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Abstract

Background: Cancer is a broad group of genetic diseases which account for millions of deaths worldwide each
year. Cancers are classified by various clinical, pathological and molecular methods, but even within a well-
characterized disease, there is a significant inter-patient variability in survival, response to treatment, and other
parameters. Especially in molecular level, tumours of the same category can appear significantly dissimilar due to
complex combinations of genetic aberrations leading to a similar malignancy. We extended the current
classification methods by studying tumour heterogeneity at pathway level.

Methods: We computed the rate of alterations in 1994 pathways and 2210 tumours consisting of eight different
cancers. Using gene set enrichment analysis, each sample was computed a pathway aberration profile that
reflected its molecular state. The profiles were analysed together to infer the characteristic aberration rates for each
pathway within each cancer. Subgroups of tumours defined by similar pathway aberrations were identified using
clustering analyses. The pathway aberration and gene expression profiles of the subgroups were consecutively
compared across all eight cancer types to search for similar tumours crossing the standard classification.

Results: We identified pathways and processes that were common to all cancers as well as traits that are unique
to a cancer type or closely related cancers. Studying the gene expression patterns within the pathway context
suggested potential alteration mechanisms. Clustering analysis revealed five clinically relevant subgroups of
tumours in four cancers that exhibited significant differences in survival compared to others. The cross-cancer
analysis of the subgroups resulted in the identification of tumours that shared potentially significant alterations.

Conclusions: This study represents the first effort to extend the molecular characterizations towards pathway level
descriptions across the family of cancers. In addition to providing a proof-of-concept for single sample pathway
aberration analysis in this context, we present a comprehensive pathway aberration dataset that can be used to study
pathway aberration patterns within or across cancers. Significant similarities between subgroups of different cancers on
pathway and gene expression levels provide interesting hypotheses for understanding variable drug response, or
transferring treatments across diseases by identifying common druggable pathways or genes, for example.

Background

The development of cancer is an evolutionary process
that is driven by the acquisition of somatic genetic muta-
tions which give cells a selective advantage against non-
mutated cells [1]. In order to become malignant cancer
cells, normal cells need to acquire a set of mutations

* Correspondence: matti.nykter@uta.fi

3Institute for Biomedical Technology, University of Tampere, Biokatu 8, 33520
Tampere, Finland

Full list of author information is available at the end of the article

( BioMVed Central

which confer “hallmark” traits, such as increased prolif-
eration, immortality, and invasiveness [2]. Usually, a sin-
gle mutation is not enough to result in malignant growth,
but there are plenty of different combinations of muta-
tions which can alter the expression biochemical path-
ways leading to the same phenotypic effect [3]. Acquiring
these traits can be better described and understood
as alterations in the balance of interaction networks
of genes, proteins and other molecules, or pathways.
Cancers can also be divided into clinically meaningful
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subtypes based on their gene expression patterns that
may be indicative of response to a treatment, like
Her2 positive breast cancers [4] or KIT positive gastro-
intestinal tumours [5], for example. Many cancers have
characteristic sets of somatic mutations that can be used
to identify and classify the tumours [6]; few studies have
even compared these across cancer types [7]. However,
cancers are not commonly classified or studied based on
the acquired traits or alterations to the pathways because
of the added complexity. Instead, pathway level changes
are often concluded for the tumour subgroups that have
first been identified by other means. Currently, most
established cancer types and cancer grading systems
(such as Gleason score for prostate cancers [8] and
WHO grades for tumours of the central nervous system
[9]) are not even based on genetic markers but instead
on clinical parameters and phenotypic observations.

Multi-institutional projects, such as The Cancer Gen-
ome Project (TCGA) and International Cancer Genome
Consortium (ICGC), are already improving the cancer
classification by systematically gathering and analysing
unprecedented amounts of microarray and deep sequen-
cing data from multiple cancers. These data have been
used to identify clinically meaningful subtypes based on
genomic and transcriptomic [9-16] or epigenomic pro-
files [17,18]. The standard approach of clustering samples
based on only one type of data has recently been
extended towards integration of multiple data types
[19,20]. Common practice is to follow up genomic and
transcriptomic analyses by probing the frequently altered
pathways in each identified subtype to infer the unique
systems level characteristics of each subtype. Altered
pathways can be identified by statistically combining
knowledge on pathways’ constituent genes, and their
genomic (mutations, copy numbers) and/or transcrip-
tomic (expression) state in the tumours [21]. Recent
increase in availability of microarray and deep sequencing
data has made it also possible to identify the extent and
the frequency at which pathways are aberrant in different
cancers and cancer subtypes. There is currently great
interest in extending characterizations and subtyping
into systems level. One of the main goals is to improve
poor drug response rates by matching drugs with the
specific pathway alterations of the patient’s cancer
subtype [22].

We hypothesize that classifying tumours based on clin-
ical, phenotypic, or genomic markers may not be as
informative as using pathway alterations since different
tumours may appear similar and the molecular mechan-
isms to malignancy are undoubtedly variable. Further-
more, it is extremely difficult to predict the effect of
DNA level changes (e.g. mutations, copy number
changes, methylation levels) to the phenotype, and there-
fore we analysed data in the context that is as close to
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the phenotype as possible, the pathways. In this paper,
we analyse multiple TCGA expression datasets from sys-
tems perspective. Using pathway data from five databases
(1994 pathways) and expression data from eight cancers
(2210 samples), we first infer the aberrant pathways in
individual tumours, thus defining their pathway aberra-
tion profiles. Based on these profiles, we define a compre-
hensive catalogue of pathway alterations and their
frequencies in respective cancers. By clustering the path-
way aberration profiles, we are able to uncover clinically
meaningful subtypes of cancers that have not been
reported from TCGA cancer types by earlier studies.
Finally, we compare the subgroups of different cancers
together to find unexpected similarities on both pathway
and gene expression level.

Methods

Gene expression data analysis and quality control

Using TCGA data portal, we downloaded (on 3/8/2012)
all of the dual-channel mRNA expression array data
(Agilent 244K TCGA Custom 1-3) (n = 2365) from the
eight cancer types that have been characterized by
TCGA project (see Table 1). We used “level 3” data
which corresponds to pre-processed and interpreted
expression signals for each gene. These data had been
normalized against Stratagene Universal Reference RNA
and Lowess normalization had been applied on a per-
gene basis by the TCGA. Log ratios of gene expressions
were finally obtained for 17,814 genes. Expression values
were quantile normalized for cross-sample variation for
principal component analysis (PCA). After checking for
consistency of gene expression profiles PCA analysis, we
removed all duplicate samples so that each sample
represents a unique case. We also removed data from
patient IDs ‘TCGA-07-0249" and ‘TCGA-AV-AOQ3E’ that
were found in many duplicates, had a distinct gene
expression signature, had no meta data, and most alar-
mingly were annotated to many different cancers (see
blow-up in Figure la). Removing the data from 155

Table 1 Expression data

Symbol Cancer type Number of
samples

GBM Glioblastoma multiforme 582

ov Ovarian cancer 582
BRCA Breast cancer 534
COAD Colon adenocarcinoma 162
LUSC Lung squamous cell carcinoma 154
UCEC Uterine corpus endometrial 54

adenocarcinoma
READ Rectal adenocarcinoma 70
KIRC Kidney clear cell renal carcinoma 72
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Figure 1 Similarities and differences of tumour types in gene expression and pathway levels. a) Two first principal components of the
gene expression data from all the tumours are plotted. Colours denote the eight different cancer types. Blow-up panel highlights a distinct
group of samples from almost all cancer types b) Hierarchical clustering of the pathway aberration profiles indicates that colon and rectal
cancers (blue branch) are alike. Gynaecological cancers (red branch) are also similar on pathway level c) Nervous system development is
enriched in nearly all GBM, but rarely in any other cancer type. There is a considerable variation in enrichment and depletion frequency in

d) Platelet activation pathway e) Drug metabolism through cytochrome p450 and f) Irinotecan pathway.
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duplicate or bad samples, we arrived at gene expression
profiles of 2210 unique samples.

Acquisition of the pathway information

We acquired gene set data from five databases (Biocarta
(http://www.biocarta.com/genes/index.asp, 4/19/2011),
WikiPathways (http://wikipathways.org, 1/3/2011), Path-
way Commons (http://www.pathwaycommons.org, 11/
30/2010), Gene Ontology Biological Processes v3.0
(http://www.geneontology.org, 1/3/2011), and Kyoto
Encyclopedia of Genes and Genomes (http://www.genome.
jp/kegg/pathway.html, 6/14/2010)), totalling over 2500
unique signalling or metabolic pathways or genes anno-
tated to the same biological process. The gene sets were
combined into a mutually compatible form by re-annotat-
ing the gene identifiers to a common namespace (HUGO
nomenclature). Topologies of the pathways were not con-
sidered in any way. Gene sets with less than 10 or more
than 1000 constituent genes were filtered out resulting in
1994 sets of interrelated genes that we call pathways here-
after (Table 2).

Computing pathway aberration profiles

To arrive with pathway aberration scores corresponding to
enrichment and depletion of each pathway, we computed
gene set enrichment scores inspired by the GSEA method
by Subramanian et al. [21] for each pathway in each sam-
ple individually. These scores reflect the degree to which a
pathway’s genes are up- or downregulated compared to a
reference in a sample. First we rank ordered the list of all
measured genes based on their normalized expression dif-
ference against a reference (as described above). Then,
walking-down the list of genes, we label each gene as 1 if
it belongs to the pathway or 0 if it does not belong to the
pathway. Starting from the most upregulated gene results
in a score for enrichment and starting from the most
downregulated gene a score for depletion. Drawing ana-
logy to analysis of Receiver Operating Characteristic
(ROCQ) curves, we derive the fraction of 1’s vs. the fraction
of 0’s at each position of the list and compute the Area
Under Curve (AUC) statistic which describe how far up or
down the list are the pathway’s genes. To estimate the sta-
tistical significance of the AUC, we permute the list of

Table 2 Pathway data

Symbol  Database Number of
pathways
KEGG Kyoto Encyclopedia of Genes and 186
Genomes
BIOCARTA Biocarta 214
PWC Pathway Commons 656
GO GeneOntology Biological Processes 808
WIKIPW  WikiPathways 130
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ordered genes and recompute the statistic for the per-
muted data 1000 times to generate a null distribution for
the AUC. This method for generating null distributions
was chosen, because in the single sample analysis, more
complex models are difficult to justify as there is no mean-
ingful way to evaluate correlations with phenotypes.
Empirical confidence scores of the observed AUC are then
calculated relative to the null distribution. By iterating the
algorithm for each sample and each pathway individually,
we obtained two scores for each sample-pathway combi-
nation, corresponding enrichment and depletion. Smaller
value of the score indicated more significant trend. In
order to avoid being overly conservative for an exploratory
method, we chose not to control for the amount of false
positives due to multiple testing problem. Combining the
enrichment and depletion scores for each pathway in each
sample, we created pathway aberration profiles that
describe all the pathway aberrations in each sample. This
was done by taking the smaller of enrichment and deple-
tion scores, and transforming it into log, space if it was
enrichment and -log, space if it was depletion.

Clustering of pathway aberration profiles

To investigate the similarities and differences between
cancers on pathway level we hierarchically clustered the
means of pathway aberration profiles with Euclidean dis-
tance metric and Ward’s linkage method. To identify
homogeneous subtypes, a two way clustering of the
aberration profiles across samples and pathways was
done using hierarchical clustering with the same dis-
tance metric and linkage method. Distinct branches of
20-30 samples were identified from the dendrogram and
further studied as subgroups. Clustering of the identified
subgroups was done using the same methodology and
features consisting of mean enrichment and depletion
frequencies within each subgroup.

Statistical analyses

Associations between patient survival and subtype were
computed with Mantel-Cox test of difference of Kaplan-
Meier survival estimators. Associations between the sub-
groups and previous molecular subtype characterizations
were computed using Fisher’s exact test. Differential
gene expressions were computed using Wilcoxon rank
sum test. A p -value of 0.05 was considered the thresh-
old of statistical significance in all tests. All analyses
were made with Matlab version R2010b (MathWorks,
Natick, MA).

Results and discussion

Identification of common and disease-specific sets of
pathway aberrations in eight cancers

The 2210 gene expression profiles consisted of eight dif-
ferent cancer types (see Table 1) provided by the TCGA.
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Three cancers are represented by over 500 samples each,
two cancers by at least 150 samples, and three cancers
are represented by at least 50 samples each. Principal
component analysis indicated that the gene expression
profiles of colon and rectal carcinomas are very much
alike, similarly as ovarian and uterine tumours, whereas
glioblastoma has the most distinct gene expression pat-
tern (Figure 1la). A very small subset from all cancers,
except endometrial, closely resembled each other in gene
expression level (blow-up panel in Figure 1la). Closer
inspection revealed that these were data from only two
patients according to patient ID numbers. The data from
these patients were removed as well as all duplicate sam-
ples so that each sample represented a unique case.

Using a collection of 1994 pathways from five different
databases (see Table 2), we investigated the similarities
and differences between cancers in pathway level. Instead
of pooling the data from each cancer type first, we com-
puted the enriched and depleted pathways for each sam-
ple individually (Additional File 1). We then combined
the pathway enrichment and depletion scores into path-
way aberration profiles for each cancer type (see Meth-
ods), and hierarchically clustered them (Figure 1b). On
pathway level, colon and rectal carcinomas have very few
differences (blue branch). Also, the gynaecological can-
cers (BRCA, UCEC, and OV) clustered closely together
(red branch), as could be expected. By comparing the
average aberration rates across all cancer types, we
observed that many of the biological processes consid-
ered as cancer hallmarks [2] are frequently aberrant in all
tumour types. For example, GO terms Inflammatory
response (81%), Immune response (80%), Cell-to-cell sig-
nalling (77%), Cell-to-cell adhesion (76%), and Cellular
homeostasis (67%) were among the most frequently
enriched processes, whereas DNA replication (98%),
Regulation of cell cycle (98%), were among the most fre-
quently depleted (Additional File 2).

However, by ranking the pathways according to their
variability in alteration frequencies between cancers, we
identified several pathways that were altered very
frequently within one or few cancer types and only rarely
in other cancers. These pathways can give rise to the
observed differences in physiological and phenotypic prop-
erties across cancers, or they may only reflect the differ-
ences between host tissues or cells of origin, especially
since there were no tissue-specific normal references avail-
able. For example, GO term Nervous system development
which is enriched in 99.5% of GBM’s, but hardly ever in
other tumour types, is likely a cell type specific pathway
rather than malignant alteration (Figure 1c). However, we
identified processes that we think are actually more related
to cancer than normal cell physiology. For example, plate-
let activation is enriched in 87% of kidney carcinomas,
but only in 6% of uterine adenocarcinomas, which may
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translate to differences in tumour haemostatic activity or
formation of cancer metastases through emergence of pla-
telet-tumour cell aggregates [23] (Figure 1d). Another
potentially interesting observation is the major difference
in enrichment of the drug metabolism by Cytochrome
p450 pathway which is closely related to multiple drug
resistance, and also represents a potential therapeutic tar-
get [24]. It is highly enriched in cancers of the kidney,
lung, colon and rectum (64%-89%), lowly enriched in
gynaecologic cancers (ovarian, breast, and endometrial)
(15%-26%) and never in glioblastoma. In contrast, the
pathway is actually depleted in 56% of GBMs (Figure le).
There is also a significant difference in the enrichment and
depletion frequencies of Irinotecan pathway which
describes the biotransformation of the chemotherapy pro-
drug irinotecan to form the active metabolite which inhibits
DNA topoisomerase I [25]. The drug is used in the treat-
ment of many different cancers, but there is large interpati-
ent variability in response to it. The pathway is very
frequently depleted in ovarian and breast cancers (81% and
89%, respectively, but rarely in cancers of kidney, colon,
and rectum (4%, 8%, and 7%, respectively) (Figure 1f).

Pathway aberration profiles identify clinically significant
subtypes in glioblastoma, breast cancer, colon cancer,
and ovarian cancer

Common molecular subtypes have already been identified
in many of the cancers before [11,13,14,17]. To find out
how these related to pathway aberrations, and to identify
new subgroups based on pathway level changes, we hier-
archically clustered the samples into small and homoge-
neous clusters characterized by a unique set of pathway
aberrations (Additional File 3, Figure 2, Figures S1-S7 in
Additional File 4,). We divided the eight tumour types into
62 subgroups each consisting of 1.5-65% of the samples.
Subgroups were also compared to the previously estab-
lished molecular subgroups or pathological grading and
staging systems where available. In general, our subgroups
reflected the molecular classifications, but not the tumour
grades and stages. Clinical relevance of the subgroups was
investigated by comparing the survival estimators; how-
ever, the combination of modest number of samples in
some cancers (especially KIRC, READ, and UCEC) and
very short follow-up times for many patients hindered the
strength of this analysis. Associations to other potentially
relevant clinical variables were omitted due to poor quality
or complete lack of available metadata.

Interestingly, based on the clustering of GBM pathway
aberration profile (Figure 2), we found one subgroup that
was significantly less lethal (p <0.05) (Figure 3a) than the
others, and one that was more lethal (p <0.05) (Figure 3b).
Tumours in the less lethal subgroup were enriched of Pro-
neural subtype [11] (p <4.5e-5), and concordantly with
IDH mutations (p <5.le-5) and glioma-CpG Island
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Methylator Phenotype (G-CIMP) [17] (p <1.7-€6). Since
TCGA’s GBM cohort currently is considerably larger com-
pared to the one used in the previous studies, not all of
tumours were annotated to these groups. Our results
encourage investigating the remainder of the tumours in
this subgroup for the associated features of Proneural and
G-CIMP tumours. The most common molecular subtype
in the more lethal subgroup was Mesenchymal [11]
(p <0.02). Additionally, from BRCA pathway aberration
profile (Figure S1 in Additional File 4), we discovered a
more aggressive subgroup (p <0.05) (Figure 3c) that was
enriched in Her2 positive tumours [14] (p <1.4e-5). Some
of the other subgroups were also enriched in tumours
annotated to specific molecular subgroups (Basal-like,
LuminalA and LuminalB) underlining the differences of
these subtypes not only on mutation and gene expression
level but also functionally. For example, subgroups 3 and 4
that consisted of a significant portion of the Basal-like
tumours (p <1.8e-9 and p <2.4e-7, respectively) were not
more aggressive than others, in agreement with previous
findings of Basal-like tumours [14]. Based on pathway
aberration profiles of colon (Figure S2 in Additional
File 4) and ovarian (Figure S3 in Additional File 4) can-
cers, we identified two additional aggressive (p <0.05)

subgroups (Figure 3d-e). Neither group were associated to
the tumour stages. No subgroups with significantly differ-
ent survival estimators were found in READ (Figure S4 in
Additional File 4), LUSC (Figure S5 in Additional File 4),
KIRC (Figure S6 in Additional File 4), and UCEC (Figure
S7 in Additional File 4), probably also due to the smaller
sample sizes and shorter patient follow-up periods.
Investigating the pathway aberration differences between
the subgroups, and the molecular mechanisms that cause
these aberrations may offer interesting insight into the dis-
eases. In Figure 4a, we show the mean pathway aberration
profiles for nine pathways that are differentially aberrant
in the 12 GBM subgroups. This analysis revealed that the
tumours in the less lethal GBM subgroup 12 (Proneural/
G-CIMP enriched) differed significantly on a number of
pathway aberration frequencies. For example, GO category
Immune response was enriched in 0% and depleted in 97%
of the less lethal tumours, whereas the aberration frequen-
cies in other tumours were 54% and 9% for enrichment
and depletion, respectively. Apoptotic and haemostatic
pathways were also significantly depleted compared to
others. The tumours in the more lethal GBM subgroup
6 differed from the others the most radically in aberration
rate of signalling cascades, and metabolic pathways.
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To understand the molecular mechanisms behind these
pathway level changes, we investigated the mean gene
expression levels in three highlighted pathways: Immune
response depleted in subgroup 12 (Figure 4b), Protein
kinase cascade enriched in subgroup 6 (Figure 4c), and
Wnt signalling pathway enriched in subgroup 9 (Figure 4d).
The genes that cause the differential pathway aberration
rates in these subgroups are clearly observed: Immune
response genes IFITM2-3, PTPRC, HAMP, CCR1, IL6R,
and BLNK, for example, are exclusively underexpressed in
subgroup 12 causing the depletion. Several protein kinase
cascade genes are not underexpressed in subgroup 6, in
addition to exclusive overexpression of SHC1, TRIM38,
NODY1, and others, causing the enrichment. In Wnt signal-
ling pathway, enriched only in subgroup 9, we observed
especially WNT10B, FZD9, CHP2, and RAC3 overexpres-
sion and FZD7, TCF7L1, and MMP7 underexpression,
whereas in other subgroups their expression changes were
the opposite. To further investigate the consistency of
the differential gene expression levels within subgroups, we
clustered the expression ratios of the genes in Wnt signal-
ling pathway in GBM (Figure 4e). Samples in subgroup 9
formed a separate cluster from the other samples, and from
the individual gene expression pattern we observed that the
most prominent genes listed above, such as WNT10B, were
indeed very consistently differentially expressed in this sub-
group compared to others.

In Figure S8a in Additional File 4, we show the mean
pathway aberration profiles for five pathways that are dif-
ferentially aberrant in the three KIRC subgroups. The
expression levels of the glycolysis-related genes indicate
how exactly this pathway is depleted in KIRC subgroup 2
and enriched in subgroup 3. DPYS, UPB1 and PPAP2B
are consistently upregulated in samples where glycolysis
pathway is not enriched, whereas a group of eight down-
regulated genes (ACLY, PFKFB3, MLXIPL, SLC35D1,
TPI1, RPIA, AMPD2, and PFKB4) are a characteristic of
the glycolysis-enriched subgroup 3 in addition to a fair
amount of upregulated genes, including subunits of
NADH dehydrogenase complex, ATP synthase complex,
cytochrome c oxidase, and ubiquinol-cytochrome reduc-
tase. In Figure S8b in Additional File 4, tumours in the
more lethal OV subgroup 12 were particularly enriched
in metabolic, immune response, transcriptional and
translational pathways. Metabolic and immune pathways
were also enriched in the more lethal BRCA subgroup 14
(in Figure S8c in Additional File 4). BRCA subgroups 3
and 4 that consisted of a significant portion of the Basal-
like tumours were highly enriched in adaptive immune
system processes (Adaptive immune response GO cate-
gory enriched in 92% of the tumours in this subgroup
compared to 20% in other tumours) such as Lymphocyte
activation, and TNFa/NFkB signalling [26], which may
have significant clinical implications. Other pathway-level
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features of the subgroup included less frequently
enriched secretion, and more frequently depleted cata-
bolic pathways. The more lethal COAD subgroup 6 was
enriched of transcriptional and metabolic pathways (in
Figure S8d in Additional File 4). Collectively, some of
the most variably aberrant pathways in these cancers
included metabolic pathways such as oxidative phosphor-
ylation, transcriptional and translational pathways,
immune system related pathways, processes such as hae-
mostasis, apoptosis and cell proliferation, and signalling
pathways such as TNFa/NFkB signalling (Figure S8a-g in
Additional File 4). This may indicate that not all of these
processes are necessary to the cancer cells, or that there
exist alternative molecular mechanisms to acquiring the
phenotypes that are described by these pathways.

A family tree of cancer: Pathway level comparison reveals
functionally similar subgroups across cancer types
Fuelled by discovery of similar pathway level characteris-
tics between subgroups of different cancers, and previous
results indicating that there are relevant similarities
between cancer subtypes, such as those between Basal-like
breast cancer and high-grade serous ovarian cancer [14],
we further clustered all subgroups together based on the
pathway aberration frequencies in each group (Figure 5).
We wanted to find subgroups of different cancers that
shared common pathway aberration profiles. The cluster-
ing indicated that all GBM subgroups (olive branch) are
alike, and none of them share considerable amount of
pathway aberrations with subgroups of any other cancer.
This may also be due to enrichment and depletion of cell-
type specific pathways. Most of the colon and rectal
tumours were clustered together (purple branch) with the
exception of COAD subgroup 1 that clustered with kidney
cancers and BRCA subgroup 11. Other mixed type
branches included the red, blue and lime branches which
consisted of BRCA, OV, and LUSC subgroups. We did not
include the three KIRC subgroups in further analysis of
the green branch, because there were no other KIRC sam-
ples to compare with in other branches, neither did we
not consider the yellow branch with two endometrial sub-
groups a mixed branch.

In the four mixed branches (lime, green, red, and blue),
we compared the pathway aberration differences between
the mixed tumours to the tumours of the same type in
other branches. In the upper left corner of Figure 5, we
show six pathways that are differently aberrant between
the five OV subgroups and BRCA subgroup 10 in the
lime branch comparing to the rest of OV and BRCA sub-
groups. Immune response and selenium metabolism
were the most strikingly differently aberrant pathways.
For the six pathways, we show the expression differences
of few differently expressed genes (p <0.01) which may
provide clues to understanding why the pathways are
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altered. For example in immune response pathway, CD2
and FASLG are not overexpressed in the lime branch
subgroups compared to other BRCA and OV tumors.
Similarly BTK is underexpressed in the lime branch
subgroups.

In the green branch, COAD1 and BRCA11 share the
depleted TNFa/NFkB signaling pathway, and enriched
integrin adhesion pathway in comparison to other BRCA
and COAD tumors. Significant differences in some of the
genes in the selected pathways are observed, for example,
in TNFa/NFkB pathway AKAP12 is underexpressed in
BRCA and COAD tumors excluding COAD1/BRCA11
where GNAIL and GNA11 are overexpressed. The red
branch consisted of three types of cancers that share
the enrichment in integrin adhesion, immune system, B
cell receptor signaling, IL-4 signaling, and adherens junc-
tions in contrast to the rest of the BRCA, OV, and LUSC
tumors. Interestingly, TGFB1, TGFB2, TGFBRI, and
TGFBR2 are all upregulated in these tumors. Subgroups
of OV and BRCA in the blue branch are characterized by
the frequently depleted apoptosis and beta-catenin phos-
phorylation pathways.

Conclusions

Following huge efforts to measure the genomes and
transcriptomes of different cancers, this study represents
the first effort to extend the current molecular charac-
terizations towards comparative and pathway level
descriptions across the family of cancers. Studying large
collections of tumour samples at pathway level enabled
us to create a comprehensive catalogues of altered path-
ways from where we inferred the characteristic aberrations
for each cancer. As such, this study is also the first proof-
of-concept study for utilizing single sample pathway aber-
ration analysis in this context. Importantly, our approach
adds another layer of information on top of the classical
markers retaining the option to study gene expression or
other genomic features in the context of pathways as well.
Based on the pathway aberration profiles alone, we identi-
fied clinically significant subtypes of glioblastoma, breast
cancer, colon cancers, and ovarian cancer. In contrast to
subtypes identified using genomic data, phenotypic char-
acteristics of our subtypes can be easily hypothesized from
their unique pathway aberrations. We also identified sig-
nificant similarities between subgroups of different cancers
on pathway and gene expression levels which provide
interesting avenues for understanding variable drug
response or transferring treatments across cancer types by
identifying common druggable pathways or genes, for
example. These results demonstrate the applicability of
our approach, and the value of the aberration data as a
resource for future investigations where integrating e.g.
copy number, mutation, and epigenetic data to our results
should provide plenty of intriguing insight.
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