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Abstract

Background: Many genetic studies, including single gene studies and Genome-wide association studies (GWAS),
aim to identify risk alleles for genetic diseases such as Type Il Diabetes (T2D). However, in T2D studies, there is a
significant amount of the hereditary risk that cannot be simply explained by individual risk genes. There is a need
for developing systems biology approaches to integrate comprehensive genetic information and provide new
insight on T2D biology.

Methods: We performed comprehensive integrative analysis of Single Nucleotide Polymorphisms (SNP's)
individually curated from T2D GWAS results and mapped them to T2D candidate risk genes. Using protein-protein
interaction data, we constructed a T2D-specific molecular interaction network consisting of T2D genetic risk genes
and their interacting gene partners. We then studied the relationship between these T2D genes and curated gene
sets.

Results: We determined that T2D candidate risk genes are concentrated in certain parts of the genome,
specifically in chromosome 20. Using the T2D genetic network, we identified highly-interconnected network "hub”
genes. By incorporating T2D GWAS results, T2D pathways, and T2D genes’ functional category information, we
further ranked T2D risk genes, T2D-related pathways, and T2D-related functional categories. We found that highly-
interconnected T2D disease network “hub” genes most highly associated to T2D genetic risks to be PI3KR1, ESR1,
and ENPP1. The well-characterized TCF7L2, contractor to our expectation, was not among the highest-ranked T2D
gene list. Many interacted pathways play a role in T2D genetic risks, which includes insulin signalling pathway, type
Il diabetes pathway, maturity onset diabetes of the young, adipocytokine signalling pathway, and pathways in
cancer. We also observed significant crosstalk among T2D gene subnetworks which include insulin secretion,
regulation of insulin secretion, response to peptide hormone stimulus, response to insulin stimulus, peptide
secretion, glucose homeostasis, and hormone transport. Overview maps involving T2D genes, gene sets, pathways,
and their interactions are all reported.

Conclusions: Large-scale systems biology meta-analyses of GWAS results can improve interpretations of genetic
variations and genetic risk factors. T2D genetic risks can be attributable to the summative genetic effects of many
genes involved in a broad range of signalling pathways and functional networks. The framework developed for
T2D studies may serve as a guide for studying other complex diseases.
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Background

Type 2 Diabetes (T2D) is a complex metabolic disease
that affects 25.8 million Americans in 2011, according
to statistics reported by Centers for Disease Control and
Prevention (CDC). T2D occurs when the body develops
resistance to insulin due to the malfunction of insulin
producing B-cells. The developmental process of T2D
involves a complex interplay between genetic and envir-
onmental factors. However, it is not clear how the
underlying genetic defects give rise to T2D pathogenesis
over time. Recent T2D genetic study results, particularly
those from genome-wide association studies (GWAS),
have yielded insights to the molecular mechanisms and
underlying genetic risk factors of T2D [1]. Among the
many risk genes identified are: transcription factor 7-like
2 (TCF7L2)[2-4], peroxisome proliferator-activated
receptor gamma (PPARG)[5-7], and potassium inwardly-
rectifying channel, subfamily J, member 11 (KCNJ11)
[5,6].

These GWAS results were challenging to interpret.
Many single nucleotide polymorphisms (SNPs) identified
from GWAS tend to show strong sample biases and
may not extrapolate from one population to another. In
T2D, only approximately 28% of the disease heritability
may be explained by identified individual SNPs that
showed statistical significance in these samples/popula-
tion—a problem known as missing heritability [8]. The
combined effects of multiple risk SNP’s can increase the
overall odds ratio of T2D by 1.24 per allele for up to
8.68 among 18 risk alleles in one study [9] and by 1.265
per allele in another study [6]. The additive effect sug-
gests the presence of molecular system structures that
are essential to T2D pathogenesis.

To confirm the presence of molecular systems structures
that may better explain missing heritability problems for
T2D, we adopted a Systems Biology approach to studying
T2D genetic risk gene networks as a whole rather than the
risk genes individually. Prior to this study, several reports
[10,11] examined genes implicated T2D differential
expressions in affected tissues. In this study, we used T2D-
associated SNP information curated from the Type 2 Dia-
betes Genetic Association Database (T2DGADB), which
integrated comprehensively reported SNPs, their odds
ratios, population description, and all related metadata
from various T2D GWAS performed worldwide [12]. We
further annotated individual SNPs collected from
T2DGADB with information from the DbSNP database
[13], including information such as nearby genes, Chro-
mosomal location, gene functional class, and base changes.
To create a model for T2D genetic risk gene molecular
systems structure, we built a gene interaction network
seeded by T2D risk genes collected from T2DGADB and
expanded with high-confidence protein interaction data
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collected from the Human Annotated and Predicted Pro-
tein Interaction database (HAPPI) [14]. We also ranked
risk genes in the network according to these high confi-
dence interactions.

Methods

T2D risk SNPs and risk genes data collection and curation
Data from both the ftp site and web pages of T2DGADB
were downloaded. On the ftp site, only a gene list and a
SNP list without annotation were available for download.
Therefore, the complete information from individual web
pages of T2DGADB was extracted into a single Excel file
manually. Data entries with dbSNP SNP cross-references
were kept and entries without dbSNP SNP cross-reference
information were removed from this study. Gene annota-
tion information is derived from the VEGA [15] database.
The Excel file was imported into the ORACLE 11 g data-
base for subsequent efficient database querying.

Statistical significance testing of T2D risk SNPs and risk
genes

Once we collected information integrated from T2DGADB
and dbSNP, we applied standard hyper-geometric tests
(using an R software package called phyper) to the data set
to determine which chromosomes were over-represented/
under-represented. We determined significance on three
data sets. First, the distribution of dbSNP of all human
SNP’s in current build of known origins were compared
against that of risk SNP’s across all chromosomes. Second,
the distribution of genes where the risk SNPs can be
mapped to were compared against that of all the genes
across all chromosomes. Third, the distribution of protein-
coding genes where the risk SNPs can be mapped to were
compared against that of all the protein-coding genes
across all chromosomes.

Construction and analysis of the T2D risk genes network
To generate risk gene network, we incorporated protein
interaction data from the HAPPI database. The database
integrated protein-protein interactions comprehensively
from STRING [16], OPHID [17], BIND [18], HPRD
[19], and MINT [20] to generate an overall confidence
score for each interaction. High-quality interactions (e.
g., confidence score > 0.8 in the database version of the
HAPPI) are strongly correlated with physical binding
based protein interaction relationships. Using risk genes
from T2DGADB as input, we queried the HAPPI data-
base and retrieved related high-quality protein interac-
tions involving risk genes as one of the interaction
partner to build a risk gene protein interaction network.
The retrieved genes in the T2D risk gene subnetwork
were then ranked with the following network gene rank-
ing method, which was originally introduced in [21]:
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1p =kx*In (quNET conf (p, q)) —In (quNETN (b, q)) (1)

In this equation, r, score measures the relative signifi-
cance of a gene/protein in the subnetwork. p and g are
proteins in the subnetwork. k is a constant set at two
for our purposes. conf (p, q) is the confidence score of
the interaction between the two proteins provided by
the HAPPI database and is 0 if p and g do not interact.
N (p, q) is 1 if the proteins have an interaction and is 0
otherwise. With all of this we are able to generate a net-
work map of all involved genes.

Using r,, score as a base score that considers T2D dis-
ease context in the molecular interaction network, we
further defined a modified score, r,,,4 to take into
account of genes with strong genetic ties to T2D.

Tmod = Tp X \/Pcoum X ORauj (2)

Tmoa adjusts r, score of any risk gene with both the
count of populations, P,,,,,, in which significant risk
SNPs were identified, and the average odds ratio (OR,,))
of reported risk SNPs found in these studies. Genes con-
taining only one significant study can still be adjusted
using the formula provided here. In constructing the final
T2D risk gene network, we modified the original network
to exclude studies in which the risk genes were deter-
mined to be insignificant (r, score < 2) before we calcu-
lated r,,,,4 scores for risk genes. Cytoscape software was
used to visualize network relationships among genes and
gene sets (to be described next).

Construction and analysis of the T2D risk genes network
To further sift the results and explore functional con-
nections, we also mapped genes onto known gene sets.
For this purpose, we used DAVID [22,23] to search for
enriched KEGG [24] pathways. We also used GARNET
[25] to identify enriched Gene Ontology categories and
their relationships.

Results

SNPs identified from various T2D GWAS

Based on T2DGADB, we collected 4358 T2D SNP entries
that cover 518 PubMed articles reporting T2D Genome-
wide association studies (GWAS) results worldwide.
Since not all study reported statistics on all SNPs, there
are only 3720 SNP entries with P-values, 2715 SNP
entries with complete odds ratios, 2406 SNP entries with
sample size and minor allele frequency values. All
together, there are 1269 SNP entries with the above-
mentioned complete set of statistics. After comparing
collected information against dbSNP entries manually,
we validated 333 SNP gene annotations, re-annotated 11
SNP gene annotations, and flagged 140 additional genes
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that do not appear to be consistent with dbSNP curated
locus information. The “mis-annotations” in T2DGADB
were partly due to the presence of two genes, e.g.,
ABCCS8 and KCNJ11, for some reported SNPs, therefore
confounding manual curations. In other cases, gene sym-
bols that are similar to each other, e.g., AGER and
RAGE, which do not even appear on the same chromo-
some, also seemed to have been mixed up. The flagging
of putative genes, e.g., LOC387761, according to dbSNP
was performed, because we wanted to prioritize genes
with known gene functions. In the end, we collected
4085 distinct SNP entries that cover 1539 SNPs in 370
different genes. Among these SNP entries, 598 SNPs
from 255 different genes passed a P-Value significance
cutoff of 0.05.

Observation of chromosomal specificity for T2D risk
genes

We calculated the distribution of curated T2D SNPs and
genes across different chromosomes and showed the sta-
tistic significance using P-values in Table 1. The results
showed that chromosomes 1, 6, 11, 12, 17, 20 are over-
represented for T2D SNPs mapped to the chromosome,
with chromosome 20 being most significant (P-value =
3.3E-38). To adjust for potential over-sampling of certain
well-annotated T2D genes for genotyping studies in the

Table 1 P-value of Chromosomal Specificity Significant
Test.

Chromosome P-value P-value (all P-value (coding
(SNP) genes) genes)

1 5.3E-06 0014 0.073
2 099 061 056
3 0071 43E-03 0011
4 0.99 0.21 0.12
5 1.00 0.88 0.81
6 0.039 047 0.58
7 0.087 0.037 0.023
8 1.00 0.70 0.60
9 1.00 0.96 0.95
10 0.15 038 038
11 2.8E-04 083 092
12 0.022 0.55 0.60
13 1.00 057 039
14 1.00 1.00 1.00
15 1.00 0.70 0.72
16 0.65 0.25 0.84
17 0.026 0.15 0.56
18 1.00 0.15 047
19 034 0017 0.13
20 7.0E-38 6.1E-08 24E-06
21 0.94 063 0.58
22 098 1.00 1.00
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GWAS results, we also report the significance testing
results based on the distribution of genes that contained
risk SNPs (namely “all genes”) and the distribution of
protein-coding genes that contained risk SNPs (namely
“coding genes”). The results showed that chromosomes
1, 3,7, 19, and 20 are over-represented for SNP-mapped
T2D genes, with chromosome 20 being most significant
(P-value = 6.1E-08). Moreover, chromosomes 3, 7, and
20 are over-represented for SNP-mapped T2D protein-
coding genes, with chromosome 20 still being most sig-
nificant (P-value = 2.4E-06). The results suggest that
chromosome 20 contains an unusually large number of
T2D risk SNPs across diverse GWAS, and the risk SNPs
can be mapped to a unusually large number of risk
genes, particularly risk protein-coding genes, which can-
not be simply attributed to inherent genotyping bias
among GWAS across different human populations. The
result suggests that chromosome 20 may be a risk
chromosome.

Contributing to this result are genes including Hepa-
tocyte Nuclear Factor 4 Alpha (HNF4A) and Protein
Tyrosine Phosphotase non-receptor type 1 (PTPN1),
both of which have been extensively studied for their
roles to T2D genetics. Linkage studies dating back to
1997 showed a modest association with this region of
chromosome 20 [26,27], when whole genome data was
not available. Particularly interesting is that the interplay
between genetics and environment also may act on this
chromosomal region, e.g., the epigenetic effect of diet
on the promoter regions of HNF4A [28].

Strong network centrality in T2D high-risk genes

In Table 2, we show the original top-ranking T2D risk
genes ordered by their r, scores, which we calculated
based on T2D network connectivity information. After
applying the filter “r, score > = 2” and re-constructing

Table 2 Top-ranking T2D risk genes ordered by their r,
scores in the T2D risk gene protein interaction network.

Rank Gene r, Score
1 PI3KR1 114.09
2 ESR1 77.66
3 ENPP1 74.28
4 IL6 66.95
5 IL10 60.19
6 PRKAA2 5647
7 PDE4B 56.33
8 ADCY3 5345
9 IRS1 48.65

10 cD14 46.16
11 GCK 46.16
12 TCEB1 4423
13 INSR 41.39
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the T2D risk gene network, we derived a r,,,, score for
each gene and show the network in Figure 1. The figure
confirms that genes with high r,,,; scores are all net-
work hubs with the resulting scores shown in Table 3.
Genes with known 7,,,,; scores are shown to their node
sizes and categorized by color. In Table 4, we listed top-
ranking T2D genes ordered by r,,,, scores. Most of the
top-5 ranking genes still kept their relatively high ranks
before r,,,4 score calculations.

Our study suggests PI3KR1 may be the gene with
highest T2D genetic risk associated. PIK3R1 is a regula-
tory subunit of the phosphoinositide-3-kinase, which is
a protein known to be involved in insulin actions, can-
cer signaling, and cytokine signaling. While the coverage
of the gene’s functional relationship to T2D risks in
T2DGADB is very limited (with one article only) [29],
there is increasing evidence, including a recent SNP
UTR study [30] and a mixed methods meta-analysis
[31], that supports our finding.

The second highest-ranking gene in the T2D risk gene
network by r, scores is ESR1, the estrogen receptor 1
gene. The gene encodes a transcription factor that
responds to estrogen action and cancer, and will also
form a heterodimer with ESR2. There are two articles
cited in the T2DGADB database [32,33].

The third highest-ranking gene in the network is
ENPP1, Ectonucleotide Pyrophosphatase/Phosphodies-
terase 1, a trans-membrane glycoprotein involved in
metabolism and has been shown to have an effect of
insulin signaling and glucose metabolism [34]. ENPP1
was well studied among 20 GWAS-related publications
collected through T2DGADB and 10 of those studies
returned positive results in the population examined.

To demonstrate that the network hub genes are indeed
functionally associated with T2D risks, we performed a
t-test on the distribution of risk SNP per gene between
the top ranked 25% of risk genes and the bottom 75% of
risk genes. When ranks are given by the original r,
scores, the results showed significant difference (P =
0.01) between the two groups for the reported risk SNP
per gene raition (3.06 SNP/gene for the top 25% “hub
genes” vs. 1.67 SNP/gene for the bottom 75% “non-hub
genes”). When ranks are given by the modified r, scores,
the results showed even higher significant difference (P =
3.55E-4) between the same two groups (3.74 SNP/gene
for the top 25% “hub genes” vs. 1.45 SNP/gene for the
bottom 75% “non-hub genes”).

Functional heterogeneity and cohesion of T2D high-risk
genes

To gain an overview of functional categories repre-
sented by the T2D high-risk genes, we mapped these
genes onto curated pathways. In Table 4, we list top
significantly over-represented pathways identified by
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colored grey.

Figure 1 T2D risk gene network. Genes are represented as nodes drawn to the scale of their r,,,,4 scores. Higher-risk genes (high average odds
ratio) are colored black and lower-risk genes (low average odds ratio) are colored red. Genes without significantly reported risk information are

the DAVID software. Two highly ranked “novel” path-
ways identified (excluding known T2D pathways) are
the Adipocytokine signaling and the PPAR signaling
pathway.

From this result, we constructed T2D risk gene path-
way interaction network (in Figure 2), if and only if
interacting pathways involve 3 or more risk genes. The
pathway interaction network showed distinct clusters
involving cancer signaling. A few instead of many of
identified risk genes may have contributed to the forma-
tion of these clusters. In the cancer pathway cluster,

CASP9 and PIK3R1 are both involved in 7 different can-
cer pathways, while SOS1 and TCF7L2 are both
involved in 5 different pathways.

Using the GARNET software, we also identified highly
enriched gene ontology (GO) categories (as shown in
Table 5) and “crosstalk” between GO functional cate-
gories (as shown in Figure 3). All these results confirmed
the high relevance of T2D risk genes to glucose-related
metabolism and insulin-related hormonal regulations.
Pathway analysis even revealed possible activation of
pathways related to cancer/cell cycle controls.
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Table 3 Top-ranking T2D risk genes ordered by their r,,,4 scores in the T2D risk gene protein interaction network.

Rank by r,,,4 Score Gene I'mod ScCOre r, Score Original Rank by r, Score
1 ENPP1 430 74.3 3
2 ESR1 142 77.7 2
3 IL6 137 67.0 4
4 IL10 132 60.2 5
5 GCK 119 46.2 1
6 HNF4A 118 4.72 > 13
7 PIK3R1 114 - 1
8 TNF 110 375 > 13
9 IRS2 110 - > 13

10 HNFTA 105 - > 13
11 PPARG 829 4.27 > 13
12 PTPN1 69.8 3.69 > 13
13 IL6R 61.0 - >13

Discussion
In this study, we showed our findings of T2D genetic risk
gens. Genes from the chromosome 20 collectively
accounted for the highest T2D genetic risks of all the
chromosomes. However, the individual contribution of
these chromosome 20 risk genes is relatively small.
HNF4A as the most significant gene on chromosome 20
has a relatively small r, score of 4.72, which is far lower
than all r, scores shown for the top-ranking T2D risk
genes in Table 2. Nonetheless, when all other informa-
tion derived from GWAS results are integrated into the
"'moa Score of 118, the significant contribution of HNF4A
to T2D risks becomes clear. The “missing inheritability”
problem of T2D genetic risks are therefore partially
explained with the calculated integration of T2D molecu-
lar interaction network information and T2D genotype-
phenotype association study results.

In this study, the findings depend on the quality of
underlying data that we integrated from network biology,
GWAS results, and SNP annotations. The data is complex,

Table 4 Enriched pathways identified in the T2D risk
genes.

Term Count %  P-value

Adipocytokine signalling pathway 15 701 621E-1
Type Il diabetes mellitus 12 561 2.18E-09

Insulin signalling pathway 17 794 1.60E-08

Maturity onset diabetes of the young 8 374 56307
PPAR signalling pathway 9 421 9.11E-05

Calcium signalling pathway 10 467 120E-02

Renal cell carcinoma 6 280 1.60E-02

Hypertrophic cardiomyopathy (HCM) 6 280 338E02
Aldosterone-regulated sodium reabsorption 4 187 555E-02
VEGF signalling pathway 5 234 743E-02

Adherens junction 5 234 802E-02

Pathways in cancer 12 561 868E-02

often derived from many different sources and groups. For
example, TCF7L2, the most commonly studied gene in
the collected data set, was covered by 45 GWAS, with up
to a 3.4 odds ratio reported in a Finnish study [35]. How-
ever, such results face tremendous challenges in getting
duplicated in other populations such as Japanese [36], Chi-
nese [37], and Pima Indian [38]. In Table 6, we demon-
strate the heterogeneity of results reported for the gene
reported in different populations. Apparently, the gene is
least significant in the “African American” population
(average odds ratio is 1.19, among the lowest shown; yet it
seems highly significant among Japanese and French, with
average odds ratios being 1.57 and 1.62 respectively.

TCF7L2 was not among the highest ranked T2D genes,
primarily due to the emphasis on the quality of protein
interaction data that we bring in. The HAPPI database
reported 238 protein interactions for TCF7L2 but only
11 of those were above the confidence threshold of 0.8.
This is in contrast to ENPP1, in which we identified 743
protein interactions from the HAPPI database and 87 of
them passed our confidence threshold of 0.8. The rela-
tively low network centrality explained why TCF7L2 is
not ranked at the top overall, although it is a population
target for many T2D GWAS.

Future analysis that is built upon this work could ben-
efit by integrating additional genomics and functional
genomics information, e.g., available miRNA or mRNA
expression information, available copy number varia-
tions results, and whole genome sequencing data.

Conclusions

Large-scale systems biology meta-analyses of GWAS
results can improve interpretations of genetic variations
and genetic risk factors. In this work, we determined that
T2D candidate risk genes are located in higher concentra-
tion in certain parts of the genome, specifically in chromo-
some 20. Using the T2D genetic network, we identified
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involved three of more risk genes.
.

Figure 2 T2D risk gene pathway interaction network. Here, an edge will be created between two pathways, if and only if the pathways

highly interconnected network “hub” genes. By incorporat-
ing T2D GWAS results, T2D pathways, and T2D genes’
functional category information, we further ranked T2D
risk genes, T2D-related pathways, and T2D-related

functional categories. Overview maps involving T2D
genes, gene sets, pathways, and their interactions are all
reported. Moreover, we demonstrate a computational fra-
mework built upon disease-specific data integration,
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Table 5 Enriched gene ontology categories identified in the T2D risk genes.

Gene Ontology Term Genes Involved P Value
glucose homeostasis 16 6.16E-09
regulation of glucose transport 12 6.61E-08
regulation of insulin secretion 15 6.59E-08
glucose transport 15 3.33E-07
peptide secretion 19 2.82E-07
insulin secretion 17 3.78E-07
response to insulin stimulus 22 242E-06
response to peptide hormone stimulus 27 3.02E-06
cellular response to hormone stimulus 25 3.79E-06
hormone transport 20 6.62E-06
cholesterol transport 12 8.92E-06
positive regulation of glucose import 8 9.49E-06
positive regulation of fatty acid metabolic process 8 1.42E-06
cellular response to insulin stimulus 16 1.83E-05
negative regulation of macrophage derived foam cell differentiation 6 2.02E-05
positive regulation of glucose metabolic process 7 3.00E-05
regulation of lipid metabolic process 19 342E-05
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Figure 3 T2D risk gene functional category crosstalk network. For this figure an edge will be created between two functional categories for
all significant Gene Ontology catagories.
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Table 6 GWAS results show population-specific effectiveness in using TCF7L2 for T2D genetic risk profiling.

Population Number of Studies Average Odds Ratio Maximum Odds Ratio Minimum Odds Ratio
American 7 1.36 2.14 0.82
Swedish 6 149 215 1.08

Finnish 5 145 340 1.01

UK 5 1.50 247 1.16

Japanese 3 1.57 2.08 1.18

French 2 162 1.84 145

African American 2 1.19 1.39 1.02
German 2 137 1.51 124

Dutch 2 147 1.96 1.29

Indian 2 1.58 2.28 1.29

American Indian 2 146 1.93 1.15

model construction, and data analysis. The framework
developed for T2D studies may serve as a guide for study-
ing other complex diseases.
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