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Abstract

Background: We have recently identified a number of active regulatory networks involved in diabetes progression
in Goto-Kakizaki (GK) rats by network screening. The networks were quite consistent with the previous knowledge
of the regulatory relationships between transcription factors (TFs) and their regulated genes. To study the
underlying molecular mechanisms directly related to phenotype changes, such as diseases, we also previously
developed a computational procedure for identifying transcriptional master regulators (MRs) in conjunction with
network screening and network inference, by effectively perturbing the phenotype states.

Results: In this work, we further improved our previous method for identifying MR candidates, by listing them in a
more reliable manner, and applied the method to reveal the MR candidates for diabetes progression in GK rats
from the active networks. Specifically, the active TF-gene pairs for different time periods in GK rats were first
extracted from the networks by network screening. Another set of active TF-gene pairs was selected by network
inference, by considering the gene expression signatures for those periods between GK and Wistar-Kyoto (WKY)
rats. The TF-gene pairs extracted by the two methods were then further selected, from the viewpoints of the
emergence specificity of TF in GK rats and the regulated-gene coverage of TF in the expression signature. Finally,
we narrowed all of the genes down to only 5 TFs (Etv4, Fus, Nr2f1, Sp2, and Tcfap2b) as the candidates of MRs,
with 54 regulated genes, by merging the selected TF-gene pairs.

Conclusions: The present method has successfully identified biologically plausible MR candidates, including the
TFs related to diabetes in previous reports. Although the experimental verifications of the candidates and the
present procedure are beyond the scope of this study, we narrowed down the candidates to 5 TFs, which can be
used to perform the verification experiments relatively easily. The numerical results showed that our computational
method is an efficient way to detect the key molecules responsible for biological phenomena.

Background
Recent developments in genome-wide computational
analyses have successfully identified causal interactions
[1], and showed promise in the identification of dysregu-
lated genes in development and tumor progression path-
ways [2]. For example, a computational analysis
procedure was applied to identify the MRs causally
linked to the activation of a specific gene set, mesenchy-
mal gene expression signature (MGES), in human malig-
nant glioma [3]. Indeed, 53 TFs were obtained by the
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ARACNe algorithm and the MGES enrichment test, and
among them, the top 6 TFs with the largest fraction of
MGES genes were experimentally controlled, as the MR
candidates. Finally, 2 of the top 6 TFs, STAT3 and
CEBPB, were experimentally verified as MRs of
mesenchymal transformation. Unfortunately, the compu-
tational method employed in the previous work was
unsophisticated and required further improvement. For
example, it is unclear why the method selected the top
6 TFs from 53 TFs, rather than 5 or 7 TFs. Although
the coverage of the TFs for the MGES genes was care-
fully considered, there was no rational criterion for the
final selection of the MR candidates. Furthermore, ARA-
CNe considers the relationships between three genes for
selecting MR candidates. However, there are some well
known mathematical techniques that consider multiple
relationships and have been applied to infer regulatory
networks [4].
We previously reported 39 candidates of active net-

works for diabetes progression in the Goto-Kakizaki rat
(GK), which were identified by network screening, in
comparison with the Wistar-Kyoto (WKY) rat [5]. Net-
work screening is a procedure to extract the regulatory
networks activated under particular conditions, based on
the known regulatory networks [5-7]. The candidates
were characterized by the known biological pathways
that were consistent with the previous knowledge about
diabetes. Unfortunately, the plausibility of the active net-
works could not be verified experimentally. This was
partly because the results were presented in a metaphy-
sical form, and as the biological pathway, instead of the
list of concrete target genes. Actually, the active net-
works were composed of many genes that were not
amenable to experimental verification.
To overcome these problems, we recently developed a

procedure for identifying MR candidates, by a combina-
tion of network screening and network inference [8].
The network screening strongly depends on the pre-
vious knowledge of the regulatory networks. To com-
pensate for the limitations of network screening, we
introduced a network inference method, which is a ver-
sion of a path consistency algorithm (PC-A) [9] or a
modified PC-A [10,11] that applies PC-A to biological
data with high redundancy. The performance of our
procedure was tested for MRs in human malignant
glioma, using the same data set in ref. [3], and worked
well [8]. In total, 22 TFs and 27 TFs were detected by
the network screening and the network inference,
respectively, and 3 TFs overlapped between them. Inter-
estingly, 2 of the 3 TFs were STAT3 and CEBPB, which
were verified experimentally as the master regulators in
the previous report [3].
In this paper, we sought to identify the candidates of

master regulators for diabetes progression, using the

spontaneous diabetic GK rat model. Based on the net-
works specific to diabetes progression identified in our
previous report [5] and the networks inferred by the
modified PC-A, we intended to narrow down the candi-
date molecules responsible for diabetes further, by iden-
tifying the master regulators that play a central role in
diabetes progression in GK rats. Furthermore, we
improved our previous method [8] to narrow down the
candidates in a more reliable manner, by considering
the coverage of a TF for its regulated genes in a statisti-
cal manner, in addition to the specificity of the TF to
the target biological phenomena. As expected from the
previous case of the computational identification of MRs
in a human brain tumor [8] and the present improve-
ments, we identified a limited set of reliable MR candi-
dates, and thus provided information for further
experimental design for candidate verification.

Results
Overview of our computational procedure
In our computational procedure, we identified MR can-
didates by two approaches, which are schematically
shown in Figure 1. One is a knowledge-based approach,
which estimates the consistency of the network struc-
tures among the known networks with the measured
data (named “network screening”) [5-7]. The other is a
data-driven inference approach, which estimates the
conditional independency between the genes by calculat-
ing the partial correlation coefficients (named “modified
path consistency algorithm”) [10,11]. In both cases, we
further selected the MR candidates by considering the
enrichment of the gene expression signature in the net-
works. Finally, we refined the candidates by considering
the TF specificity and the regulated-gene coverage. The
details are described in the Methods.

MR candidates detected by network screening
In our previous study [5], we used network screening to
identify 39 networks for GK and WKY rats in three
growth periods: 4w, from 8w to 12w, and from 16w to
20w, among the 1,760 networks in the reference network
set. Based on these results, we further selected the MR
candidates. From the 39 networks, in total, we extracted
568 binary relationships of TFs and their regulated genes,
which were specifically found in the three periods for GK
and WKY rats, under the condition that the gene expres-
sion shows a difference with a false discovery rate (FDR)
of less than 0.05, between the two strains of rats for each
period (see the details in the Methods). The numbers of
genes specifically found in each period in GK and WKY
rats are as follows: 54 genes at the period of 4w in GK;
199 at 8w and 12w in GK; 56 at 16w and 20w in GK; 95
at the period of 4w in WKY; 125 at 8w and 12w in WKY;
and 39 at 16w and 20w in WKY. Note that some TF-
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gene relationships emerged iteratively for different peri-
ods in GK and WKY rats.
Among the TF-gene relationships selected above, the

TFs were narrowed down in two ways. First, the TF-
gene relationships were selected by the specificity, which
means that the TFs emerge only in GK, but not in
WKY. As a result, we found a total of 21 TFs, as shown
in Table 1. Second, the TF-gene relationships were
selected by the coverage, which means how many genes
the TFs regulate, among the genes in the expression sig-
nature. The TFs thus selected were sorted according to
the coverage, and then the MR candidates were further
selected by a statistical test (see the Methods) for each
period in GK and WKY listed in Table 2. As seen in the
table, most of the TFs emerged in both GK and WKY,
in terms of the coverage selection. We finally found 3
TFs (EGR1, NRF1, and TCFAP2A) among the genes by
the initial selection in Table 2.

MR candidates inferred by the modified path consistency
algorithm
We first inferred six networks of all genes on the micro-
array for each of the three periods in GK and WKY rats,

by the modified path consistency algorithm [10,11], and
then the TF-gene relationships were extracted from
each network. After the extraction, only the relation-
ships that included the genes with a significant differ-
ence between GK and WKY rats were further selected
for the 6 sets of relationships.
Using the same procedure as that described in the

preceding subsection, the TFs were narrowed down.
First, we chose the relationships in terms of the gene-
emergence specificity. As a result, 108 TFs were identi-
fied as the MR candidates in Table 3. The number of
candidates seems to be large, even in comparison with
the candidate number, 27 TFs, in the previous case of
the brain tumor [3]. While one network was considered
to identify the candidates in the previous paper, three
networks for the three periods in GK rats were surveyed
to select the candidates in the present study. Thus, the
number of TFs extracted from one network, 36 TFs on
average, is similar to that in the previous study. Second,
the TF-gene relationships were selected by the coverage.
We chose the TF-gene relationships by a statistical test
(see the details in the Methods) for each period in GK
and WKY, as shown in Table 4. In contrast to the

Figure 1 Workflow of the MR identification procedure.

Table 1 TFs identified by network screening in terms of specificity.

Ar, Bcl6, Brca1, Etv4, Fus, Gli1, Hes1, Hnf1b, Hnrnpk, Klf10, Klf4, Lyl1, Mef2c, Nfia, Nr2f1, Nrl, Pax6, Sp2, Sp4, Tcfap2b, Wt1

All of the gene names are cited from the Rat Genome Database http://rgd.mcw.edu/ in all of the tables, the figures, and the text.
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coverage selection in network screening, only a few TFs
emerged in both GK and WKY. Indeed, among the 44
TFs in Table 4, only two TFs (Tbpl1 and Cbfb) emerged
in both GK and WKY. Finally, we found 42 TFs as MR
candidates.

MR selection by comparison of the TF sets detected by
the two methods
We obtained the final MR candidates by selecting the
overlapped TFs detected by the two methods in terms
of two criteria (Tables 1, 2, 3, 4), as shown in Table 5.
Indeed, 21 TFs detected by network screening in terms
of specificity overlapped with only 4 TFs (Etv4, Nr2f1,
Sp2, and Tcfap2b) and 2 TFs (Fus and Sp2) by the mod-
ified path consistency algorithm by two criteria, respec-
tively. In contrast, 3 TFs detected by network screening
in terms of coverage showed no overlapped TFs by the
path consistency algorithm by two criteria. This differ-
ence might reflect the restriction of the known TF-gene
relationships in network screening.
As a result, we merged the MR candidates identified

by the two methods, and 5 TFs were finally identified as
the candidates of MRs for diabetes progression in GK
rats. Note that Sp2 emerged in both the 4 TFs and 2
TFs. The 5 final MR candidates with their regulated
genes, in total 54 genes, are listed in Table 6.

Discussion
In this study, we have identified the candidates of mas-
ter regulators based on our previous study [5], by using
an improved method for their identification [8]. The
MR candidates were extracted from the active networks
of many genes characterized by biological pathways, as

the feasible gene candidates for experimental verifica-
tion. From the methodological aspect, the method was
improved by considering the coverage of TFs in a statis-
tical manner, in addition to the specificity that was con-
sidered in the previous method. Although the
experiments are beyond the scope of the present study,
we consider experimental verification studies of the pre-
sent candidates as our future research topic. Our study
clearly illustrated a rational way to narrow down the
genes of MR candidates, and is fundamentally different
from metaphysical presentations, such as biological
pathways or large network forms.
Our study intended to identify the MR candidates,

which are those genes with large impacts on phenotype
changes, in a biological sense [3]. Here, we logically
identified MR candidates by the specificity of the TF
appearance and the coverage of the regulated genes to
the gene expression signature in the networks of GK
and WKY rats. Apart from a biological sense, we further
investigated the meaning of “master” from the viewpoint
of the network structure. To do this, we revealed the
hierarchical structures of the 8w-12w and 16w-20w net-
works by network screening, using a vertex sort algo-
rithm [12], and allocated the present 5 TFs into the
hierarchical structures (Figure 2A). As seen in the fig-
ures, all 5 TFs were allocated into the highest level.
Indeed, Nr2f1 in the 8w-12w network and Tcfap2b in
the 16w-20w network were definitely allocated into the
highest level of the hierarchical structures. In addition,
the remaining TFs were allocated into the levels includ-
ing the highest and middle levels, but not into the low-
est level. Furthermore, we investigated the hierarchical
structure by another method, the BFS-level algorithm

Table 2 TFs identified by network screening in terms of coverage.

4w 8w_12w 16w_20w

GK WKY GK WKY GK WKY

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

SP1 10 SP1 19 SP1 39 SP1 18 SP1 12 SP1 5

SP3 8 SP3 11 HNF4A 6 SP3 3 FOXO3 3

TP53 4 TP53 11 FOXO3 4

EGR1 6

NRF1 6

TCFAP2A 5

TFs found in both GK and WKY are indicated by bold letters.

Table 3 TFs identified by network inference in terms of specificity.

Alx1, Arnt, Cebpg, Ddit3, Dlx5, Dmrt2, Dnmt1, Dr1, Ebf1, Elf5, Elk3, Elk4, Erg, Etv4, Etv5, Fev, Fosl1, Foxe1, Foxg1, Foxo3, Foxp4, Gabpb1l, Gfi1, Gtf2a1,
Gtf2b, Gtf2e1, Gzf1, Hcfc1, Hey1, Hhex, Hoxb3, Hoxb7, Ilf3, Irx2, Kcnip4, Klf1, Klf15, Klf3, Klf5, Klf7, Ldb2, LOC680117, Mafk, Meis2, Mnat1, Msx1, Msx2,
Mybl2, Myc, Myocd, Myod1, Mzf1, Neurod2, Nfix, Nfx1, Nkx6-1, Notch1, Nr1h4, Nr2f1, Nr4a1, Nr5a1, Pax8, Pbx2, Phox2a, Pitx1, Pitx3, Pou2f3, Pou3f1,
Ppard, Pparg, Ppargc1a, Rbl1, RGD1566107, Rreb1, Runx1, Shh, Six5, Six6, Skp2, Sox10, Sox11, Sp1, Sp2, Spdef, Srebf1, Ss18l1, Stat5a, Stat5b, Taf2,
Tbx18, Tbx2, Tcf12, Tcfap2b, Tead1, Tfdp2, Tfec, Tmf1, Tp53bp1, Twist1, Vdr, Zbtb5, Zfhx3, Zfp191, Zfp238, Zfp423, Zfp444, Zhx1, Zic1
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[13]. As shown in Figure 2B, the positions of the MR
candidates are similar to those in Figure 2A. Indeed,
previous hierarchical analyses of the regulatory networks
by the BSF method in Escherichia coli and Saccharo-
myces cerevisiae suggested that the MRs were in the
middle of the hierarchy [13]. In general, the vertex sort
algorithm reports a linear ordering of nodes that con-
tains all feasible solutions, while the BSF-level algorithm
reports just a single solution, as shown in Figures 2A
and 2B. Subsequently, unlike the BFS-level algorithm,
the ordering in the vertex sort algorithm permits nodes
to span an entire interval of possible positions with any
feasible ordering. Despite this difference in the

computational algorithms, the 5 TFs showed the com-
mon property as MRs. At any rate, although the verifi-
cation experiments remain to be performed for the
justification of the MRs in a biological sense, the 5 TFs
may be regarded as the plausible MR candidates from
the viewpoint of network structure.
A preliminary survey revealed that all 5 of the TFs

have no reported causal relationship to diabetes. The 5
TFs are sequence-specific DNA-binding proteins, and
they function as both transcriptional activators and
repressors of large numbers of genes that are closely
related to the cell cycle and tumorigenesis. Notably, the
relationships of ETS translocation variant 4 (Etv4) and
transcription factor AP-2 beta (Tcfap2b) to adipogenesis,
which is strongly related to diabetes, have been
reported, together with their association with the other
pathways [14,15]. Nuclear Receptor subfamily 2, group
F, member 1 (NR2F1) is a member of the steroid hor-
mone receptor family, and has been shown to interact
with estrogen receptor alpha (ESR1) [16]. There is a
gender difference in the incidence of type 2 diabetes,

Table 4 TFs identified by network inference in terms of coverage.

4w 8w_12w 16w_20w

GK WKY GK WKY GK WKY

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

TF No. of
regulated
genes

Arntl 31 Max 10 Lhx5 24 Ywhae 18 Fus 10 Foxq1 32

Lhx2 22 Otx2 10 Etv1 23 Pfdn5 13 Smad5 10 Hoxa1 16

Sp2 18 Daxx 9 Ctnnb1 8 Atf1 11 Nfx1 9 Rbl2 16

Gabpa 13 Sim1 9 Rpa3 8 Cdk9 11 Hsf1 8 Zic2 12

Xpa 4 Tcf21 8 Zfp105 8 Hmgb2 11 Tlx3 8 Rorc 8

Foxs1 3 Gata5 7 Foxo3 7 Sfpq 9 Tp53 8 Tcfap4 6

Tcfap2c 7 Hoxc5 6 Zfp281 9 Foxs1 7 Pttg1 5

Meis3 5 Litaf 6 Cdk7 8 LOC679869 7 Ncoa3 4

Rorc 5 Nr2f2 6 Ets2 8 Cbfb 6 Ccnh 3

Snapc1 5 Foxo1 5 Hoxa1 8 Ctcf 6 Hif1a 3

Zic2 5 Msx1 5 Nfe2l2 8 Glis2 6 Junb 3

Meis1 4 Myocd 5 Nfil3 8 Irf7 6 Kcnip1 3

Pou2af1 4 Pbx1 5 Six4 8 Nfkbib 6 Mtf1 3

Srf 4 Tbpl1 5 Cux2 7 Nr1i2 6 Zfp148 3

Stox2 4 Vdr 5 Mafg 7 Hdac1 5

Tcfcp2l1 4 Hltf 4 Nfkbia 7 Rfx5 5

Gtf2h2 3 Htt 4 Pgr 7 Tle1 5

Zfx 3 LOC680117 4 Ppp1r13b 7 Xpa 5

Mbd1 4 Tbpl1 7

Parp1 4 Cbfb 6

Rreb1 4 Ezh2 6

Smarcc1 4 Hbp1 6

Junb 6

Taf13 6

Tef 6

TFs found in both GK and WKY are indicated by bold letters.

Table 5 Summary of TFs identified by the two methods,
in terms of specificity and coverage.

path consistency algorithm

specificity (108) coverage (42)

network screening specificity (21) 4 2

coverage (3) 0 0
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which is largely due to the role of the sex hormone
estrogen. The Sp family proteins, containing the con-
served DNA-binding domain, are localized primarily
within subnuclear foci associated with the nuclear
matrix. Recent unpublished data from our lab have
shown that another Sp family member, Sp1, has a major
impact on the insulin signaling pathway. The Sp2 tran-
scription factor interacts with E2F1, which mediates
both cell proliferation and p53-dependent/independent
apoptosis [17]. The recently discovered close relation-
ships between diabetes and tumors in terms of these
TFs are quite likely to play a crucial role in the control
of diabetes. RNA-binding protein (FUS) is able to bind
DNA, RNA and protein [18]. The interactions between
the FUS recognition sites and Tcfap2, GCF, and Sp1

were identified recently. Thus, although direct evidence
was not found in the previous knowledge, the 5 TFs are
expected to be MR candidates, in consideration of the
circumstantial evidence of their relationships to diseases,
the hierarchical analysis of the 5 TFs, and the successful
discovery of new MRs in brain tumor, by the previous
version of the procedure. Actually, our current informa-
tion in terms of important diabetes-related genes
includes mostly functional proteins, located at the low-
est level of our hierarchical structure, while the MR is
deeply hidden and therefore must be revealed by sys-
tems biology methods. Thus, in addition to analyses of
their regulated genes, some experimental verification of
the MR candidates may be desirable to further examine

Table 6 Candidates of MRs and their regulated genes for diabetes progression in GK rat.

TF Regulated genes No. of genes

Etv4 Mcm10 Erbb2 Mmp7 Nid1 Plau Ptgs2 6

Fus Mcpt8l2 Mcpt9 Paics Ppat Ugt1a1 Ugt1a2 12 54

Ugt1a3 Ugt1a5 Ugt1a6 Ugt1a7c Ugt1a8 Ugt1a9

Nr2f1 Alox5 Cpt1b Cyp11b2 Tf Ugt1a3 Ugt1a5 6

Sp2 Capns1 Irs2 LOC685183 LOC685226 LOC685291 LOC685759 24

LOC688519 LOC688603 LOC689083 LOC689312 LOC689338 LOC689690

LOC689999 LOC690179 LOC690328 LOC690379 LOC690577 LOC691712

LOC691735 LOC691754 Papss2 Vom2r45 Vom2r46 Vom2r47

Tcfap2b Aqp1 Egfr Krt14 Ptgds Sod2 Tgm1 6

The genes in bold characters are included in known TF-gene relationships detected by network screening.

Figure 2 Hierarchical structures of networks for 8w-12w and 16w-20w by two previous methods. The 5 TFs are indicated at the levels in
hierarchical structures obtained by the vertex-sort algorithm (A) [12] and those by the BFS method (B) [13], and the numbers of TFs in each
level are indicated in parentheses in (A), and by red circles in (B). In (B), the TFs and the regulated genes are indicated by diamonds and
rectangles, respectively.
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their plausibility as MR candidates for diabetes
progression.

Conclusions
In this work, using our new method, we identified the
MR candidates for diabetes progression, 5 TFs and their
regulated genes, in GK rats. This number of candidates
is very small, and thus the results can be used as a basis
for biological experiments for verification. Furthermore,
the recent availability of the next-gen sequencer may
provide another way to confirm the effectiveness of our
method, and to test its performance further with other
datasets. Indeed, RNA-seq and ChIP-seq are useful for
more accurate measurements of gene expression, and
yield detailed information about the regulated genes.
Thus, the combined use of the two approaches may
compensate for the pitfalls inherent in each method,
and will provide important clues about the transcrip-
tional networks that regulate transitions into physiologi-
cal or pathological cellular states.

Methods
Network screening
The candidates of the active regulatory networks were
detected by network screening [5-7]. Here, we briefly
summarize the network screening in the present study,
as follows.
First, the regulatory network sets were generated in

the same manner as in the previous study [5], as fol-
lows. The mouse binary relationships compiled in the
TRANSFAC database [19] were used. Based on the
correspondence between the mouse and rat gene ids,
3,015 binary relationships of 1,507 genes between 503
TFs and 1,123 regulated genes were achieved. Based
on those binary relationships, transcriptional networks
were constructed according to the functional gene sets
previously defined in the Molecular Signatures Data-
base (MSigDB) [20]. In each gene set, the regulated
genes in the binary relationships were searched, and if
at least one gene was found in the gene set, then the
corresponding binary relationships were regarded as a
regulatory network characterized by the gene set. In
present study, the reference network comprised 1,760
regulatory networks characterized by biological func-
tions that are composed of 1,195 genes. The numbers
of TFs and regulated genes were 335 and 860,
respectively.
Then, we calculated the graph consistency probability

(GCP) [6], which expressed the consistency of a given
network structure with the monitored expression data
of the constituent genes in this study. The consistency
of a directed acyclic graph (DAG), G(Vi, Ej), where Vi is
a vertex (i = 1, 2, ..., nv) and Ej is an edge (j = 1, 2, ...,
ne) in the graph, and the joint density function f (Xi),

corresponding to Vi for the graph G with the measured
data, is quantitatively expressed by the logarithm of the
likelihood based on the Gaussian graphical model (GN:
Gaussian Network), i.e.,

l(G0) = ln
nv∏
i=1

f
(
Xi|pa {Xi}

)

= −1
2

nv∑
i=1

ni∑
j=1

⎧⎨
⎩

1

σ 2
i

m∑
k=1

⎛
⎝xik −

ni∑
j=1

βijxkj

⎞
⎠

2

+ ln
(
2πσ 2

i

)
⎫⎬
⎭,

(1)

where pa{Xi} is the set of variables corresponding to
the parents of Vi in the graph, xik is the measured value
of Xi, at the k-th point, and ni is the number of variables
corresponding to the parents of Vi. Since the likelihood
depends on the graph size, we designed a simple proce-
dure to transform the likelihood to the probability for
the expression of the graph consistency with the data
[6]. First, we generated Nr networks under the condition
that the networks shared the same numbers of nodes
and edges as those of the given networks. Then we
defined GCP, as follows,

GCP =
Ns

Nr
, (2)

where Ns is the number of networks with larger log-
likelihoods than the log-likelihood of the tested network.
In the present study, Nr was set to 2,000, and the GCP
significance of the given network was set at 0.05.

Path consistency algorithm
The path consistency (PC) algorithm [9] is an algorithm
to infer a causal graph composed of two parts: the
undirected graph inference by a partial correlation coef-
ficient and the following directed graph construction by
the orientation rule. The present method partially
exploits the first part of the PC algorithm for the infer-
ence of the network structures. A simple example of the
PC algorithm is illustrated in Figure 3.
We assume that five variables, X1, X2, X3, X4, X5, have

the following five relationships: i) X1∐X2,
ii) X2∐ (X1, X4),
iii) X3∐X4|(X1, X2),
iv) X4∐ (X2, X3)|X1, and
v) X5∐ (X1, X2)|(X3, X4),
where the symbol, ∐, in the above relationships,

means the independence between variables. The PC
algorithm reconstructs the above relationships as
follows.
1) Prepare a complete graph, C, between the five

variables.
2) Test the correlation between two variables by calcu-

lating the zeroth-order of the partial correlation coeffi-
cient (Pearson’s correlation coefficient). From the test,
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two variable pairs, (X1, X2) and (X2, X4), are excluded
(dashed lines in Figure 2), due to the relationships, i)
and ii).
3) Test the correlation between three variables by cal-

culating the first-order of the partial correlation coeffi-
cient of the variable pairs, given one variable. Then, one
variable pair, (X3, X4), is further excluded from the
updated graph by 2), due to iii) and iv).
4) Test the correlation between four variables by cal-

culating the second-order of the partial correlation coef-
ficient of the variable pairs, given two variables. Then,
two variable pairs, (X1, X5) and (X2, X5), are excluded,
due to iv).
5) We could not find any edges adjacent to the three

edges in the updated C. Thus, the algorithm naturally
stops. As seen in the final graph, the five relationships
emerged completely.

In general, the (m-2)-th order of the partial correlation
coefficient is calculated between two variables, given (m-
2) variables; i.e., rij, rest, between Xi and Xj, given the
‘rest’ of the variables, {Xk} for k = 1, 2, ..., m, and k≠i, j,
and after calculating the (m-2)-th order of the partial
correlation coefficient, the algorithm naturally stops.
However, the algorithm does not usually request the
(m-2)-th order of the correlation coefficient for the nat-
ural stop. This is because after excluding the variables,
the adjacent variables are often not found, even in the
calculation of the lower orders of partial correlation
coefficients.

Modification of the path consistency algorithm for
microarray data analysis
In the actual expression profile data, many genes fre-
quently show profiles with similar patterns. This makes

Figure 3 Example of the path consistency algorithm.
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the numerical calculation of correlation coefficients diffi-
cult, due to the multi-colinearity between the variables.
The original PC algorithm accidentally stops, if only one
correlation between a pair of variables shows a violation
of the numerical calculation. However, in a biological
sense, the gene pairs that cause the accidental stop can
be interpreted as a case of their high association with
each other, in terms of gene expression. Thus, we modi-
fied the original PC algorithm to prevent it from acci-
dentally stopping with the highly associated gene pairs,
as follows [10,11]. If the calculation of any order of the
partial correlation coefficient between the variables is
violated, then the corresponding pair of variables is
regarded as being dependent. For example, if the first-
order correlation coefficient, rij, k, cannot be calculated
numerically, due to the multi-colinearity between Xi and
Xj, then the edge Xi-Xj is kept without the statistical
test. The other parts remain unchanged in the modified
algorithm. Note that the above modification ensures
that the algorithm will naturally stop for the data
including a high correlation.
As seen in the original algorithm, the output is not

unique, depending on the calculation order of pairs [9].
A permutation test for the calculation order is a conve-
nient way to partly resolve this issue. In this study, the
estimation without permutation was empirically adopted
as the first approximation, based on the successful esti-
mations of the relationships in our previous studies
[10,11]. In addition, one of the most remarkable features
of the PC algorithm is that the algorithm removes the
pseudo-correlations between the variables (genes) by
considering the higher-order partial correlations. If we
have the measurement data for a complex network, then
we frequently face the more serious issue of the pseudo-
correlation, rather than the correlation level. The merit
of the PC algorithm may be its ability to identify real
relationships between TFs and their regulated genes.

Definition of MR candidates by network screening and
network inference
We first referred to two sets of networks obtained by
the network screening [5-7] and the network inference
[10,11]. From each network set, the binary relationships
between the TFs and their regulated genes were
extracted, only if the regulated genes were included in
the expression signature, which is the ensemble of genes
with significant differences in gene expression, as statis-
tically estimated by the false discovery rate (FDR) test
for multiple comparisons (FDR < 0.05) [21]. In the
extraction of TFs and their regulated genes, the TF was
also cited from the TRANSFAC database [19], but the
expression degree of the TF was not considered, due to
the small expression changes even under different con-
ditions. Only the regulated genes that were estimated to

directly bind TFs were extracted. The numbers of genes
in the three gene expression signatures of the three peri-
ods (period of 4w, period of 8w and 12w, and period of
16w and 20w) were 1,582, 2,719, and 2,777, respectively.
Then, we defined the MR candidates from the binary

relationships by two criteria. One was the specificity of
the TF, which was the same criterion as in the previous
method [8], and the other was the coverage of the TF,
which was newly introduced in the present MR candi-
date identification. Here, the specificity simply means
that the TF emerged only in the GK networks, but not
in the WKY networks. To select the TFs in terms of the
specificity, we selected the TFs that emerged in the
three periods in GK, but not in WKY, as the MR candi-
dates. Note that in the selection of the TFs, we only
selected those that were estimated to regulate the genes
including the expression signature, to consider the
enrichment of the regulated genes in the signature. The
coverage means how many genes each TF regulates. To
select the TFs in terms of the coverage, we first counted
the genes regulated by each TF for each period in GK
and WKY, and then also considered the enrichment of
their regulated genes in the expression signature, by
sorting the numbers of regulated genes for each case.
To consider the coverage in a rational way, we used the
Smirnov-Grubbs outlier test [22] for the numbers of
regulated genes, by setting a threshold (p < 0.05). Thus,
the TFs with the larger number of regulated genes that
fulfilled the threshold are selected in a statistical man-
ner. Finally, the two sets of MR candidates that were
selected in terms of the specificity and the coverage
were compared, to define the final MR candidates.

Data analyzed in this study
We analyzed the gene expression data measured in GK
and WKY rats [23], which were cited from the National
Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/projects/geo/) database (GSE 13271). The data were
composed of 31,099 probes that were measured by
using Affymetrix Microarray Suite 5.0 (Affymetrix), and
were further reduced into 14,506 genes, for 5 samples of
male spontaneously diabetic GK rats and WKY controls
at each of 5 time points (4, 8, 12, 16, and 20 weeks of
age). In this analysis, the 5 periods were classified into
three periods: period of 4w, period of 8w and 12w, and
period of 16w and 20w.
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