is varied independently. Varia-
tion in the parameter values within these ranges leads to
significant variation in protein abundance (e.g. a range
of 10° in the mean protein level).

To quantify changes in mean and noise levels when
comparing models, we define “gain” as the ratio of the
value of the tested model to that of the null model. Gains
above unity imply that the tested model exhibits values
larger than the null model, while gains less than unity
imply the opposite.

For simplicity, the multimerization association rates a;,,,
ix(n-k) are assumed to be infinite, while the disassociation
rates Uy, ix(n-k) are set to zero, this does not affect our
results qualitatively, and facilitates comparison between
models. This issue is further discussed in the results sec-
tion. Finally, we run each simulation for 10° time units so
that the system spends most of the time near equilibrium.
We sample the state of the system (all molecules numbers)
with intervals of one time unit.

Note that we include the transient in the samples as we
sample from time zero. This is due to the fact that the sys-
tem does not reach an equilibrium in a finite time interval.
From observations of the time series we found that, for a
duration of 10° time units, the systems is, for more than
99.9% of time, close to equilibrium. That is, given 10°
simulations, if one extracts samples of multimer numbers
from this region, one cannot distinguish them, in a statisti-
cal sense, from the samples of the distribution of multimer
numbers at the last time moment.

Homodimers
We compared the mean levels of a monomeric protein
(X1) and of a homogeneous dimer (P} ;). The two models
are taken to be identical except for the dimerization. Since
the expression rates are identical, the mean level of the
dimer must be less than or equal to half the mean level of
monomer. We consider two cases for the dimer model:
one in which only the dimer is functional, and one in
which both the monomer and dimer are functional. In the
latter case, we asses the joint dynamics of both the mono-
meric (P;) and dimeric (P;,;) forms. In this case, the
amount of functional proteins is given by Y1=P; + P1,1.
We simulated the models with several parameters
values of dy, @ap, kap and kp as described above. Taking
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¢ as the mean level of the molecules of interest and
Mx,as the mean level in the monomeric model, the ratio
uu;}l is plotted as a function of Kxjin Figure 1. (The
mean Mxis determined by d,;, kap, and kp).

From Figure 1, we observe that for high values of ix,
the mean level of the homodimers P j, is half that of X,
while for low values of ix, it approaches zero, because it
is more probable that there is a single protein in the sys-
tem, precluding the formation of a dimer. The total num-
ber of monomers and dimers (Y;) varies in an inverse
fashion to that of dimers alone, since Y; = X; - Py (cf.
inset in Figure 1).

The points in Figure 1, while each being resultant from a
unique set of parameter values, are grouped into bands.
This is due to the fact that various combinations of para-
meter values result in identical mean levels but differing
noise levels. The changes due to varying individual para-
meter values can be explained as follows. The expected
mean protein level is determined by k&, dy Y kp dp
while the noise is increased with the inverse of the mean
and the inverse of o, in an intricate manner (see [32] for
an approximation). It follows that increasing (decreasing)
ky; or kp or decreasing (increasing) dp will result in an
increase (decrease) in the protein mean level (x-axis) and a
consequent increase (decrease) in the mean gain (y-axis),
and increasing (decreasing) o, will have no effect on the
protein mean (x-axis) and will decrease (increase) the
mean gain (y-axis).

Next, using the same models, we compared the noise
levels, quantified by the square of the coefficient of varia-
tion, denoted by 7. The results are shown in Figure 2.
When comparing with Figure 1, it is important to note
that, in general, models with low and high noise levels cor-
respond to the models with high and low mean levels,
respectively. This relationship holds for low mean levels,
for which the low-copy number noise dominates, whereas
for high mean levels other parameters dominate the noise.
The points corresponding to simulations with identical
mean levels of X; are again contiguous, but they do not
form vertical lines.

Given the properties of the model, the noise in the
homodimer numbers (P; ;) is always greater than that of
the non-dimerizing proteins (X;). For parametrizations
which yield a dimer level equal half of the number of pro-
tein units in the system (i.e. right hand side of Figure 1)
the noise gain is equal to unity, implying no increase in
noise due to the dimerization process. However, further
decreases in the mean levels lead to significant increase in
the noise (gains of the order of 10%, as seen in the upper
panel of Figure 2).

The lower panel of Figure 2 indicates that the noise in
the total number of molecules (Y;) is always smaller
than that of the monomers. In the two extremes, the
total number consists entirely of monomeric or dimeric
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Figure 1 Change in mean levels due to homodimerizationRelative mean levels of homodimers P ; and the total number of molecules
Y1=P; + Py, as a function of the mean monomer level LX,. The dashed line indicates a gain of one half. The inset shows linear gain.

forms of the protein, so the noise level of the functional
proteins must match that of a single form. However,
when the numbers of the monomeric and dimeric form
are balanced, the noise level of the functional molecules
(Y1) is slightly suppressed by the dimerization when
compared to Xj.

It is possible to see that the choice of multimerization
association rates d;,, ix(.—nand disassociation rates u;,,,
ix(n-k) does not affect the above results qualitatively. Any
other settings will inevitably lower the number of
dimers. Thus, the conclusion that dimer numbers must
be lower than half the number of monomers holds.
Also, the number of monomers and dimers (Y;) will
increase, since they will still follow the relationship Y; =
X; — Pi1,;. Additionally, the noise in dimer numbers will
increase due to the low-copy number effect, and conse-
quently, the conclusion that the noise must be above
unity holds. Finally, the noise in the numbers of mono-
mers and dimers will become more similar to that of

the monomers alone (resulting in a noise gain closer to

unity).

Heterodimers

Next, we consider a scenario in which a dimer is formed
by the protein products P; and P, of two distinct genes.
For simplicity, the kinetics of protein production are
assumed to be identical for P, and P,. We compared
the behaviour of this heterodimer with a corresponding
homodimer model. (Alternatively, one could consider a
model in which a single promoter controls the expres-
sion of P; and P,. We opted not to investigate this case,
because the kinetics would lie somewhere between the
homodimer case and the heterodimer case described
above). For the purposes of comparison, the mRNA pro-
duction rate k,; is doubled in the homodimer, to com-
pensate for the existence of two genes (each expressing
at rate of kp;) producing the components of the
heterodimer.
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Figure 2 Change in noise levels due to homodimerization. Relative noise levels of homodimers P; ; (upper panel) and the total number of
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The ratio of the mean levels of the heterodimer and
homodimer is plotted in Figure 3 as a function of the
mean level of one of the proteins (X;, or equivalently
X5). As in the homodimer case, when the mean levels is
high, nearly all proteins are present in dimeric form,
and so both models have the same mean abundance of
functional protein, whereas for low means, there is a
population of unpaired proteins which results in a
reduction of the mean level of the dimer when com-
pared to the non-dimerizing gene. Moreover, the hetero-
dimer case exhibits greater reductions in the mean than
the homodimer case, since to form a dimer, the “miss-
ing” protein has to be of a certain type.

We also studied the ratio of the noise levels of the above
models, as presented in Figure 4. The noise levels exhibit a
behavior similar to the homodimer case presented pre-
viously (cf. Figure 2), but since in the present case the
mean level is not halved (due to the increased transcription
rate k) the noise gain can be decreased below unity. Spe-
cifically, for high mean levels in the homodimer, the noise
is suppressed to one half, essentially due to the doubled
transcription rate, in this case the dimerization process
does not introduce much noise (noise gain equals unity,
Figure 2). On the other hand, for low mean levels, the
results follow those presented earlier. That is, the greater
decrease of mean numbers results in higher gain in noise
levels. Moreover, we find that the noise suppression ability

of the heterodimeric form is less than that of the homodi-
mer, due to the weaker temporal correlation between the
numbers of the two distinct dimer-forming proteins.

Higher-order multimers

Finally, we studied if and how the results generalize for
higher-order multimers. Since the effects were more
prominent in homodimers, we studied only multimers
of homogeneous proteins of increasing order. We pre-
sent results for homomers of orders N € {2, 3, 4, 5}
(dimer, trimer, tetramer, and pentamer, respectively).
We also tested for decamers (N = 10) (data not shown)
as an extreme case, and found the qualitative results to
agree with those presented here.

Analogous to the homodimeric case (Figure 1), the
mean levels of order-N homomers are subject to gains
of at most N !. In addition, as N increases, there is an
ever increasing probability of lacking the necessary com-
ponents to form the multimers, so the values of gain are
generally lower than N™'. We note that even models
with mean levels of proteins in the order 10° are subject
to significant losses in the multimerization procedure as
the order is increased (e.g. N = 5). Likewise, the noise
gain follows the trend shown earlier in Figure 2, with
higher-order homomers being more noisy.

In Figure 5, we show the noise in homomerization in
the case where all protein forms (P, ..., P.n) are
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functional. Here, the results agree with the dimer case
(see the lower panel of Figure 2). Higher-order multi-
merization can exhibit greater noise suppression capabil-
ities, but only for a more limited range of parameter
values that lead to properly balanced numbers of the
multimers in the various forms.

We also compared noise levels of strictly monomeric
proteins to those of multimers. For this comparison, the
transcription rate of the proteins composing the multimers
are chosen so that the mean numbers of the multimer
form are similar to those of the strict monomer. The
results (Figure 6) are similar to the homodimer case (Fig-
ure 4). Potentially, this scheme allows the noise level to be
suppressed to N 'th of the original value, but this is only
achievable for highly expressed genes. In general, higher-
order multimerization can only lead to noise suppression
within a limited range of parameter values. More specifi-
cally, in the case of high order multimers, the fluctuations
in protein numbers alone determines if the noise in multi-
mer numbers is amplified or suppressed.

Temporal regulation of the number of multimers

In organisms such as bacteria, regulation of gene expres-
sion is performed mostly at the stage of transcription
initiation, at the promoter region. Consequently, tem-
poral variability in monomer levels is strongly controlled
by factors regulating transcription initiation. However,

the production of multimeric proteins involves an addi-
tional stochastic process - multimer formation itself. As
a result, one expects that a mechanism operating at the
stage of transcription initiation may exhibit reduced
control over the temporal numbers of multimer, as
compared with proteins that function as monomers.
This may pose limits on the selection of higher-order
multimers.

We studied how the process of multimerization affects
the ability to regulate multimer numbers via the regula-
tion of the kinetics of production of the monomers alone.
We hypothesize that the optimal design would have the
multimer numbers following the monomer numbers as
closely as possible. That is, the cross-correlation between
the numbers of monomers and multimers should be
unity at zero-lag, the lag referring to the time-shift in the
series of the two numbers for which the correlation is
evaluated. This cross-correlation should also decay as
quickly as possible with lag, because otherwise the corre-
lation with past events would make it difficult for the sys-
tem to respond to current changes.

We found that, in general, the cross-correlation func-
tions estimated from our simulations exhibited maximal
correlation at zero-lag. We thus use the cross-correlation
at zero-lag to quantify the loss in control due to the mul-
timerization process. To study the decay of the cross-
correlation in each model, we estimate the point in lag
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to compensate for the reduction in the mean level) with multimerization of different orders as a function of the noise level of monomers 71X;.
The dashed lines indicate gains of unity, one half, one third, one quarter, and one fifth.

where the cross-correlation attains a value that is half of
the maximum, denoted by half-life of the protein-homo-
mer cross-correlation. We note that, for an exponential
decay of correlation, this half-life would equal In 2 times
the mean response time. However, since the decays mea-
sured are not purely exponential, but rather combina-
tions of several exponentially decaying terms, the half-life
only reflects the response times in a qualitative sense.

To assess these quantities, we sampled the state of the
models with intervals of 1/10 of one time unit, and ran
the simulations to obtain 10° samples. For each multi-
mer order, we compared the half-life of the protein-
homomer cross-correlation with the cross-correlation at
zero-lag (Figure 7). The results indicate that for higher
orders of multimerization, there is a loss in correlation
in the homomers, when the value of the correlation was
high. The results indicate that as the order of multimeri-
zation increases, the correlation at zero lag of the homo-
mers decreases. This is only significant if these
homomers had high cross-correlation to begin with.
Moreover, in general, high correlations imply higher
half-lives regardless of the order of the multimer, which
indicates that the multimers cannot exhibit high control
and fast regulation at the same time. Also generally, for
multimers with a specific value of correlation at zero
lag, lower order multimers will have shorter response
times.

Genome wide assessment of cell-to-cell variability and
degree of multimerization in Escherichia coli

In [6], genome-wide data was collected on the mean and
standard deviation of protein copy numbers in popula-
tions of E. coli under optimal growth conditions, for
large sets of both essential and non-essential genes.
(Essentiality of a gene is defined according to the follow-
ing criteria (http://www.shigen.nig.ac.jp/ecoli/pec/index.
jsp): in general, genes for which lethal mutants have
been isolated are classified as essential.) From the Eco-
Cyc database (http://www.ecocyc.org/) for the strain
E. coli K-12 M@G1655, we assessed which of these pro-
teins form multimers and, if so, how many subunits of
each gene is involved in the multimer.

Table 1 presents the fraction of proteins that form
each of the various orders of multimers, for both essen-
tial and non-essential genes. Also, for each order we
computed the median (med p) of the mean protein
numbers and the median of the squared coefficient of
variation (med 1) of protein numbers in individual cells.
Note that the mean and noise levels are extracted from
observation of individuals proteins alone, rather than
proteins in multimeric form.

In general, essential genes exhibit higher mean levels
than non-essential ones. Also, their noise levels appear
to be somewhat constant [6]. Further, proteins from
essential genes appear to form higher-order functional
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units, and the mean levels of proteins forming high-
order multimers are much higher. Non-essential genes
also exhibit higher mean levels of protein numbers
when forming high-order multimers.

In [6], it is also suggested that the protein numbers
of essential genes lie on a noise floor. This floor was
hypothesized to originate from fluctuations in cellular
components (e.g. metabolites, polymerases, ribosomes)
[6]. Our results above suggest that multimerization
should offer a means to reduce the copy number noise
level of proteins in the functional form below this noise
floor. If so, one would expect the protein products of
essential genes to have a greater tendency for multimeri-
zation than non-essential ones, since they already lie on

the noise floor in the monomeric form while the latter
should be able to select for reduced noise by other
means, such as tuning the noise in the process of RNA
production. The data in the EcoCyc database agrees with
this prediction. Further, for this strategy of noise reduc-
tion in essential genes to be successful, one would expect
to observe also much higher mean protein numbers in
the case of highly multimerizing genes. This is also con-
firmed by the data in Table 1.

Toggle switch

Finally, we tested if multimerization can affect the stochas-
tic behavior of genetic circuits. To this end, we simulated
models of genetic toggle switches [30], using homomers of

Table 1 Mean and noise in bacterial genes as a function of multimerization noise.

number of homogeneous subunits

1 2 3 4 5 6 7 8 9 10

essential % genes 54.55 29.75 413 4.96 0.00 4.96 0.83 0.00 0.00 0.83
med u 3382 58.21 36.76 72.66 n/a 110.05 2150.20 n/a n/a 17.07

med n 0.15 0.14 0.19 0.14 n/a 0.15 0.13 n/a n/a 0.80

non-essential % genes 72.80 18.06 1.23 457 0.22 1.78 0.00 0.00 0.00 1.00
med u 8.84 16.12 79.14 27.72 7427 54.54 n/a n/a n/a 8.88

med n 0.26 0.21 0.16 0.20 1.16 0.19 n/a n/a n/a 0.23

Fraction of genes, their mean expression level y, and noise level 17 for essential and non-essential genes, which are known to form different orders of multimers

for function.
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different order (N € {1, 2, 3}) as regulatory molecules. We
then measured the mean switching times of each model,
that is, the average time the switch spends on one of the
two states (either P, < Poyp Or Prun > Payn). To account
for the fact that the mean switching time is sensitive to the
mean protein levels, the dimer and the trimer were simu-
lated with double and triple ky;, respectively (to provide
similar mean level of the regulatory molecules in the dif-
ferent models).

The parameters used in the models were: RNA degrada-
tion rate dy; = 6 dp, expected transcript number ky,
N 'd, ' = 5, transcription kinetics shape oy = 1,
expected number of protein per RNA kp dp " = 5, and dis-
association of repression K = C kyy N* dyy ™ kp dp Y,
where C was varied in the range [107% 10*] with approxi-
mately logarithmic spacing (ie. {a 10°| a e {1,2,3, .., 9},
be {-4, -3, -2, ..., 4}}). The gene expression parameters
are in agreement with live cell measurements in E. coli [6].
The switch’s state was sampled with intervals of 1/30 time
units, the simulations provided 10° samples. The mean
switching time as a function of the inverse of the repres-
sion strength C is shown in Figure 8.

In Figure 8 it is visible that the mean switching time is
different for different orders of homomerization. In the
region where the repression is strong, the multimeriza-
tion results in increased switching times. On the other
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hand, for low repression strength, the mean switching
time is decreased for the homomers. In general, higher-
order multimerization appears to offer a wider range of
mean switching times for the toggle switch. These dif-
ferences in the kinetics of the models are due to the dif-
ferences in noise levels of the functional multimers of
different orders, confirming thus that the order of multi-
merization has a tangible effect on the kinetics of
genetic circuits.

Conclusion

We studied how the order and nature of the multimeri-
zation of a protein affects the temporal variability in
copy number. We found that multimerization increases
noise, in that it necessarily reduces the numbers of func-
tional protein complexes. However, if both monomers
and dimers (or higher-order multimers) are functional,
the dimerization process suppresses noise in the num-
bers of functional complexes, for a range of parameter
values for which dimers and monomers are present in
similar amounts. Alternatively, if the introduction of a
multimerization process is combined with an increase of
transcription rates to compensate for the decrease in
number of functional complexes, then multimerization
can also lead to a reduction of noise levels on the num-
bers of these functional complexes. The same holds true

mean switching time
>
n

10 T T T
—O&— monomer
dimer, double kM
10 —A— trimer, triple kM

disassociation strength of repression.

disassociation of repression

Figure 8 Change in mean switching time of toggle switch due to multimerization. Mean switching time of a toggle switch as a function
of the inverse repression strength C, where the genetic interactions are implement with different orders of homomers, as a function of
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for heterodimers, but the noise suppression is less sig-
nificant because the production of the subunits is less
coordinated.

In addition, multimerization reduces the degree of
control exerted by gene regulatory mechanisms on the
copy number of functional complexes. Compensatory
increases in this control, which are constrained by the
noise introduced by the multimerization process, will
necessarily lead to an increase on the mean response
time of the gene.

Finally, the stochastic effects of multimerization were
found to propagate to the level of genetic circuits, further
supporting the notion that this process is likely under
selection pressure for reasons other than functionality of
proteins: namely, for their effects on the dynamics of pro-
tein numbers and on the dynamics of genetic circuits.
This selective pressure may be confirmed by future stu-
dies, but the observation that essential genes (whose num-
bers of the proteins in monomeric form alone lie on the
noise floor) are more likely to multimerize than non-
essential ones, is already tentative evidence for the exis-
tence of this pressure.
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