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Abstract

Background: Cells are subject to fluctuating and multiple stimuli in their natural environment. The signaling
pathways often crosstalk to each other and give rise to complex nonlinear dynamics. Specifically repetitive
exposure of a cell to a same stimulus sometime leads to augmented cellular responses. Examples are amplified
proinflammatory responses of innate immune cells pretreated with a sub-threshold then a high dose of endotoxin
or cytokine stimulation. This phenomenon, called priming effect in the literature, has important pathological and
clinical significances.

Results: In a previous study, we enumerated possible mechanisms for priming using a three-node network model.
The analysis uncovered three mechanisms. Based on the results, in this work we developed a straightforward
procedure to identify molecular candidates contributing to the priming effect and the corresponding mechanisms.
The procedure involves time course measurements, e.g., gene expression levels, or protein activities under low,
high, and low + high dose of stimulant, then computational analysis of the dynamics patterns, and identification of
functional roles in the context of the regulatory network. We applied the procedure to a set of published
microarray data on interferon-g-mediated priming effect of human macrophages. The analysis identified a number
of network motifs possibly contributing to Interferon-g priming. A further detailed mathematical model analysis
further reveals how combination of different mechanisms leads to the priming effect.

Conclusions: One may perform systematic screening using the proposed procedure combining with high
throughput measurements, at both transcriptome and proteome levels. It is applicable to various priming
phenomena.

Background
A cell needs to constantly sense and response to various
signals from both external and internal environments. The
requirement on generating appropriate response to speci-
fic signals forces cells to develop a complex signaling
network that often involves multiple highly intertwined
signaling pathways [1-3]. It becomes increasingly clear
that pathway cross-talks play critical roles in cellular sig-
naling and decision making process [4]. For example,
cross-talks may increase the nonlinearity in the signaling
network, resulting in various synergistic and antagonistic

effects in cellular responses [5-8]. A nonlinear response
refers to the cellular response to multiple different stimuli,
or repetitive stimulus that is not simply the sum of
responses to each individual stimulus. Cells in vivo are
constantly exposed to a variety of stimulus with fluctuating
concentration. Therefore it is of great importance to study
how cells utilize complex pathway cross-talks to generate
appropriate response or make correct decision to multiple
or repetitive stimulus. Pharmaceutically, it is also a com-
mon treatment strategy to use combinations of multiple
drugs simultaneously in order to generate synergistic effect
[8,9]. Therefore, the nonlinear phenomena due to pathway
cross-talks have important physiological and clinical
significances.
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In this work we focus on cellular priming effect (also
called preconditioning and sensitization) which refers to
a well-observed phenomenon that after being treated
with a seemingly negligible concentration of stimulus, a
cell may launch amplified responses upon a second expo-
sure to the same stimulus at higher concentration
[10-12]. The priming effect reflects the nonlinear charac-
teristics of the system in that the cellular response to
repetitive stimuli is stronger than the sum of that to indi-
vidual low dose and high dose stimulation. Since the cel-
lular response to the low dose stimulation is negligible, in
experimental practice one usually approximates the
above sum by the cellular response under the high dose
stimulation only. Two such examples are lipopolysac-
charide-mediated (LPS) and Interferon-g-mediated (IFN-
g) priming effects observed in innate immune cells such
as monocytes and macrophages [11,13]. For example,
LPS is the pathogen-associated molecular pattern
(PAMP) expressed on the outer membrane of gram-
negative bacteria. Several in vitro studies have reported
that low dose LPS (e.g., 0.05-1 µg/L) can prime macro-
phages for an augmented pro-inflammatory cytokine pro-
duction under high dose LPS (10-100 µg/L) [10,12-15].
Clinically, evidence relates this LPS-mediated priming
phenomenon to low-grade metabolic endotoxemia,
which is defined as an elevated but physiological LPS
concentration in the blood, resulting in a higher inci-
dence of insulin resistance, diabetes and atherosclerosis
[16-21]. Similarly, a sub-activating dose of IFN-g (e.g.,
0.05-0.15 µg/L) is able to prime macrophages for an
enhanced activity of signal transducer and activator of
transcription 1 (STAT1) under an activating dose of IFN-
g (e.g., 0.5-5 µg/L) (Figure 1A). As a consequence, the
expression of a number of genes regulated by STAT1 are
also increased, including IFN regulatory factor 1 (IRF-1)
and inducible protein-10 (IP-10). Since IFN-g plays a cru-
cial role in interfering viral replications and promoting
apoptosis of infected cells, abnormality in IFN-g produc-
tion can lead to severe consequences in the immune sys-
tem [22]. The sensitization of IFN-g signaling also
correlates with several immune system malfunctions and
diseases, such as rheumatoid arthritis, hepatitis and mul-
tiple sclerosis [22-24]. Hu et al., first investigated the
molecular mechanisms of IFN-g-mediated priming effect
and reasoned that an elevated expression of STAT1 by
low dose pretreatment was responsible for the induction
of priming effect [11]. However, other molecular
mechanisms may also exist.
In the previous study, we applied a computational ana-

lysis to enumerate all possible network motifs that are
able to induce priming effect in a generic three-node reg-
ulatory network. Strikingly, we found that the in silico
discovered priming motifs naturally fall into three prim-
ing mechanisms. Based on the finding, the main purpose

of this study is to design and apply a general combined
experiment and computation strategy to search for mole-
cular candidates contributing to the priming effect for a
given stimulus. The remaining part of the paper is orga-
nized as follows. First we summarize the main results of
our first study, and outline the strategy. Then we demon-
strate how to apply the strategy to analyze a set of pub-
lished microarray data on IFN-g-mediated priming effect.
Next we show further analysis on a detailed ordinary dif-
ferential equation based model.

Results and discussions
Computational analysis suggests basic priming
mechanisms
In the first paper [25], we enumerated all possible network
structures and kinetics that are able to induce priming
effect with a generic three-node model (Figure 1B). The
three-node model represents the minimal abstraction of
the two cross-talking pathways (e.g., MyD88-dependent
and -independent branches of Toll-like receptor 4 (TLR4)
signaling pathway). Each node in the model can either
positively or negatively regulate the activity of the other
nodes or itself. We simulated the dynamics with a set of
nonlinear ordinary differential equations with 14 variable
parameters. Through a two-stage Metropolis algorithm,
we analyzed the dynamical behavior of over 1.5 × 105 dif-
ferent networks that can generate priming effect. Here we
refer to priming effect as a set of dose-response behaviors:
(1) A single low dose stimulant (LD) cannot activate the
readout x3 (< 0.1 in a reduced unit with 1 the maximum
induction). (2) A single high dose stimulant (HD) can acti-
vate x3. (3) Sequential stimulation with LD first followed
by HD (LD+HD) can activate x3 to a maximum level that
is at least 50% higher than that under HD alone.
As shown in Figure 1C, the parameter sets leading to

priming effect clearly cluster into two regions, in terms
of the change in the two regulators, x1 and x2, at the end
of LD pretreatment (�ss

xi,LD, i = 1,2). Data in the left
region locate approximately along the negative side of x-
axis, that is, a LD pretreatment decreases x1 in this region

(i.e., �
ss
x1,LD < −δ < 0, with an arbitrarily chosen cutoff

δ = 0.1to account for possible experimental resolution).
Notice x2 in this region spread out vertically, that is, x2
can either increase or decrease to some extent under LD
pretreatment. Based on this observation, we want to find
out any possible constraint on x2 in this region. To do
this, we plotted the distribution of the difference between
the maximum response of x2 under LD+HD and that
under HD alone. We found that x2 from this region can
be either HD-responsive or LD-responsive, but with a
constraint that the maximum expression under LD+HD
makes no difference with that under HD alone (i.e.,
�
max

x2,LD+HD ≈ �
max

x2,HD) [see Additional file 1]. On the
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Figure 1 Summary of theoretical analysis. A) Schematic illustration of the experimental procedure inducing priming effect. B) An abstract
three-node model was chosen to represent that the stimulus can activate two parallel pathways (through x1 and x2) which converge to the
monitored readout (x3). A set of corresponding ordinary differential equations (ODEs) were constructed, and a Metropolis sampling algorithm
was used to search for parameter sets giving the priming effect in the high-dimensional parameter space. C) Computational studies show that

the parameter sets leading to priming naturally divide into two regions, corresponding to different priming mechanisms. �
ss
x1,LD (�

ss
x2,LD):

change of x1 (x2) level at the end of LD treatment period compared to those of untreated cells. D) The right region in C) can be further

discriminated according to the sample abundance distribution (relative to the maximum within each group) of �
max

x2,LD+HD − �
max

x2,LD
(difference between the maximum level of x2 during the HD treatment period after LD pretreatment and that of x2 without LD pretreatment),
suggesting overall three priming mechanisms. Panels A and B are adapted from [25].
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other hand, the data in the right region demonstrate a
significant increase in x2, but not x1, after LD pretreat-

ment (Figure 1C) (i.e., �
ss
x2,LD > δ). The maximum

expression of x1 under LD+HD makes no difference with
that under HD alone (i.e., �max

x1,LD+HD ≈ �
max

x1,HD)
[see Additional file 1]. However, this overlapped region
can be further separated into two sub-groups, pathway
synergy (PS) and activator induction (AI), if plotted
against another experimentally measurable quantity:
the difference in the maximum level of x2 under LD
+HD vs under HD (Figure 1D). It is obvious that the data
from the red group, but not the green group, shows a
significant increase in the maximum level of x2 under LD
+HD compared to that under HD alone (i.e.,
�
max

x2,LD+HD − �
max

x2,HD > 0) (Figure 1D).
Further statistical analysis on network topologies

reveals that data from each priming group shares a

unique network structure (Figure 2, left column). For
example, x1 in the left region in Figure 1C is identified as
an inhibitor to the readout x3. Since x1 is decreased by
LD, we therefore named this region “Suppressor Deacti-
vation” (SD). Similarly, x2 in right region in Figure 1C is
found to be an activator to x3. Based on the fact that the
data in this region can be further differentiated in terms
of differential dose-response �

max
x2,LD+HD − �

max
x2,HD, we

further named them “Pathway Synergy” (PS, denoted in
red) and “Activator Induction” (AI, denoted in green),
respectively (Figure 1D).
The physics underlying the three priming mechanisms

turns out to be simple and beyond the current three-node
model [25]. For Pathway Synergy, both of the two path-
ways activate the priming readout x3, but one has a fast
time scale and a high activation threshold while another
one has a slow time scale and a low activation threshold.
When given a single HD stimulation, the regulation on x3

Figure 2 Schematic illustration of the three in silico found priming mechanisms. The left column shows the basic topological requirement
identified in the corresponding priming dataset generated in the theoretical analysis. The right column shows the typical time course of each
priming mechanism.
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from the two pathways is temporally separated. A LD pre-
treatment brings forward the slow pathway so that the two
pathways can achieve a transient synergy to boost the pro-
duction of x3 (Figure 2). Similarly, for Activator Induction
and Suppressor Deactivation, a LD pretreatment separates
the two originally temporally overlapping but antagonistic
pathways by either advancing the activator or delaying the
suppressor (Figure 2).
Since each priming mechanism highlights unique

topological and dynamical characteristics, we propose
that one can utilize this important information to guide
microarray analysis on identifying groups of candidate
genes that contribute to priming effect. The computa-
tional result in Figure 1C and 1D actually suggests a
simple procedure to this purpose. The analyzing proce-
dure is summarized as follows (also see Figure 3):

1. Record the time course of the cellular response
under single LD, single HD, and LD+HD, respectively.
2. Identify the priming readout genes as those with
higher response to LD+HD than HD, but with no
significant response to LD.
3. Identify the genes induced or reduced by LD (LD-
responsive genes), and those responding to HD only
(HD-responsive genes).
4. Construct the interaction network through inte-
grating the available experimental results, and

available databases. Examine the identified genes in
the context of the network regulations and identify
the corresponding molecular mechanisms for prim-
ing they potentially contribute to:

• Pathway Synergy: (1) LD-responsive genes (with
the expression under LD+HD higher than that
under HD alone) and (2) HD-responsive genes;
(3) both activate a downstream readout gene.
• Activator Induction: (1) LD-responsive genes
(with the expression under LD+HD similar to that
under HD alone) and (2) HD-responsive genes; (3)
the LD-responsive gene activates while the HD-
responsive gene inhibits a downstream readout
gene.
• Suppressor Activation: (1) LD-reduced genes
and (2) LD/HD-responsive genes (with the
expression under LD+HD similar to that under
HD alone); (3) the LD-reduced gene inhibits
while the LD/HD-responsive gene activates a
downstream readout gene.

Microarray data analysis predicts possible candidates
involved in the induction of IFN-g-mediated priming
effect
In this section, we focus on the microarray data on IFN-
g by Hu et al. [26] in order to demonstrate the proposed

Figure 3 Proposed procedure of microarray analysis for identifying candidate genes under different priming mechanism. LD: low dose
stimulation; HD: high dose stimulation. Second column: Genes are grouped according to their behaviors under LD and HD, respectively. Third
column: genes are further sub-grouped according to the differential expression under LD+HD or under HD alone. Genes that can only be
induced by HD are further differentiated according to their regulatory behavior (e.g. activator or inhibitor) to the readout gene. Fourth column:
combinations of gene from different sub-groups reveal potential priming motifs (x1 and x2 in Figure 2).
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analyzing procedure. This is the only set of data we
found from the microarray database Gene Expression
Omnibus that satisfies the requirement in the above dis-
cussed procedure. After two steps of data processing
(see Methods for details), we found 225 genes demon-
strating non-trivial dynamics (i.e., with statistically sig-
nificant change under at least one condition, see
Methods for details). They form the subjects of our ana-
lysis. Hierarchical clustering of these genes shows that
the majority of them do not show statistically significant

change (by ≥ 2 fold) under LD (Figure 4). However, we
found that 27 genes are significantly increased (by ≥ 2
fold) by LD, and 20 significantly decreased (by ≥ 2 fold)
by LD (Figure 4, the probe names and gene symbols are
listed on the right). Based on the proposed analyzing
procedure, these genes constitute the candidate regula-
tors for different priming mechanisms (Figure 3). These
genes will then be subject to further analysis, such as
examining them in the context of the regulatory net-
work (discussed below). Moreover, since the level of the

Figure 4 Analysis of the microarray data (GEO, accession number: GDS1365). Hierarchical clustering of the gene expression profiles over
225 genes. The left, middle and the right columns denote the fold change under LD vs Control, LD+HD vs HD (3 hr), and LD+HD vs HD (24 hr),
respectively. Genes that are statistically increased and decreased by LD are listed on the right. These genes are grouped into different priming
mechanisms according to the guideline shown in Figure 3.
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LD-responsive regulator in PS mechanism is dramati-
cally increased under LD+HD than under HD alone,
while the corresponding regulator in AI barely shows
any difference (Figure 1D), these 27 LD-responsive
genes can be further sub-grouped into either PS or AI
category based on their expression profiles accordingly
(i.e., �

max
xi,LD+HD − �

max
xi,HD).

Other genes that are not responsive to LD stimulation
are further clustered according to the gene expression
patterns. We found that a large portion of such genes
can be activated by HD stimulation alone (Figure 5).
Based on the guidance shown in Figure 3, they are
potential candidates for the HD-responsive regulator in
the three priming mechanisms. In addition, we found
that these genes are activated with basically three dyna-
mical patterns: early-, late-, and persistently-responsive
dynamics (Figure 5). For example, RelA is found only
expressed in the HD 3hr group, but not in the HD 24hr

group, suggesting an early- dynamics. Suppressor of
cytokine signaling 1 (SOCS1) is found in both HD 3hr
and HD 24hr, indicating a persistent dynamics. This
dynamical property is also necessary in assembling
appropriate genes onto specific priming motifs.
Furthermore, five genes (SLC2A3, ST3GAL5, DNAJB1,

STAT1, UBE2S) are identified as possible priming read-
out genes (x3), which show negligible expression under
LD, but considerable higher expression under LD+HD
than under HD alone. However, among the five genes,
only UBE2S shows a significant change between LD+HD
and HD (by ≥ 2 fold) that passes t-test with p < 0.05.
Considering microarray data are usually noisy, one needs
more quantitative measurements, e.g., real time PCR to
confirm these results. Here we used the experimentally
confirmed molecular species, such as phosphorylated
STAT1 dimmer, IRF-1 and IP-10 as the priming readout
[11]. After selecting and grouping genes based on the

Figure 5 A second step hierarchical clustering over the genes that only respond to HD. Gene expression patterns are clustered according
to the fold change under LD vs Control, HD vs Control (3hr), HD vs Control (24hr), LD+HD vs Control (3hr), LD+HD vs Control (24hr), LD+HD vs
HD (3hr), and LD+HD vs HD (24hr). At least three major dynamical groups are identified among genes that are activated by HD stimulation.
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guideline in Figure 3, we then placed them in the context
of regulatory networks in order to identify possible prim-
ing mechanism on the molecular interaction level. The
regulatory network associated with these selected genes
is constructed in IPA® database (see Methods for details).
Here we show several potential PS and AI motifs iden-

tified from the regulatory network (Figure 6). For exam-
ple, a PS motif (the second motif on the right) composes
a HD-induced regulator (Tumor Necrosis Factor-a,
TNFa), a LD-induced regulator (S100A9), and a readout
(phosphorylated STAT1). The priming effect can be
achieved by synergizing the two positive regulators,
TNFa and S100A9, to get the STAT1 activity enhanced.
This may be explained by the fact that an increased level
of S100A9 by IFN-g pretreatment may be able to activate
P38 [27], which further up-regulates STAT1 activity. An
alternative connection between S100A9 and STAT1
activity is through IL-6. S100A9 has been shown able to
trigger interleukin 6 (IL-6) expression [28], which in turn
stimulates STAT1. Therefore an autocrine signaling may
also be involved. The true connection should be context
dependent, and needs to be confirmed by further experi-
ments. Moreover, a motif that fits in AI mechanism can
also be identified from the regulatory network. This AI
motif involves interleukin 15 (IL-15) and IL-2Rg as the
LD-responsive activator, and SOCS1 as the HD-inhibitor
for STAT1 activity. It has been shown that both IL-15
and IL-2Rg are able to increase STAT1 activity [29], and
from the microarray analysis we show that they can be
significantly induced by LD (> 2 fold, p < 0.05), while the
inhibitory function of SOCS1 against STAT1 is only
induced under HD. Therefore, the two counteractive
pathways exert AI priming mechanism. As multiple
priming motifs are identified on different levels in the
regulatory network, we speculate these interconnected
priming motifs may work in concert to induce an overall
priming effect. A functional redundancy and robustness
may also be achieved due to the complex cross-talks
brought by these priming motifs in the regulatory net-
work. As a matter of fact, both cascade and parallel lay-
out priming motifs are found in this network (Figure 6).
Detailed computational modeling can provide great help
in understanding the potential functions, advantages and
disadvantages brought forth by different combination of
the priming motifs.
In our proposed strategy it is essential to examine the

genes identified from the high throughput data in the con-
text of the regulatory network. In many cases gene activities
are correlated, e.g., due to a common upper stream regula-
tor. As an illustrative example, suppose the activities of
genes A and B are correlated and are both up-regulated
by the low dose stimulant, but only A regulates the down-
stream readout gene C. Based on the absence of regulation
from B to C in the regulatory network, one can only

conclude that the existing experimental result suggests A,
but not B, as a potential contributor to the priming of C. In
another situation, if a molecular species (e.g., a transcription
factor) shows priming effect, the priming effect may be
transmitted to its downstream targets. The detailed model
discussed later gives such an example.

Functional clustering further suggest influence of low
dose pretreatment on altering cellular functions
To investigate how LD priming affects macrophage cel-
lular functions, we conducted the ontology analysis of
the genes that show significant fold change (≥ 2 fold, p
< 0.05) after LD priming. Additional file 2 shows the
clustering result, and lists the top 10 significantly
enriched molecular functions found for LD IFN-g
induced and reduced genes, respectively. We found that
in general, genes that are significantly increased by LD
priming are associated to inflammatory response and
immune system process; genes that are significantly
decreased are associated to negative regulation of T cell
mediated cytotoxicity and immunity. This result sug-
gests that LD priming prepares macrophages for a
stronger inflammatory response by elevating a number
of proinflammatory genes and inhibiting some negative
regulators, reflecting a cellular adaptivity of innate
immune cells.

Low dose IFN-g priming reprograms the gene expression
profiles of macrophages
In order to find out whether LD IFN-g pretreatment
could possibly reprogram the gene expression dynamics,
we grouped genes based on their induction dynamics
under either HD or LD+HD stimulation (e.g., early-,
late-, and persistent-response). As shown in Figure 7, we
found that the number of early response genes increases
in primed macrophages (from 78 to 105), while the
number of late- and persistent-genes stays almost the
same. Strikingly however, the actual composition of
genes in each dynamical group has been changed by LD
IFN-g priming (Figure 7A). For example, nearly half of
the genes from both the early- and the late-response
groups are switched off (or to a statistically negligible
level) in the primed cells (shown in the red ellipse and
the green ellipse that does not overlap with others).
Gene Ontology analysis shows that these genes are func-
tionally associated with protein kinase inhibitor activity
(the early-response group) and negative regulation of
apoptosis (the late response group), indicating a func-
tional change due to the LD pretreatment. Moreover,
we also observed a reshuffling of genes among different
dynamical groups (Figure 7B). For instance, five early-
response genes are switched into either the late- or the
persistent-response group, while 17 late-response genes
are moved into the early- or the persistent-response
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Figure 6 Construction of the regulatory networks associated with the selected genes using IPA® database. Left panel: The selected
groups of genes with different dose-response and dynamics are put into IPA® database to identify signaling and regulatory relationships with
the readout molecules (see Methods for details). Right panel: Priming motifs with different priming mechanisms are identified from the network
under the guideline shown in Figure 3.
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Figure 7 The gene expression kinetics has been reprogrammed during the low dose IFN-g priming. (A) Four-way Venn Diagram
demonstrated LD IFN-g pretreatment reprogramed gene expression profiles of a large number of genes. (B) Kinetic reshuffling in a small
number of genes is also identified. The gene name, probe name and the enriched gene ontology are shown in the second and the third
column.
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group, in primed macrophages. Figure 7B lists the most
significantly enriched gene ontologies associated to each
group of these reshuffled genes. To sum up, the LD
IFN-g priming, to some extent if not globally, is able to
reprogram the gene expression profile by switching
genes on and off or changing their expression dynamics.

Detailed experimental and model study further confirm
the analysis result
We want to make it clear that the generic procedure
shown in Figure 3 is not restricted to microarray data
analysis. Microarray is a high throughput technique but
less quantitative. One can only detect genes with signifi-
cant fold change (usually by ≥ 2 fold). For many priming
effects, the fold change is less than 2 [10,13]. Often
more quantitative methods such as real time PCR are
needed to confirm the microarray findings. Furthermore
information on posttranslational and epigenetic modifi-
cations requires other techniques. In many applications,
it is advantageous to combine time course data under
LD, HD, and LD+HD stimulant obtained with different
techniques. Here we use one example to illustrate this
point.
Our microarray analysis suggested that STAT1 and

SOCS1 may participate in a potential priming motif acti-
vated by IFN-g (Figure 6), which is in consistence with
the experimental investigations by Hu et al., [11]. Hu et
al., reported that a pretreatment of a sub-threshold of
IFN-g sensitized the Janus kinase (JAK)-signal transducer
and activator of transcription (STAT) signaling for a sec-
ond dose of IFN-g [11]. They found that a low dose IFN-
g exposure is able to switch on the transcription of
STAT1. However, LD IFN-g can only weakly activate the
inhibitor SOCS1 in a transient manner [23]. Since
STAT1 protein is more stable than SOCS1 protein, the
elevated expression of STAT1 actually increased the pool
for STAT1 docking and phosphorylation in response to
the second dose of IFN-g, thereby contributing to the
induction of priming effect.
To further analyze the mechanism, we performed com-

putational analysis using ordinary differential equations
(ODEs) model. The wiring diagram in Figure 8A sum-
marizes the relevant biochemical events in the IFN-g sig-
naling pathway. A HD IFN-g rapidly evokes Jak/STAT
pathway, resulting in STAT1 phosphorylation and the
expression of downstream genes, such as SOCS1, IRF-1
and IP-10 [11]. SOCS1 contains a kinase inhibitory region
and Src homology 2 (SH2) domain [30]. It binds to Jak to
inhibit its kinase activity, or alternatively it binds to IFN-g
receptor cytoplasmic docking sites as pseudo-substrates; in
either way, SOCS1 functions in blocking STAT1 from
phosphorylation [30]. The wiring diagram also includes
the Jak/STAT independent induction of STAT1 expres-
sion by IFN-g. Figure 8B also gives a simplified wiring

diagram to show the processes of slow STAT1 synthesis,
STAT1 activation through covalent modification, and
inhibition from SOCS1 whose synthesis is activated by
STAT1. The system dynamics is then modeled by ODEs
[see Additional file 3 and 4 for details].
Our computational analysis reveals a combination of

the AI and PS mechanisms in this system. To illustrate,
we see that under a 72 hour priming with LD IFN-g
(0.15 µg/L), the stimulated cells increase the expression
of STAT1 but not SOCS1 (Figure 9A &9B); this is
because LD priming does not turn on phosphorylation
or activation of STAT1 which is required for SOCS1
production. However, the increased expression of
STAT1 under LD pretreatment expands the pool of
STAT1 for phosphorylation in response to the following
HD IFN-g (5 µg/L). Compared to protein binding/
unbinding and covalent modifications such as phosphor-
ylation, the gene expression process of STAT1 and
SOCS1 is rather slow. Under a single HD, a fast Jak/
STAT pathway signaling event quickly initializes SOCS1
gene expression, resulting in the suppression of STAT1
phosphorylation. For primed cells, however, the STAT1
gene expression dynamics is accelerated while that of
SOCS1 remains unchanged. Before SOCS1 starts to
function, the increased total STAT1 proteins and the
STAT1 phosphorylation can add cooperatively, leading to
a higher level of phosphorylated STAT1 dimer (STAT1*D)
than that under single HD (Figure 9D). Figure 8B also sug-
gests the combined AI/PS mechanism through the inter-
play among the three processes with different time scales.
Our simulations suggest that the downstream genes such
as IRF-1 also show priming effect (Figure 9E), which is in
agreement with experimental observations [11].
Notice that in this model we only considered the cou-

pling between IFN-g induced STAT1 gene expression
and the canonical Jak/STAT pathway. Figure 6 suggests a
number of parallel pathways that may contribute to the
observed IFN-g priming effect. These pathways function
together to make the temporal profile and amplitude of
the priming phenomenon more complex.

Conclusion
Molecules within a cell interact with each other and form a
large interconnected network. Consequently cellular infor-
mation seldom propagates linearly through a single path-
way. The priming effect, which widely studied using
immune cells, is such an example. Based on our previous in
silico studies [25], in this work we proposed a generic pro-
cedure to identify possible molecular candidates contribut-
ing to the priming effect through combined experimental
time course measurement, subsequent data analysis and
computational modeling. We demonstrated the procedure
with high throughput microarray and other data on inter-
feron-g induced priming effects. This procedure is generally
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Figure 8 Wiring diagram of IFN-g signal transduction. (A) Detailed wiring diagram used in the numerical simulations. IFN-g binding to the
cell membrane embedded Receptor/Jak complex leads to dimerization of the binding complex, and subsequent phosphorylation of Jak
molecules; the phosphorylated dimer IFNRJ2* recruits and phosphorylates cytoplasmic STAT1 molecules; the latter dimerize and move into the
nucleus, functioning as transcription factor to induce expressions of socs1, irf1, and many other genes; SOCS1 can either bind to Jak and inhibit
its activity or compete with STAT1 on binding to IFNRJ2*. IFN-g also induces Stat1 expression through an unknown mechanism independent of
the Jak-STAT canonical pathway. Here we use “X” to represent an undetermined intermediate. For the molecular species, “c” and “n” refer to
cytoplasm and nucleus, respectively; “*” refers to phosphorylation. This diagram is adapted from [31]. (B) A simplified wiring diagram to
emphasize the three key processes with different time scales contributing to the priming effect.

Figure 9 Simulated time course of the IFN-g signaling network. (A, B) Macrophages are given 0.15µg/L and 5µg/L IFN-g treatment for 72
hours, STAT1 responds quickly even at every low concentration while SOCS1 can only be turned on by high dose of IFN-g; (C) Primed
macrophages have an increased pool of STAT1 ready for phosphorylation and activation, while non-primed macrophages still take time to
accumulate equal level of STAT1 (D); (D) Increased STAT1 in primed macrophages is rapidly activated by phosphorylation upon the second
exposure to high concentration of IFN-g; on the contrary, single high dose IFN-g treatment of non-primed cells only initiates a slower and
weaker STAT1 phosphorylation (D). The priming effect is also observed when Jak/STAT downstream genes are examined, including IRF-1(E).
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applicable to other similar problems. Especially it is of great
significance to examine the generality and the specificity of
the observed priming effects, in terms of stimulant and cell
types. One may perform systematic screening using the
proposed procedure combining with high throughput mea-
surements, at both transcriptome and proteome levels.

Methods
Microarray data processing
The microarray data were downloaded from Gene Expres-
sion Omnibus (GEO, accession number: GDS1365). The
data record the expression profile of approximately 12,000
gene probes with 3 independent pools. This is the only
dataset we could find from GEO that include systematic
time course measurement under either single dose or
sequential stimulations (Control, HD 3hr, HD 24hr, LD
Control, LD+HD 3hr, LD+HD 24hr. LD: 0.15 µg/L IFN-g,
HD: 5 µg/L IFN-g).
In order to analyze the gene expression pattern, we first

filtered out genes that contain no “Present Call” in all
three independent pools. Genes without differential
expression (by fold change < 2) under all of the following
conditions were also filtered out: LD vs Control, HD (3hr)
vs Control, HD (24hr) vs Control, LD+HD (3hr) vs Con-
trol and LD+HD (24hr) vs Control. All Differential expres-
sion was statistically analyzed by Welch’s t-test with FDR
correction. The threshold of p-value is set to be 0.05.

Network construction with the IPA database
We used the commercial database IPA® (@Ingenuity) to
query the molecular interactions among interested genes
and products. IPA® assembles the signaling/regulatory
network on a literature basis. Database query was
restricted to immune cells and immune cell lines in Mus
musculus or Homo sapiens. Interaction type was chosen
to be either direct or indirect (i.e., interaction with inter-
mediates). Prediction on potential priming candidates
was made by comparing the priming motifs shown in
Figure 2 and the signaling/regulatory networks con-
structed by IPA®.

Detailed modeling with ordinary differential equations
We used a mathematic model adapted from Yamada
et al. [31] to simulate the dynamics of Jak/STAT pathway
in macrophages under different stimulation scenarios.
Hu et al. have reported that increased expression of
STAT1 induced by the first dose of IFN-g treatment was
responsible for sensitization of Jak/STAT1 pathway [11],
we therefore added two additional reactions to the origi-
nal model: STAT1 transcription triggered by IFN-g and
STAT1 translation. In addition, we introduced two reac-
tions describing IRF-1 transcription and translation. Add-
ing these two reactions allows us to exam the expression
behavior of downstream gene IRF-1 for priming effects.

As it is unclear how IFN-g affects STAT1 expression, we
proposed that an unknown intermediate × transduces the
signal from IFN-g to STAT1 gene.
As shown in additional file 3 and 4, our model

includes 36 variables and 50 parameters. Most of the
rate equations are presented using Mass-action kinetics.
Several equations presenting gene transcription are
denoted using Michaelis-Menten kinetics. We employed
the same initial conditions for Jak, IFN-g receptor, PPX,
PPN and SHP-2 as in the work of Yamada et al. Other
initial conditions are set to be the steady-state values
achieved given zero IFN-g signal. These ODEs are
solved using standard ODE solver in Matlab. In our
simulation, macrophages were primed with 0.15 µg/L of
IFN-g for 3 days, after which cells were washed for 10
minutes with fresh medium and re-stimulated with 5
µg/L IFN-g for 2 days [11]. The total STAT1 and
SOCS1 proteins under repetitive two stimulations and
single high dose of IFN-g treatment were analyzed. In
addition, phosphorylated STAT1 dimer and IRF-1 were
examined as readouts to quantify the level of priming
effect [31].

Additional material

Additional file 1: The maximum change distribution of regulators
induced by HD or LD+HD under each priming mechanism. First
column: Sample distribution in term of maximum change of x1 or x2
under HD alone (i.e., �

max
xi,HD). Second column: distribution of changes

between the maximum induction under LD+HD and the maximum
induction under HD alone (i.e., �

max
xi,LD+HD − �

max
xi,HD). For PS

and AI, there is a great increase in x1 under HD, but the maximum
expression of x1 under LD+HD and HD alone shows no significant
difference; Similarly for PS, x2 expression is enhanced by HD, whereas
maximum expression of x2 under LD+HD is almost the same with that
under HD alone.

Additional file 2: Functional clustering of genes significant
increased or decreased (≥2 fold) under LD IFN-g. The functional
clustering is computed according to the enrichment of gene ontology
retrieved from GOStat database. The top 10 significantly physiological
functions of either LD-induced or LD-reduced genes are listed on the
right. The functional clustering is computed by Cytoscape pluggin BiNGO
2.44.

Additional file 3: Biochemical reactions and parameters for the
computational model.

Additional file 4: Variables and ordinary differentiation equations of
the computational model.

Abbreviations
LPS: lipopolysaccharide; IFN-γ: interferon-gamma; Jak: Janus kinase; STAT1:
signal transducer and activator of transcription 1; IRF-1: interferon regulatory
factor 1; IP-10: interferon gamma-induced protein 10; TLR4: Toll-like receptor
4; LD: low dose; HD: high dose; AI: activator induction; PS: pathway synergy;
SD: suppressor deactivation; SOCS1: suppressor of cytokine signaling 1; TNFα:
tumor necrosis factor-alpha; IL-6: interleukin-6; IL-15: interleukin-15; SH2: Src
homology 2; STAT1*D: phosphorylated STAT1 dimer; PPX: unidentified
phosphatase in the cytoplasm; PPN: nuclear phosphatase; SHP-2: SH2
domain-containing tyrosine phosphatase 2; IFNR: interferon-γ receptor; RJ:
IFNR-Jak complex; IFNRJ: IFN-γ-IFNR-Jak complex; IFNRJ2: IFN-γ-IFNR-Jak
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complex dimer; IFNRJ2*: IFN-γ-IFNR-Jak complex phosphorylated dimer;
STAT1c: cytoplasmic STAT1; STAT1n: nuclear STAT1; STAT1c*: phosphorylated
cytoplasmic STAT1; STAT1n*: phosphorylated nuclear STAT1; STAT1n*Dn:
phosphorylated nuclear STAT1 dimer; STAT1n*Dc: phosphorylated
cytoplasmic STAT1 dimer.
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