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Abstract

Background: Cryo-electron tomography emerges as an important component for structural system biology. It not
only allows the structural characterization of macromolecular complexes, but also the detection of their cellular
localizations in near living conditions. However, the method is hampered by low resolution, missing data and low
signal-to-noise ratio (SNR). To overcome some of these difficulties and enhance the nominal resolution one can
align and average a large set of subtomograms. Existing methods for obtaining the optimal alignments are mostly
based on an exhaustive scanning of all but discrete relative rigid transformations (i.e. rotations and translations) of
one subtomogram with respect to the other.

Results: In this paper, we propose gradient-guided alignment methods based on two popular subtomogram
similarity measures, a real space as well as a Fourier-space constrained score. We also propose a stochastic parallel
refinement method that increases significantly the efficiency for the simultaneous refinement of a set of alignment
candidates. We estimate that our stochastic parallel refinement is on average about 20 to 40 fold faster in
comparison to the standard independent refinement approach. Results on simulated data of model complexes and
experimental structures of protein complexes show that even for highly distorted subtomograms and with only a
small number of very sparsely distributed initial alignment seeds, our combined methods can accurately recover
true transformations with a substantially higher precision than the scanning based alignment methods.

Conclusions: Our methods increase significantly the efficiency and accuracy for subtomogram alignments, which is
a key factor for the systematic classification of macromolecular complexes in cryo-electron tomograms of whole

cells.

Introduction

Cryo-electron tomography emerges as an important com-
ponent for structural system biology approaches [1,2].
Cryo-electron tomograms of whole cells essentially con-
tain information on the systems level about the abun-
dance, spatial distributions and orientations of all large
macromolecular complexes at a given time point in a cell
[3-9]. However, detecting these complexes in cryo-electron
tomograms is a challenging task due to low signal-to-noise
ratio (SNR), distortions and low non-isotropic resolution
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(> 4 nm) of the tomograms [6]. Therefore traditional
image registration methods [10], developed for images at
low distortion levels, usually cannot be directly applied to
alignment of subtomograms. One strategy to enhance the
nominal resolution of the detected density maps of indivi-
dual complexes is to segment the tomogram into a large
number of single complex subtomograms, which are then
classified into similar objects by a pair-wise comparison.
After subtomogram classification averaging of the aligned
subtomograms in each class reveals the shapes of macro-
molecular complexes in each class at an increased SNR,
which can then be assigned to the corresponding positions
in the whole cell tomogram.
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Subtomogram alignment and classification methods
[6,11-26] are key to such processes and have been
applied to several complexes, including membrane-
bound complexes [27,28]. However, due to the poten-
tially large number of subto-mograms in whole cell
tomograms alignment protocols must not only be pre-
cise but also computationally efficient. Existing align-
ment methods are typically based on the exhaustive
sampling over a discrete set of rigid transformations of
one subtomogram with respect to a second. The optimal
alignment is then detected using the dissimilarity mea-
sure between both subtomograms [11-13]. However, due
to the heavy computational cost, the exhaustive rota-
tional search can only sample a limited number of
angles. Moreover the typically applied Fast Fourier
Transform (FFT) based translational alignment can only
approximate best translations at the resolution of the
unit voxels. To enhance computational efficiency an
approximate alignment method has been proposed to
generate alignment candidates based on a fast transla-
tion-invariant rotational search [14,15]. Then a local
refinement was used starting from the alignment candi-
dates close to the optimal solution. However, the full
potential of using only local refinements on very spar-
sely distributed starting candidates has not been investi-
gated yet. In this paper, we propose an efficient
gradient-guided alignment method based on two popu-
lar subtomogram dissimilarity scores. In addition, we
design a stochastic parallel framework that significantly
speeds up the simultaneous refinement of multiple
alignment candidates.

We demonstrate on realistically simulated data of
models and real macromolecular structures that for
highly distorted subtomograms, even given a small num-
ber of evenly sampled initial angles with a large interval
of 60° or 45°, our method can accurately recover true
transformation with very high precision.

Methods

Here we provide a gradient-guided refinement framework
for subtomogram alignment that minimizes a dissimilarity
score as defined by the squared sum of the differences
between a parameter fixed function and a function whose
parameters are optimized. We consider two types of dis-
similarity scores for subtomogram alignments, which both
incorporate missing wedge corrections: A real space con-
strained dissimilarity score (Section 2.2) and a Fourier
space constrained dissimilarity score (Section 2.4). In addi-
tion, we adapt our refinement protocol also to the case
where the rotational search is restricted to only certain
axis of rotations, for instance when the search is con-
strained to rotations around a membrane surface normal
when membrane bound complexes are aligned (Section
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2.5). In principle, it is beneficial to refine independently
each of the candidate solutions from an exhaustive rota-
tional scanning, however this is computationally expensive
and not feasible for large scale subtomogram classifica-
tions, which is necessary in whole cell tomography. We
therefore provide also a stochastic parallel refinement fra-
mework (Section 2.3) to efficiently reduce the total num-
ber of refinement steps.

Parameter definitions

For simplicity, we denote two subtomograms as two
integrable functions f, g : R*> — R. For a € R?, let 7, be
the translation operator (z,¢)(x) := g(x - a). For a rota-
tion R in the three-dimensional rotational group SO(3),
let Ap be the rotation operator, such that (Azg)(x) := g
[R'(x)]. R can be represented as a 3 by 3 rotation
matrix R. In this case, (1,Azg)(x) = g(R(x - a)).

The rigid transformation parameters combine both
rotation and translation and are expressed as f = (R, a)
= (¢, 6, w, ay, as, as)’, where (¢, 0, y)" are Euler angles
in the ‘ZYZ’ convention [29], with the rotation R, and
translation parameters a = (a1,a,,a3)'. In addition, for
simplicity, we denote the combined rigid transformation
operator Kg := T,Ag.

Local optimization of subtomogram alignment based on
a real space constrained dissimilarity score (RCS)

We now describe the gradient-guided refinement for the
subtomogram alignment, given a coarse initial solution
for R and a. The goal is to identify a local optimal solu-
tion given the current values of R and a as the starting
parameters. To perform the alignment one must define
a dissimilarity measure for the alignment of the two
subtomograms. Besides the low resolution and SNR of
subtomograms, distortions due to missing data (ie, the
missing wedge effect) make subtomogram alignment
challenging, and these effects must be explicitly consid-
ered in the alignment process.

To address this problem, Forster et al proposed a con-
strained correlation measure with missing wedge correc-
tions [11]. It is based on a transform that eliminates
the coefficients in the missing wedge region. Let
M :R?® — {0, 1} be a missing wedge mask function. The
missing wedge mask function M defines for each subto-
mogram the valid and missing Fourier coefficients in
Fourier space. For example, in single tilt electron tomo-
graphy with tilt angle range +6, the constrained correla-

tion can be defined as M (&) = I(je, <z, jtan(e)) (6) . Then

for a given subtomogram f one can define a Fourier space
constrained subtomogram function as

fi =" {F[(Ff) M (arM)]} 1)
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, where 9t denotes the real part of a complex function,
and F is the Fourier transform operator, and
M (ArM) ensures that only those Fourier coefficients
are considered that are defined in both subtomograms,
i.e. these Fourier coefficients are not part of the missing
wedge regions in any of the two subtomograms. Corre-
spondingly, a Fourier space constrained subtomogram
function for the second subtomogram g is defined as

g1 = R{F ' [(FraArg) M (ArM)]} 2)
The normalized subtomogram transforms can be defined
- 81— 1(81)
as Nf = hon) 2,andN‘Kﬂg = 1 1 »
N I - niz)
JF(x)

where u is the mean operator, defined as uf = S
and Sf denotes the size of the subtomogram f. uf is

therefore the average intensity value of subtomogram f.
Then the constrained correlation is calculated as

ci= / NN (3)

Because of the subtomogram normalization, this con-
strained correlation is equivalent to a constrained dis-
similarity score:

dk :=f|Nf—NKﬁg|2=2—2c (4)

For a given initial guess of the rotation R (for instance
one of the local minima in a rotational search) one can
determine the corresponding best translation 7, that
minimizes the distance criteria d efficiently using Fast
Fourier Transform (FFT)). Given any Az and 7,, we seek
to obtain an increment Aag and corresponding 7a, so
that

F F
Aipphnrants) < Hrgra) (5)

Since N is fixed with respect to 3, we use the Leven-
berg-Marquardt algorithm [30] to obtain such incre-
ments. This algorithm converges very fast.

Let x;, j = 1... n be the locations of all n voxels in the
grid of the subtomogram, then we have a discrete form
of the constrained dissimilarity score

dk = Y[V (%) — (Vo) ()T ©)

]

According to the Levenberg-Marquardt algorithm, A
= (AR, Aa) can be obtained by computing

AB = []T] +A diag(]T])_llT(f— gﬁ)] 7)
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Here f and gg are the vector representations

f=(NF) @)oo (M) ()T 8)
and
85 = (Ne,8) (x1) o (N5, 8) (k)| )

3 (N’(ﬂg) (x))

] is the Jacobian matrix whose jth row is ,

which is approximated by numerical differentiﬂation;
theoperator diag(E) converts a matrix E to a diagonal
matrix consisting of only diagonal elements of E; A is a
damping factor to control the rate of convergence.

The final result of this section provides the refined
alignment parameters R, = R; + AR; and a, = a; + Aa;
given the initial parameter set R, and a;. To perform a
complete alignment refinement this process must be
repeated iteratively until convergence is achieved (next
section).

Stochastic parallel refinement process

To carry out a global optimization it is necessary to per-
form multiple refinement runs starting each time from a
different candidate rotation angle. However, to carry out
these individual optimizations independently is time con-
suming, which would prevent large-scale applications of
subtomogram alignments. Therefore, we propose a sto-
chastic parallel refinement framework to prioritize for
those candidate transform parameters with smaller dissim-
ilarity scores (Figure 1). The basic idea of this iterative
algorithm is to store the scores of all m candidate transfor-
mation parameters fi,.., B,,, where each § = (R, a) consists
of both rotation and translation parameters. The choice of
which f; to refine next is stochastically decided according
to a probability obtained from dg,. In other words, at each
iteration candidate angles f3; with smaller dg, have a higher
probability of being selected for refinement using the
incremental method described in section 2.2.

We define a sampling probability that considers both
rank and magnitude of d. Suppose the candidate para-
meters are ordered such that

dﬁl > .= dﬁm (10)
Then for j = 1... m the sampling probability of ; is
proportional to p; with
P]‘ = pj—l max (101/("[_1),615].71/615].) ,Vj =2..m (11)
where p; = 1 and ¢ is a scaling threshold such that the
distinction between p; and p; ; is at least 107"V and
Pulpy = 105,

To further enhance the computational efficiency, simi-

lar candidate transforms f are removed from the list to



Xu and Alber BMC Systems Biology 2012, 6(Suppl 1):518
http://www.biomedcentral.com/1752-0509/6/51/518

Page 4 of 13

Determine optimal translation:
Given each rotation angle candidate,
use FFT to find optimal translation and
dissimilarity score

Candidate selection:
Choose a candidate according to the
probability calculated from dissimilarity
scores

—

Gradient-based refinement:
Refine the candidate using gradients,
and update its dissimilarity score

—_—

Exclude simila
solutions:

Is a candidate
solution similar to
any other
candidate?

Reduce candidate list:
Remove one of the close candidates
from the candidate list

No

Convergence
reached?

Figure 1 Flow chart. Flow chart of the stochastic parallel refinement process.

omit redundant optimization runs. The similarity of two
transforms f3; and S is defined as the Frobenius norm
”Dﬁjﬂk | p» Where

Dﬂ,ﬂk = I:R]T1 (I — (aj, aj, aj))] — [RI;I I — (ap, ag, 3k))] (12)

Vj, k = 1,.., m. If |Dgg, HF <y is lower than a prede-
fined threshold 7, then the transform leading to the lar-
ger of the two dissimilarity scores d is removed from
the target list.

To terminate the optimization process, at each itera-
tion the ratio between the smallest and the initial
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minimum score is calculated. The iterative process is
terminated when convergence is achieved, which in turn
is identified by a linear regression ratio ¢'°®"*** over the
minimal scores in the last iterations. In case conver-
gence cannot be achieved the optimization is terminated
after a large number of iterations ™",

Similar to other stochastic optimization methods, such
as genetic algorithms, our method also stores and
evolves a population of candidate solutions. However,
our method represents solutions by continuous values,
and improves individual solutions by gradually refining
them. By contrast, genetic algorithms usually encode
solutions in strings of discrete bits, and generate new
solutions by applying mutation and recombination on
multiple existing solutions.

In this section we have introduced a parallel iterative
refinement method that relies on a dissimilarity measure
and local optimization process as described in Section
2.2. In the following section, we introduce another
refinement method based on a different dissimilarity
measure between subtomograms.

Local optimization of subtomogram alignment based on
a Fourier space constrained subtomogram dissimilarity
score (FCS)

After having introduced an iterative refinement process,
and introduced a dissimilarity measure in Section 2.2,
we now test the refinement process further with a sec-
ond dissimilarity score. This new score is based on a
constrained dissimilarity score computed directly in
Fourier space [14]:

S |(Ff) - (]:taARg)’zM (ARM)

db .= (13)
S M (ARM)
By properties of the Fourier transform
(FraArg) (€) = ¢ 2725 (AR Fg) (£) (14)

given a fixed initial R, the initial a can be efficiently
calculated using FFT. Because dg is not expressed as
the summed square of differences, here the Levenberg-
Marquardt algorithm cannot be directly applied. How-
ever, because [ M (ArM) has a regular structure con-
taining only binary 0 and 1 values, one can approximate
dg as

b ~ cf [(Ff) = (FraArg) | M (ArM) (15)

1
where ¢ :=

S M (ARM)

the whole refinement step.
Let &, j = 1... n be the locations of all # voxels in the
grid of the Fourier transform of the tomogram such that

is treated as a constant in
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[M (ArM)] (5]) = 1. Then a discrete form of the dis-
similarity score can be formulated as

@i =) (1) (6) = (Frpg) ()]

Because the above score is based on complex func-
tions, the Levenberg-Marquardt algorithm cannot be
directly applied. Therefore we derive a new version of
the Levenberg-Marquardt algorithm for complex func-
tions. In this version, Af} can be obtained by computing

(16)

AB =A"'b (17)

where
A=[90)90) +30)730) | + % diag [RO) () + 30) IM)]  (18)

and where )i and J denote real and imaginary parts
and

b =90(0) T [R(f) - R(gp)] +30)T[3(H) — I(gp)] (19

Here f and gg are vector representations of the Fourier
transform of the two subtomograms

F=((Ff) &) (FF) &) (20)

and
s = ((Frpg) (1), ooor (Frepg) (&))" (21)
3 (Frpg) (&)

J is the Jacobian matrix whose jth row is ,

where the derivative with respect to the trar?sl,slation
parameters can be determined analytically (according to
Equation (14)) and the derivative with respect to the
rotation parameters is approximated by numerical dif-
ferentiation. A is a damping factor to control conver-
gence speed.

In summary, in this section a Fourier-based similarity
score is introduced and combined with a Levenberg-
Marquardt algorithm adapted for complex functions.

Constrained rotational search around a rotation axis

If knowledge about the macromolecule’s preferred
orientation is available, it is beneficial to reduce the
rotational search space to a range of only those pre-
ferred orientations. Then a significantly smaller number
of rigid candidate transformations is sufficient to find
the optimal alignment. For example, when the macro-
molecules are membrane-bound protein complexes (e.g.
[7,27]), the feasible search is often constrained to rota-
tions around an axis, which is the membrane surface
normal at the position where the complex is attached to
the membrane. In such a case, both subtomograms f
and g can first be rotated so that their membrane
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surface normal are aligned (i.e., they are rotated to the
direction that is parallel to z-axis). Then the alignment
search is reduced to rotations of g around the z-axis in
combination with a full translational search to minimize
the dissimilarity score.

To minimize distortions due to the interpolation step
in rigid transformations, one wants to reduce the num-
ber of sequential transformations for the original subto-
mograms. Therefore, we perform the constrained search
by rotating only g using A while keeping the original
subtomogram f fixed. This procedure consists of three
components:

Ar = (Ag)) " Ag,Ag, (22)
where Rrand R, are the rotations of fand g so that the
membrane surface normal are parallel to the z-axis. R,
represents a rotation around the z-axis, defined in the
form of (¢, 0,0)". During the refinement process, Ryand R,
are kept constant, and the only rotational parameter to be
optimized is ¢, which is the rotation around the z-axis.

Generating simulated cryo-electron tomograms

For a reliable assessment of the method, tomograms must
be simulated as realistic as possible. We follow a pre-
viously applied methodology for realistically simulating the
tomographic image formation [4,6,11,31].

Initial density maps at 4 nm resolution are generated
and used as samples for simulating electron micrograph
images at different tilt angles. The tilt angles are set within
a certain maximal range with steps of 1°. As a result our
data contains a wedge-shaped region in Fourier space for
which no data has been measured (missing wedge effects),
similar to experimental measurements. The missing wedge
effect leads to distortions of the density maps in real
spaces. To generate realistic micrographs, noise is added
to the images and the resulting image map is convoluted
with a Contrast Transfer Function (CTF), which describes
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the imaging in the transmission electron microscope in a
linear approximation. Any negative contrast values beyond
the first zero of the CTF are eliminated. We also consider
the modulation Transfer Function (MTF) of a typical
detector used in whole cell tomography, and convolute the
density map with the corresponding MTF. The CTF and
MTF describe distortions from interactions between elec-
trons and the specimen and distortions due to the image
detector [31,32]. Typical acquisition parameters used dur-
ing actual experimental measurements of whole cell tomo-
grams [4] were used: voxel spacing = 1 nm, the spherical
aberration = 2 x 10°m, the defocus value = -4 x 10°m,
the MTF corresponded to a realistic electron detector
[33], defined as sinc(rw/2) where w is the fraction of the
Nyquist frequency.

Finally, we use a backprojection reconstruction algo-
rithm to generate a tomogram from the individual 2D
micrographs that were generated at the various tilt
angles [4]. To test the influence of increasing noise, we
add different amount of noise to the images, so that the
SNRs range between < and 0.1, respectively. Figure 2(b)
shows the reconstructed subtomograms of a phantom
model at different noise levels and different tilt angle
ranges.

All our methods are implemented in MATLAB.

Results
We test our methods on phantom models and actual
structures of protein complexes.

Pairwise alignment of subtomograms from phantom
models

To assess the general performance, 100 pairs of subtomo-
grams with randomly placed phantom models were gen-
erated for different SNR levels and tilt angle ranges
(Figure 2(b)). Our stochastic parallel refinement method
is tested using both the RCS and FCS dissimilarity scores.
We use following termination criterion for the

d initial model b

Figure 2 Simulated subtomograms from phantom model. (a) Density map of an unsymmetric phantom model consisting of four different
3D Gaussian functions. This density map is used to simulate subtomograms of 32% voxels. (b) A slice of the reconstructed tomograms at
different levels of noise (e, 1, 0.5, 0.1), and different tilt angle ranges leading to different levels of missing wedge distortions. The isosurface are
generated using the Chimera software package [35]. The slices are plotted using MATLAB.
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optimization: £°€"* < 0.001 and 7™ = 1000. We test
our approach with respect to two factors. First, the aver-
age alignment error obtained from the refinement and
second, the number of iterative steps that are needed to
determine the optimal solution.

We show that even at a low SNR level of 0.5 and a typi-
cal range of tilt angles between -70° and +70° our method
can still achieve a very low alignment error (Table 1). For
example even when the rotational sampling is performed
at only 60° intervals the stochastic iterative refinement
process together with the RCS scoring produces on aver-
age errors of 3.1°, while the FCS scoring achieves 2.9°
error (Table 1). This angle error is significantly lower than
would be expected from exhaustive scanning where sam-
pling of rotational angles is usually performed at 10° or 5°
sampling intervals without additional refinement. When
the rotational sampling is performed at 45° intervals, the
performance is marginally improved to 2.7° (Table 1), indi-
cating that the 60° interval is already sufficient for most
alignment refinements.

Our method therefore allows substantially larger sam-
pling interval while maintaining a high accuracy in sub-
tomogram alignment.

Using a sampling angle interval as large as 60° has
major advantages in terms of computational efficiency.
For the standard exhaustive scanning at 5° intervals a
total of 168,634 candidate orientations must be processed
while at 60° rotational intervals only 108 candidate
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orientations are refined. Also our method can in general
achieve a small error for the translation of subtomograms
that cannot be reached by an FFT based exhaustive sam-
pling, which on average cannot be less than 0.5 (Table 2).

In addition, the parallel stochastic refinement process
reduces considerably the number of refinement itera-
tions that are needed to reach a good solution in an
optimization. At a rotational sampling of 60°, there are
108 candidate orientations that can potentially serve as
starting points for a refinement process. Without the
parallel stochastic optimization method, a refinement of
a candidate orientation takes on average about 60 itera-
tions per run. When all candidate orientations are
refined independently a total of about 6480 iterative
refinement steps are needed to find the global optimum
among all candidate orientations. However, our parallel
stochastic refinement process reaches convergence
already within only 200-300 iterative refinement steps
(Figure 3). We estimate that the parallel stochastic
refinement is on average about 20 to 40 fold faster in
comparison to the independent refinement of all candi-
date orientations (Figure 4). At a rotational sampling of
45°, the speedup leads to an 84 fold faster alignment
(Figure 4).

Next, we test the alignment when the search space is
constrained to rotations around a single axis. When rota-
tional sampling is performed at 60° and 45° intervals,
only 6 and 8 initial candidate rotation angles are used,

Table 1 Alignment rotation error. Subtomogram alignment error in terms of the difference in the determined and true
rotational angle of the subtomograms. Shown are the medians and median absolute deviations of all 100
subtomogram alignments. Bold font shows all the alignments with errors larger than 5°, which are considered

inaccurate.
60° angle interval
SNR o 1 05 0.1 oo 1 05 0.1
Tilt
+90° 0.71 £ 049 33+£28 26+ 14 14 +93 0.89 + 0.54 26 £ 2.1 24+ 1.1 85+ 45
+80° 085 + 0.54 25+18 35+ 24 21+ 14 1.1 £ 061 22116 32+22 12+77
+70° 12 +053 19+13 31+£17 19 £ 12 2+ 086 2141 29+13 16 £ 11
+60° 097 + 049 2 +097 3.7 +£24 49 + 45 15 +£082 24 +£12 38+ 21 34+ 30
+50° 1.8 +£09 29+16 7+52 87 £ 63 26 + 1.1 34+£18 6.3 £ 4.2 43 + 37
+40° 16 £1 9+83 55+ 53 123 + 31 15+ 14 92 + 40 106 + 37 113 + 26
45° angle interval
SNR o 1 05 0.1 oo 1 05 1
Tilt
+90° 058 + 0.25 1.1 £057 2+084 8.1+27 0.7 £034 1.1 £047 17 £0.77 59+24
+80° 0.79 + 0.31 14+ 06 24+ 093 11+ 4.5 1.2 £ 049 1.7 £ 073 23+097 79+3
+70° 1+ 026 1.8 + 0.69 27 +£12 8.4 * 3.1 1.5+ 046 21 +07 25+ 1.1 7925
+60° 1+£042 1.6 £ 0.66 2.7 +0.86 10 £ 4.8 1.7 £ 068 21 +£084 28 + 084 92 +45
+50° 2+077 24 £093 27 1 14+ 11 26+ 1.1 29+ 1.1 29+ 1.1 11 £ 5.1
+40° 15+£0.79 25+ 1.1 57 +36 107 = 27 94 +7.8 57 +33 77 £54 111 +£19
RCS FCS
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Table 2 Alignment translation error. Subtomogram alignment error in terms of the difference in the Euclidean distance
between determined and true subtomogram translations. Shown are the medians and median absolute deviations of
all 100 subtomogram alignments.

60° angle interval, RCS

SNR e 1 0.5 0.1
Tilt
+90° 0.035 + 0.023 016 £ 0.12 019 +£0.12 0.96 + 0.66
+80° 0.045 + 0.029 024 +0.2 021 +£0.15 1.3 £ 0.89
+70° 0.078 + 0.037 025+ 0.17 03 £0.18 13 £0.74
+60° 0.068 + 0.036 019 +0.12 043 +03 22413
+50° 0.14 +£ 0.078 026 £ 0.17 0.65 + 0.51 23+13
+40° 0.15 + 0.092 0.74 + 0.64 1.7+£13 32116
60° angle interval, FCS
SNR e 1 0.5 0.1
Tilt
+90° 0.047 + 0.023 0.12 + 0.081 0.11 £ 0.053 049 + 0.31
+80° 0.053 + 0.03 0.15 £ 0.1 0.18 £ 0.1 0.85 + 0.66
+70° 0.11 £ 0.057 013 £ 0074 021 £0.1 095 £ 0.58
+60° 0.11 + 0061 02 + 0.094 03+0.15 16+12
+50° 019 £ 0.1 028 +0.16 044 + 026 18+12
+40° 061 + 054 33+27 43 +£26 62+ 3
45° angle interval, RCS
SNR o 1 0.5 0.1
Tilt
+90° 0.031 + 0014 0.072 + 0.031 0.12 £ 0.049 043 £0.21
+80° 0.051 + 0.027 011 + 0.051 0.17 £ 0.072 0.69 £ 0.32
+70° 0.063 + 0.024 0.14 + 0.052 021 0.1 063 + 024
+60° 0.076 + 0.036 0.15 + 0.068 023 + 0.1 089 + 0.5
+50° 0.11 + 0.055 0.2 + 0.0%4 028 + 0.14 1.3 £ 095
+40° 0.14 + 0.071 031 +0.17 0.67 + 047 62 +53
45° angle interval, FCS
SNR oo 1 05 0.1
Tilt
+90° 0.033 + 0016 0.071 + 003 0.094 + 0.032 029 +0.13
+80° 0.061 + 0.031 0.1 £ 0.052 0.13 + 0.062 046 + 0.21
+70° 0.08 = 0.04 0.12 + 0.05 0.17 £ 0.075 049 + 0.22
+60° 0.1 £ 0.052 0.17 = 0.091 022 + 0073 0.72 £ 0.36
+50° 0.19 + 0.094 0.22 + 0.083 024 +0.12 093 + 05
+40° 0.76 + 0.64 051 +0.36 082 + 06 98 + 4.1

respectively. The alignment performance is shown in
Tables 3 and 4.

When the information about the orientation of the
membrane surface normal is included in the search pro-
cess, the alignment accuracy increases significantly for
subtomograms at high distortion levels. Without surface
normal information, the alignment fails for subtomo-
grams at very low SNR of 0.1, resulting in average
angluar alignment errors of at least 10°. With surface
normal information, the average anglular alignment

errors are less than 6° even for subtomograms generated
from a small tilt angle range of +50°.

Next, we further test our alignment methods for refin-
ing the density maps of the complexes by averaging
over all aligned subtomograms. For each complex, we
generated 1000 subtomograms (at SNR 0.5, tilt angle
range +60°) containing randomly oriented models. We
then aligned the tomograms against the initial templates
with a rotational sampling of 60° angle intervals. From
the resulting averaged density maps it can be seen that
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Figure 3 Convergence example. Top panels: The minimum dissimilarity scores obtained at different iterations subtracted from the true
F between predicted and true transforms at those iterations where minimum

dissimilarity scores are obtained. Left, subtomogram alignments based on the real space constrained dissimilarity score (RCS). Right, alignment
based on the Fourier space constrained dissimilarity score (FCS). Shown is the performance for subtomograms with SNR 0.5, tilt angle range
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our methods can successfully recover the initial struc-
tures (Figure 5).

Pairwise alignment of subtomograms from real
macromolecular complexes

A whole cell cryo-electron tomogram consists of
instances of macromolecular complexes of different
types. In principle, these instances can be segmented
into individual subtomograms and classified after pair-
wise alignments. Therefore, subtomogram alignment
and classification is fundamental for successful struc-
tural systems biology analysis of complexes using whole
cell tomograms. In this section, we test our methods on
subtomograms of four macromolecular complexes
obtained from the Protein Data Bank (PDB id 1KPS,
2GHO, 1W6T, 1YG6). The density map of each com-
plex is calculated from its atomic structure by applying
a low pass filter at 4 nm resolution using the PDB2VOL
program of the Situs 2.0 package [34] and voxel spacing
of 1 nm. The resulting density maps are used to simu-
late 20 subtomograms for each randomly placed macro-
molecular complex, at SNR 0.5 and tilt angle range +60°
(Section 2.6).

We perform all pairwise alignments between all 80
subtomograms with sampling of 60° rotational angle
intervals. After alignment the resulting dissimilarity
score matrix for subtomogram classification is signifi-
cantly improved in comparison to the dissimilarity score
matrix generated from the initial starting structures
(Figure 6(a)).

After classification and alignment, the resulting aver-
aged tomograms are very similar to the original density
maps. The distortions, as evident in the individual sub-
tomograms are greatly reduced after averaging (Figure 6

(b)).

Conclusion

In this paper, we have proposed a new gradient-based
method for high precision subtomogram alignments.
Combined with the RCS and FCS scores, this method
can achieve significantly lower alignment errors in com-
parison to an exhaustive sampling method. We show
that this accuracy can already be reached with only a
relatively small number of sampled candidate orienta-
tions, for example at rotational intervals of 60° and 45°.
The improvement in performance when using rotational
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Figure 4 Computation speedup. Computational speed up of the stochastic parallel optimization method compared to the traditional
exhaustive refinement method. Shown is the ratio of the number of iterations needed to find the optimal solution for the exhaustive and
stochastic parallel optimization methods (The numbers show the fold increase in number of iterations when the exhaustive method is used).
Shown are the median deviations of all 100 subtomogram alignments for the RCS method (left column) and FCS method (right column) for
optimizations using a rotational search at 60° intervals (a) and 45° intervals (b), respectively.
J

intervals of 45° instead of 45° intervals is only marginal,
indicating that 60° intervals are already sufficient for
most alignments. We further extended the method to a
special case when the alignment search is constrained to
rotations around a single axis. For instance, alignment
of membrane bound complexes allow the rotational
search to be restricted to rotations around an axis paral-
lel to a surface normal. This constrained alignment can
achieve even higher alignment precision and is more
robust to distortions in subtomograms, even when only
6 to 8 initial rotation angle candidates are used.

The RCS and FCS scores both have certain advan-
tages. In contrast to FCS the RCS score takes into
account the contrast difference between subtomograms.

On the other hand, the FCS score has closed form par-
tial derivatives with respect to the translation para-
meters, therefore introducing less numerical instability
in the gradient refinement process. Moreover it is more
efficiently computed because a smaller number of com-
putational intensive rigid transform operations are
needed.

Moreover, we have proposed a very efficient stochastic
parallel refinement method, which is able to find the
global optimum with only a small fraction of iterations
in comparison to the independent sampling and refine-
ment with the same sampling angle intervals. Together,
these improvements increase significantly the efficiency
and accuracy for subtomogram alignments, which is a
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Table 3 Constrained alignment rotation error. Constraining the search to rotations around a single axis. Subtomogram
alignment error in terms of the difference in the determined and true rotational angle. Shown are the medians and
median absolute deviations of all 100 subtomogram alignments. Bold font shows all the alignments with errors larger
than 5°, which are considered inaccurate.

60° angle interval

SNR e 1 0.5 0.1 o0 1 0.5 0.1
Tilt
+90° 02 £0.14 031 +0.15 0.55 £ 0.26 41+18 021 +£0.13 044 + 024 062 £ 033 31+17
+80° 029 £0.19 0.55 +0.38 0.89 £ 062 45+3 044 + 0.29 067 + 041 1+£073 32+16
+70° 043 +0.25 067 +0.38 081 + 0.54 5.4 + 39 0.57 + 037 0.85 + 0.53 0.84 + 043 38 +24
+60° 06 + 04 099 + 0.79 15+12 59 + 49 081 + 064 13+ 1.1 1.7+13 38+3
+50° 1.1+ 093 13+ 11 14+ 094 5+ 4.1 1.7+14 1.7 +14 2+13 4.1+ 36
+40° 1.7+17 23+£22 7+69 42 + 38 39+37 31+£29 4+£36 42 + 39

45° angle interval

SNR e 1 0.5 0.1 o0 1 0.5 0.1
Tilt
+90° 02 £0.12 035+ 0.16 042 £ 0.25 31+17 019 +£0.12 038 £ 0.19 045 £ 0.28 25+12
+80° 0.18 £0.12 031 + 021 061 £03 39+ 17 035+ 0.23 05+ 034 0.5+ 036 25+ 14
+70° 028 £0.15 047 +0.29 0.56 = 0.31 39+ 21 05+ 034 0.64 + 043 0.63 £ 045 28+ 1.7
+60° 043 +0.23 049 + 0.28 072 £ 037 45+3 067 + 046 064 + 039 092 + 046 27 +£17
+50° 0.65 + 041 0.89 + 0.53 093 £ 064 52+ 34 099 + 067 1.1+£072 1.1 £ 081 31+£22
+40° 098 + 087 12+09 2+17 12+ 11 16+12 1.7+£13 16+12 9.6 £ 9.2

RCS FCS

Table 4 Constrained alignment translation error. Constraining the search to rotations around a single axis. Subtomogram
alignment error in terms of the difference in the Euclidean distance between determined and true subtomogram
translations. Shown are the medians and median absolute deviations of all 100 subtomogram alignments.

60° angle interval, RCS

SNR o 1 0.5 1
Tilt
+90° 0.018 + 0.0053 0047 + 0017 0.08 + 0.023 028 + 0.1
+80° 0.027 £ 0.011 0.069 + 0.029 0.1 £0.048 037 +0.17
+70° 0.037 + 0.017 0.085 + 0.04 0.13 + 0.059 045+ 0.28
+ 60° 0.055 + 0.028 0.14 + 0.083 019 + 0.1 059 + 0.36
+50° 0.1 £ 0.067 018 £ 0.12 024 +£0.12 0.74 £ 042
+40° 027 + 0.25 049 + 04 094 + 0.83 33+£23

60° angle interval, FCS

SNR o 1 0.5 0.1
Tilt
+90° 0.018 + 0.0062 005 + 0017 0074 + 0021 0.23 + 0.097
+80° 0.027 + 0013 0.063 + 0.025 0076 + 0.029 0.24 + 0.091
+70° 0.034 + 0.015 0.077 + 0.032 0.098 + 0.036 032 +0.16
+60° 0.055 + 0.033 0.12 + 0.063 0.18 + 0.099 046 + 0.28
+50° 0.11 £ 0.075 0.16 + 0.099 02011 06 £0.36
+40° 039 + 035 036 + 027 057 + 044 35+28

45° angle interval, RCS

SNR o 1 0.5 0.1
Tilt
+90° 0.015 + 0.005 0.054 + 0.014 0.063 + 0.019 0.24 + 0.086
+80° 0.024 + 00072 0056 + 0018 0.086 + 0.028 029 +0.12
+70° 0.033 + 0.0095 0.075 + 0.028 0.11 + 0.04 038 +0.17
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Table 4 Constrained alignment translation error. Constraining the search to rotations around a single axis. Subtomogram
alignment error in terms of the difference in the Euclidean distance between determined and true subtomogram transla-
tions. Shown are the medians and median absolute deviations of all 100 subtomogram alignments. (Continued)

+60° 0.046 + 0.019 0.1 £ 0.036 0.16 = 0.051 048 + 0.22
+50° 0.067 + 0.035 0.14 + 0.06 0.22 + 0.098 059 + 0.27
+40° 022 +£0.18 031 £0.21 044 + 0.29 23+ 17
45° angle interval, FCS

SNR e 1 05 0.1
Tilt
+90° 0.017 + 0.0053 0.048 + 0.014 0.06 + 0.016 021 + 0.074
+80° 0.021 + 0.0069 0.052 + 0.018 0.073 + 0.025 0.2 £ 0.067
+70° 0.03 £ 0011 0.065 + 0.023 0.098 = 0.03 0.26 £ 0.085
+60° 0.043 + 0017 0.088 + 0.033 0.13 + 0.044 032 +0.11
+50° 0.07 + 0.032 0.14 + 0.056 0.18 + 0.073 044 +0.19
+40° 017 £ 0.11 024 £ 0.16 033 £0.18 15+12

Figure 5 Averaged subtomogram after alignment. Averaged subtomograms. Left, aligned using RCS. Right, aligned using FCS.

RCS FCS
Single

subtomogram  Averaged subtomograms

unaligned
tomograms

aligned
tomograms

Figure 6 Pairwise alignment of protein complexes. (a) Dissimilarity score matrices for subtomogram classification. The matrix elements
representing the same complexes are in consecutive order. (Top row) Dissimilarity score matrix based on the initial subtomogram orientations
before alignment for (left column) RCS score and (right column) FCS score. (Bottom row) RCS and FCS score matrices after subtomogram
alignments. The alignment is performed at a sampling with 60° rotation angle intervals. (b) Density maps of complexes generated after
averaging of the aligned subtomograms in the same class. (Left column) isosurface of the density distribution in single subtomogram for each
complex. (Middle and right columns) isosurface of the resulting density maps generated by averaging the 20 subtomograms aligned with the
RCS and FCS scores, respectively.
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key factor for the systematic classification of macromo-
lecular complexes in cryo-electron tomograms of whole
cells.
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