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Abstract

Background: Homologous recombination is a fundamental cellular process that is most widely used by cells to
rearrange genes and accurately repair DNA double-strand breaks. It may result in the formation of a critical
intermediate named Holliday junction, which is a four-way DNA junction and needs to be resolved to allow
chromosome segregation. Different Holliday junction resolution systems and enzymes have been characterized
from all three domains of life. In bacteria, the RuvABC complex is the most important resolution system.

Results: In this study, we conducted comparative genomics studies to identify a novel DNA-binding protein, YebC,
which may serve as a key transcriptional regulator that mainly regulates the gene expression of RuvABC
resolvasome in bacteria. On the other hand, the presence of YebC orthologs in some organisms lacking RuvC
implied that it might participate in other biological processes. Further phylogenetic analysis of YebC protein

sequences revealed two functionally different subtypes: YebC_| and YebC_lI. Distribution of YebC_| is much wider
than YebC_Il. Only YebC_| proteins may play an important role in regulating RuvABC gene expression in bacteria.
Investigation of YebC-like proteins in eukaryotes suggested that they may have originated from YebC_lII proteins
and evolved a new function as a specific translational activator in mitochondria. Finally, additional phylum-specific
genes associated with Holliday junction resolution were predicted.

Conclusions: Overall, our data provide new insights into the basic mechanism of Holliday junction resolution and

homologous recombination in bacteria.

Background

Homologous recombination is a fundamental mechan-
ism in biology that rearranges genes within and between
chromosomes, promotes DNA repair, and guides segre-
gation of chromosomes at division. This process is com-
mon to all forms of life and involves the exchange (i.e.,
breakage and reunion) of DNA sequences between two
chromosomes or DNA molecules [1-4]. Such exchange
provides a valid evolutionary force that contributes to
promote genetic diversity and to conserve genetic iden-
tity. In addition, homologous recombination is also used
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in horizontal gene transfer to exchange genetic material
between different strains and species of bacteria and
viruses [5].

Although homologous recombination varies widely
among different organisms and cell types, most forms of
it involve the same basic steps: (i) after a DNA break
occurs, sections of DNA around the break on the 5" end
of the damaged chromosome are removed in a process
called resection; (ii) in the strand invasion step that fol-
lows, an overhanging 3’ end of the damaged chromo-
some then “invades” an undamaged homologous
chromosome; (iii) after strand invasion, one or two
cross-shaped structures (called Holliday junctions) are
formed to connect the two chromosomes. Holliday junc-
tion (or four-way junction) has been generally assumed
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as a key intermediate in genetic recombination and
DNA repair since its discovery in 1964 [6]. They are
highly conserved structures from prokaryotes to mam-
mals, which adjoin two DNA duplexes, forming a
branch point where four helices are interconnected by
strand exchange [7,8].

Because Holliday junctions provide a covalent linkage
between chromosomes, their efficient resolution is
essential for proper chromosome segregation. Enzymes
that resolve Holliday junctions by endonucleolytic clea-
vage have been isolated from bacteriophages, bacteria,
archaea and certain eukaryotes [9-12]. In Escherichia
coli, the enzymes that are involved in resolution of Hol-
liday junction include RuvABC, RecU, RecG, and RusA
[13-15]. The RuvABC proteins (or RuvABC resolva-
some) constitute a simple and the most widely used sys-
tem for the processing of Holliday junctions. RuvAB
proteins catalyze the branch migration whereas RuvC
endonuclease resolves the Holliday junction into duplex
products [15,16]. RecU, a RuvC functional analog, was
found to serve as a Holliday junction resolvase in some
firmicutes and mollicutes that lack RuvC [17,18]. The
RecG protein is a DNA helicase and may promote
branch migration of a variety of branched DNAs includ-
ing Holliday junctions [19,20]. The RusA protein is a
homodimeric Holliday junction-specific endonuclease
and can bind a variety of branched DNA structures
[21,22]. RecG may be required by RusA to branch
migrate Holliday junctions to cleavable sequences [9].

Homologs of RuvABC, RecU, RecG, and RusA are
absent from almost all sequenced archaea and eukaryotes.
In archaea, the Hjc protein, a distantly related member of
the type II restriction endonuclease family, has been char-
acterized to serve as a Holliday junction resolving enzyme
[23,24]. Little is known about the mechanism of eukaryotic
Holliday junction resolution and the enzymes involved. It
was reported that Saccharomyces cerevisiae contains a
Holliday junction resolvase Ccel [25,26], an equivalent
enzyme from Schizosaccharomyces pombe (named Ydc2)
has also been found [27]. These enzymes are targeted to
the mitochondria, suggesting that they can only cleave
junctions formed during recombination of mitochondrial
DNA. Very recently, a nuclear Holliday junction resolvase
was first identified from both humans and yeast [28].
These resolvases (GEN1 in human and its yeast ortholog
Yenl) represent a new subclass of the the Rad2/XPG
family of nucleases, and promote Holliday junction resolu-
tion in a manner similar to that shown by the E. coli RuvC
[29,30]. However, the precise mechanism regulating the
activities of these enzymes is unknown and the factors
involved remain unidentified.

In this study, we carried out comparative genomics
approaches to investigate the mechanisms of Holliday
junction resolution in prokaryotes. Occurrence of
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known components of Holliday junction resolution (e.g.,
RuvABC and RecU) could be easily identified by com-
parative genomics. Our analysis also generated evidence
for a novel DNA-binding regulatory protein family
involved in Holliday junction resolution in bacteria.
Homologs of this family were detected in a variety of
eukaryotes and are predicted to be localized in mito-
chondria. Overall, these data provide new insight for
better understanding the basic mechanism of homolo-
gous recombination in nature.

Results and discussion

Distribution of the RuvABC/RecU Holliday junction
resolution system in prokaryotes

Except a very small number of organisms (less than 2%)
with small and condensed genomes (mostly parasites),
all sequenced bacteria contain RuvA and RuvB genes.
As RuvAB complex may catalyze both Holliday junction
branch migration and replication fork reversal [31,32],
the occurrence of their genes may not precisely reflect
the Holliday junction resolution trait. Thus, we used the
co-occurrence of RuvABC or RuvAB/RecU as a signa-
ture for the presence of RuvABC/RecU-dependent Holli-
day junction resolution trait.

Sequence analysis of bacterial genomes revealed a
wide distribution of RuvABC resolvasome. We identified
1240 organisms (80% of all sequenced bacteria) that
contain this system, which is consistent with previous
observations that RuvABC complex is the most impor-
tant Holliday junction resolution system in bacteria
[9,33]. Details are shown in Table S1 [see additional file
1]. All RuvC-containing organisms have RuvA and
RuvB, most of which have RuvABC genes within the
same operon. The RuvAB/RecU system was detected in
256 organisms (255 in Firmicutes and Mollicutes),
almost all of which lack RuvC genes. All detected RecU
genes are distant from RuvAB genes based on genomic
context analysis. Among all examined genomes, only
four organisms belonging to Firmicutes/Clostridia were
found to have both RuvC and RecU genes. Figure 1
shows the distribution of RuvABC and RuvAB/RecU
systems in different bacterial taxa based on a highly
resolved phylogenetic tree of life developed by Ciccarelli
and coworkers [34]. Our data are consistent with pre-
vious studies that RuvC was replaced by its functional
analog RecU in firmicutes and mollicutes [17,18]. On
the other hand, the absence of both resolvase genes in
27 organisms that have RuvAB complex might suggest
the presence of unknown resolvase or alternative resolu-
tion system (such as RecG-RusA) in these organisms.

In contrast to bacteria, only two closely related archaea
in Methanomicrobiales (Methanoregula boonei and
Methanospirillum hungatei) were found to have
RuvABC system, suggesting that they recently acquired



Zhang et al. BMC Systems Biology 2012, 6(Suppl 1):520
http://www.biomedcentral.com/1752-0509/6/51/520

Page 3 of 10

Bacterial phyla

Tenericutes/Mollicutes
Fimicutes/Others
Firmicutes/Lactobacillales
Fimicutes/Bacillales
Firmicutes/Clostridia
Synergistetes

Defernibacteres

Nitrospirae

Chlamydiae

Bacteroidetes

Chlorobi

Actinobacteria

Spirochaetes

Planctomycetes

Cyanobacteria

Chlorofiexi
Deinococcus-Thermus
Thermotogae

Aquificae

Dictyoglomi

Elusimicrobia

Candidate division TG1
Fusobactena

Lentisphaerae

Verrucomicrobia

Candidate division TM7
Acidobacteria
Deltaproteobacteria
Epsilonproteobacteria
Alphaproteobacteria/Ricketlsiales
Alphaproteobacteria/Others
Alphaproteobacteria/Rhizobiaceae
Betaproteobacteria/Bordetella
Betaproteobacteria/Burkholderiaceae
Belaproteobacteria/Neisseriaceae
Betaproteobacteria/Others

[T, ok

Gammaproteobacteria/Pasteurellaceae
Gammaproteobacteria/Vibrionaceae

=il

Gammaproteobacteria/Others
Proteobactena/Others

Total

.

Gammaproteobacteria/Enterobacteriales

Gammaproteobactenia/Pseudomonadaceae
Gammaproteobactenia/Xanthomonadaceae

Figure 1 Occurrence of RuvABC system and YebC family in different bacterial taxa. The tree is based on a highly resolved phylogenetic
tree of life (see Methods). “YebC-RuvC operon” represents organisms in which YebC and RuvC genes are located within the same operon.

|
RuvABC RuvAB YebC YebC-RuvC

Organisms
IRecU operon

30 - 26 24 -
36 21 15 36 17
99 - 99 99 -
71 12 58 70 2
150 83 57 147 34
7 7 - 7 4
3 3 - 3 3
2 1 - 2 -
1 1 - 1 -
107 103 1 105 3
1 1 - 11 1
160 160 - 160 139
34 25 - 34 19
8 8 - 8 -
45 45 - 45 -
17 17 - 17 14
13 13 - 13 2
12 12 - 12 -
10 3 - 10 3
2 2 - 2 2
1 1 - 1 1
1 1 - 1 1
21 21 - 21 -
2 2 - 2 1
9 9 - 9 -
3 1 - 2 -

6 6 - 6
47 45 - 47 36
36 36 - 36 -
32 29 - 31 1
151 149 - 149 58
11 1 - 11 9

5 5 - 5
35 35 - 35 -
21 21 - 21 -
59 57 - 57 18
79 74 - 74 7
18 18 - 18 18
29 29 - 29 1"
17 17 - 17 17
12 12 - 12 12
124 121 - 122 66
2 2 - 2 1
1549 1240 256 1524 578

this system from bacteria by horizontal gene transfer.
No RecU homolog could be detected in archaea.

Identification of a new family involved in RuvABC-
dependent Holliday junction resolution in bacteria
Since the RuvABC complex has been shown to be the
most widely used system for the resolution of Holliday

junctions in bacteria, identification of functional linkages
involving RuvABC (especially RuvC which is specific for
Holliday junction resolution trait) may help understand
the details of this important process. First, we used
STRING web server [35] to examine possible functional
linkages based on neighborhood, gene fusion and co-
occurrence analyses. The top candidates for RuvA, RuvB
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or RuvC are shown in Table 1. Except for known com-
ponents of RuvABC, the protein hit with the best score
was YebC, a putative cytoplasmic protein with unas-
signed function (COGO0217, uncharacterized conserved
protein; pfam01709, domain of unknown function
DUF28). This gene was located very close to or even
within the same operon with RuvC in many bacteria. In
addition, YebC and RuvABC showed similar patterns of
occurrence in most bacterial phyla based on the
STRING output. The next predicted RuvABC link was
YbgC, a bacterial 4-hydroxybenzoyl-CoA thioesterase
involved in phospholipid metabolism and is also asso-
ciated with the Tol-Pal system [36]. Most of other can-
didates predicted by STRING are also involved in Tol-
Pal system. It has been known that this system is impor-
tant for cell envelope integrity and is part of the cell
division machinery. In E. coli, the Tol-Pal system is
composed of the YbgC, TolQ, TolA, TolR, TolB, Pal
and YbgF proteins [36,37]. So far it is unclear whether
some of these proteins are involved in DNA repair and
recombination. Similar analysis was also done for RecU
and no strong functional partners could be assigned
(data not shown). In this study, we only focus on YebC
proteins.

Considering that YebC might be functionally asso-
ciated with RuvABC resolvasome, we further analyzed
the distribution of this protein family in all sequenced
prokaryotes. Homologs of YebC were not detected in
archaea, implying that YebC may either have evolved in
bacteria or lost in the ancestors of archaea. In bacteria,
the distribution of YebC appeared to be wider than
RuvABC system (Figure 1). Almost all sequenced organ-
isms (98%) possess YebC genes, suggesting that YebC
may be also involved in other processes independent of
RuvABC system. However, the facts that all RuvC-con-
taining organisms have YebC, and that YebC and RuvC
genes are located in the same operon in approximately
half of the RuvC-containing organisms (Figure 1),

Table 1 STRING analysis of genes functionally associated
with RuvABC resolvasome.

Rank RuvA RuvB RuvC
1 RuvB RuvA RuvB
2 RuvC RuvC RuvA
3 YebC YebC YebC
4 YbgC QueA YbgC
5 TolB YbgC YeeN
6 QueA TolB TolB
7 FolC PanB CysS
8 MaeB TolQ TolQ
9 YeeN TolR QueA
10 TolQ YjeS PurH
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indicate a strong relationship between them. These
results were consistent with a previous study of some
“hypothetical” genes expressed in Haemophilus influen-
zae, which also suggested a potential association of
YebC with RuvABC in this organism [38].

Phylogeny and functional classification of YebC family
The majority of YebC-containing bacteria (92%) have
single copy of this gene. Intriguingly, in the organisms
that have more than one YebC homologs, there is
always one protein whose gene is located very close to
either RuvC or RuvAB (when RuvC is absent) genes,
implying that YebC proteins could be divided into dif-
ferent subgroups. Phylogenetic analysis of YebC proteins
from sequenced bacteria revealed that YebC family may
contain two subtypes: YebC_I and YebC_II (Figure 2).

Further analysis of bacterial genomes revealed wide but
unbalanced distribution of different YebC subfamilies
(Figure 3). YebC_I was present in nearly all bacterial
phyla with the exception of Mollicutes, whereas YebC_II
was detected in approximately half of the examined phyla
(mostly in Bacteroidetes, Firmicutes and Proteobacteria).
This observation suggests that YebC_I proteins may be
used by most bacterial lineages and should be involved in
an ancient trait that was common to all or almost all spe-
cies in this domain of life. Interestingly, only members of
YebC_I subgroup were found to be located very close to
the genes encoding RuvC (Figure 3), implying a strong
association between YebC_I and RuvC. In some of the
organisms that lack RuvC (no matter whether they have
RecU genes or not), YebC_I was located next to RuvAB
genes, suggesting a potential link between YebC_I and
RuvAB complex in the absence of RuvC in these organ-
isms. However, it is unclear if YebC_I is functionally
related to RecU. In contrast, there is no evidence that
YebC_II subgroup might be involved in RuvABC-depen-
dent Holliday junction resolution, even though only Yeb-
C_II members were observed in most Bacteroidetes,
Epsilonproteobacteria and Gammaproteobacteria/Vibrio-
naceae that have RuvABC resolvasome. Thus, it appeared
that YebC_I proteins are functionally associated with
RuvABC resolution system. YebC_II might have evolved
from YebC_I proteins with novel function. It should be
noted that several YebC_I proteins were also found in a
small number of organisms that lacked the complete
RuvABC or RuvAB/RecU system, implying that YebC_I
might have additional function in these organisms.

Multiple alignment of YebC_I and YebC_II sequences
suggested several specific residues which are only pre-
sent in each subfamily (Figure 4). An attractive hypoth-
esis is that YebC_I is functionally different from
YebC_II, perhaps distinguished by some of these con-
served residues.
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Figure 2 Phylogenetic analysis of YebC family. Organisms where YebC genes are located very close to RuvABC genes are shown in red. The
root node of the tree is shown as a blue dot. Separate branches for the two subtypes of YebC in bacteria and the eukaryotic YebC-like proteins

are also shown. Both bootstrap support (the number of times each branch was supported in bootstrap replication) and the measurement of
distance for the branch lengths (shown by a bar) are indicated.

Prediction of the function of YebC proteins YebC proteins from Aquifex aeolicus (YebC_I), E. coli
Although YebC is a large family of widespread con- (YebC_I), and Helicobacter pylori (YebC_II) have been
served proteins whose function is unknown, this group  solved (PDB ID codes 1LFP, 1KON, and 1IMW?7, respec-
of proteins has been extensively characterized from the tively). A previous structural analysis of A. aeolicus
structural perspective. To date, the crystal structures of YebC revealed a large cavity with a predominance of
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( A
Bacterial phyla Organisms YebC_| YebC_lI Both
All YebC-RuvC All YebC-RuvC
Tenericutes/Mollicutes 30 - - 24 - -
Firmicutes/Others 36 21 17 15 - -
Firmicutes/Lactobacillales 99 61 - 53 - 15
Firmicutes/Bacillales 71 22 2 55 - 7
Firmicutes/Clostridia 150 145 34 2 - E
Synergistetes 7 7 7 - - -
Deferribacteres 3 3 3 - - -
Nitrospirae 2 2 - - - -
Chlamydiae 1 1 - - - .
Bacteroidetes 107 5 3 101 - 1
Chlorobi 1" 1" " - - -
Actinobacteria 160 160 139 - - .
Spirochaetes 34 34 19 - - -
Planctomycetes 8 5 - 4 - 1
Cyanobacteria 45 45 - - - -
Chloroflexi 17 17 14 - - -
Deinococcus-Thermus 13 13 2 - - -
Thermotogae 12 12 - - - -
L Aquificae 10 10 3 - - -
Dictyoglomi 2 2 2 - - -
Elusimicrobia 1 1 1 . - -
Candidate division TG1 1 1 1 - - -
Fusobactena 21 18 - 4 - 1
Lentisphaerae 2 1 1 1 - -
Verrucomicrobia 9 9 - 5 - 5
Candidate division TM7 3 2 - - - -
E Acidobacteria 6 6 1 - - -
L Deltaproteobactenia 47 43 36 8 -
Epsilonproteobactena 36 3 - 33 - -
Alphaproteobactenia/Rickettsiales 32 31 1 - - -
_E Alphaproteobacteria/Others 161 149 58 1 - 1
“ Alphaproteobacteria/Rhizobiaceae 1 1 9 - - -
Betaproteobacteria/Bordetella 5 5 - - - -
Betaproteobacteria/Burkholderiaceae 35 35 - - - -
Betaproteobacteria/Neisseriaceae 21 21 - - - .
Betaproteobacteria/Others 59 57 18 13 - 13
- Gammaproteobacternia/Enterobactenales 79 74 71 9 - 9
Gammaproteobacteria/Pasteurellaceae 18 18 18 - - .
Gammaproteobacteria/Vibnionaceae 29 1" 1" 29 - "
Gammaproteobacteria/Pseudomonadaceae 17 17 17 15 - 15
Gammaproteobacteria/Xanthomonadaceae 12 12 12 - - -
Gammaproteobacteria/Others 124 94 66 64 - 36
Proteobacteria/Others 2 2 1 1 - 1
Total 1549 1207 578 437 0 120

\

Figure 3 Occurrence of two YebC subfamilies in bacteria. YebC_|, organisms that contain members of YebC_| subfamily; YebC_lI, organisms
that contain members of YebC_II subfamily; Both, organisms that contain members of both YebC_| and YebC_II subfamilies; YebC-RuvC,
organisms in which YebC_I/YebC_Il and RuvC genes are located within the same operon.

negatively charged residues on the surface of this pro-
tein [39]. Interestingly, all three structure-solved pro-
teins have a putative DNA binding function, suggesting
that YebC proteins may serve as a potential transcrip-
tion factor. A recent study reported that the YebC pro-
tein in Pseudomonas aeruginosa (PA0964, YebC_I) may

be involved in negatively regulating the quorum-sensing
response regulator pgsR of the PQS system by binding
at its promoter region [40]. This result implied the com-
plexity of the function of YebC in nature.

Although the function of YebC proteins and the biolo-
gical pathways they are involved in are unclear, our
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Figure 4 Multiple sequence alignment of YebC proteins in bacteria. Representative sequences were divided into YebC_| and YebC_lI
subgroups. Residues which are strictly conserved in the YebC_| subgroup are shown in red background. Residues which are strictly conserved in
the YebC_Il subgroup are shown in blue. Other residues shown in white on black or grey are conserved in homologs.

current studies provide some useful information for this serve as a multi-functional transcription regulator
widely used protein family: (i) both YebC_I and YebC_II = mainly involved in regulating the expression of RuvABC
subgroups may bind DNA; (ii) YebC_I proteins may genes as well as other genes such as pqsR; (iii) YebC_II
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might have evolved from YebC_I by gene duplication
and have novel function independent of Holliday junc-
tion resolution or even DNA recombination. A future
challenge would be to understand the DNA binding pat-
terns of YebC_I and YebC_II proteins as well as addi-
tional processes they may regulate.

Investigation of YebC-like proteins in eukaryotes
Significant YebC homologs were also detected in a vari-
ety of eukaryotes, including fungi, plants and animals
(Table S2 [see additional file 2]). Very recently, it was
reported that a mutation in the human gene encoding a
YebC homolog (named CCDC44, localized to the mito-
chondria) led to a specific defect in the synthesis of the
mitochondrial DNA-encoded cytochrome c oxidase sub-
unit I (COX I) [41]. Thus, the human CCDC44 protein
was renamed as TACO1, which may serve as a mamma-
lian mitochondrial translational activator of COX I. Pos-
sible mechanisms of TACO1l action to ensure
translation of COX 1 were also considered: (i) securing
an accurate start of translation; (ii) stabilizing the elon-
gating polypeptide; and (iii) interacting with the peptide
release factor [41,42].

We analyzed the sequences of all eukaryotic YebC-like
proteins and the evolutionary relationship with their
bacterial counterparts. All detected YebC-like proteins
in eukaryotes have mitochondrial signal sequences, sug-
gesting that they are mitochondria-targeted proteins.
Phylogenetic analysis of bacterial YebC and eukaryotic
YebC-like proteins showed that the eukaryotic YebC-
like proteins were clustered with YebC_II subfamilies
(Figure 2), implying that these YebC-like proteins
(including human TACO1) might have evolved from
ancient YebC_II proteins. The mitochondrial signal
sequences were then added to target them into the
mitochondria as a specific translational activator, at least
in metazoan mitochondrial genome. As eukaryotes lack
the RuvABC resolvasome, it is unclear whether these
YebC-like proteins are involved in homologous recombi-
nation in mitochondria, or whether they still have the
capacity to bind mitochondrial DNA. Further studies
are required to determine the substrates and function of
YebC-like proteins in other organisms as well as their
relationship with DNA repair and recombination in
mitochondria.

Prediction of additional phylum-specific genes associated
with RuvABC resolvasome

Comparative genomics studies also suggested additional
candidate genes involved in RuvABC-dependent Holli-
day junction resolution in certain bacterial phyla. In Fir-
micutes/Clostridia, most organisms possess a conserved
hypothetical protein (CTC02214 in Clostridium tetani, a
distant homolog of pfam08955, BofC C-terminal

Page 8 of 10

domain) whose gene is always located next to either
YebC or RuvC gene, implying a potential functional link
with them. However, orthologs of this protein family
were exclusively detected in Clostridia, suggesting that
this protein might be newly evolved in this phylum.
Similarly, another conserved hypothetical protein
(DUF208 super family; COG1636, uncharacterized pro-
tein conserved in bacteria) was also identified in a vari-
ety of distantly related organisms where its gene is often
located close to either YebC or RuvABC genes (data not
shown). Further studies, however, are needed to verify
their function and the relationship between these genes
and genetic recombination in bacteria.

Conclusions

In this study, we carried out comparative genomics to
identify a novel DNA-binding regulatory protein family,
YebC, which was strongly linked to Holliday junction
resolution in bacteria. Phylogenetic analysis revealed
that YebC might be divided into two functionally differ-
ent subgroups: YebC_I and YebC_II. YebC_I may serve
as a multi-functional transcriptional regulator that
mainly regulates the gene expression of RuvABC resol-
vasome in bacteria. It could not be excluded that Yeb-
C_II is involved in homologous recombination, but
current evidence does not provide strong support for
this possibility. Further studies on eukaryotic YebC-like
proteins suggested that they may have evolved from
YebC_II subgroup and have different function to serve
as a specific translational activator in mitochondria.

Methods

Genomes, sequences and resources

Fully sequenced genomes from the Entrez Genome
Database at NCBI were used in this study [43]. Because
of the large number of strains for some bacterial species,
only one strain was selected for each species. A total of
1549 bacteria, 97 archaea and 330 eukaryotes were ana-
lyzed (as of October 2011).

We used E. coli RuvA (COG0632, Holliday junction
resolvasome DNA-binding subunit), RuvB (COG2255,
Holliday junction resolvasome helicase subunit), RuvC
(COGO0817, Holliday junction resolvasome endonuclease
subunit) and Bacillus subtilis RecU (pfam03838, recom-
bination protein U) sequences as queries to search for
RuvABC or RuvAB/RecU-dependent Holliday junction
resolution trait. For each of these proteins, TBLASTN
[44] was initially used to identify genes coding for
homologs with a cutoff of E-value < 0.1. Orthologous
proteins were then defined using the conserved domain
(COG/Pfam) database and bidirectional best hits [45].

The STRING (Search Tool for the Retrieval of Inter-
acting Genes/Proteins) database and programs [35] were
used to identify gene candidates that may be
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functionally related to RuvABC resolvasome. Different
parameters were used for better performance.

Multiple sequence alignment and phylogenetic analysis
Sequence alignments were performed with CLUSTALW
[46] using default parameters. Ambiguous alignments in
highly variable (gap-rich) regions were excluded. The
resulting multiple alignments were then checked for
conservation of residues and manually edited. Phyloge-
netic analyses were performed using PHYLIP programs
[47]. Pairwise distance matrices were calculated by
PROTDIST to estimate the expected amino acid repla-
cements per position. Neighbor-joining trees were
obtained with NEIGHBOR and the most parsimonious
trees were determined with PROTPARS.

Additional material

Additional file 1: This file contains the distribution of RuvA, RuvB,
RuvC, RecU and YebC genes in sequenced bacteria.

Additional file 2: This file contains the distribution of YebC-like
genes in sequenced eukaryotes.
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