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Abstract

Background: The biochemical oscillator that controls periodic events during the Xenopus embryonic cell cycle is
centered on the activity of CDKs, and the cell cycle is driven by a protein circuit that is centered on the cyclin-
dependent protein kinase CDK1 and the anaphase-promoting complex (APC). Many studies have been conducted
to confirm that the interactions in the cell cycle can produce oscillations and predict behaviors such as
synchronization, but much less is known about how the various elaborations and collective behavior of the basic
oscillators can affect the robustness of the system. Therefore, in this study, we investigate and model a multi-cell
system of the Xenopus embryonic cell cycle oscillators that are coupled through a common complex protein, and
then analyze their synchronization ability under four different external stimuli, including a constant input signal, a
square-wave periodic signal, a sinusoidal signal and a noise signal.

Results: Through bifurcation analysis and numerical simulations, we obtain synchronization intervals of the
sensitive parameters in the individual oscillator and the coupling parameters in the coupled oscillators. Then, we
analyze the effects of these parameters on the synchronization period and amplitude, and find interesting
phenomena, e.g., there are two synchronization intervals with activation coefficient in the Hill function of the
activated CDK1 that activates the Plk1, and different synchronization intervals have distinct influences on the
synchronization period and amplitude. To quantify the speediness and robustness of the synchronization, we use
two quantities, the synchronization time and the robustness index, to evaluate the synchronization ability. More
interestingly, we find that the coupled system has an optimal signal strength that maximizes the synchronization
index under different external stimuli. Simulation results also show that the ability and robustness of the
synchronization for the square-wave periodic signal of cyclin synthesis is strongest in comparison to the other
three different signals.

Conclusions: These results suggest that the reaction process in which the activated cyclin-CDK1 activates the Plk1
has a very important influence on the synchronization ability of the coupled system, and the square-wave periodic
signal of cyclin synthesis is more conducive to the synchronization and robustness of the coupled cell-cycle
oscillators. Our study provides insight into the internal mechanisms of the cell cycle system and helps to generate
hypotheses for further research.

Background
Oscillations play a vital role in many dynamic cellular
processes, and two typical examples of genetic oscilla-
tors are the cell cycle oscillators [1,2] and circadian
clocks [3]. Understanding the molecular mechanisms

that are responsible for oscillations and their collective
behaviors is important for clarifying the dynamics of cel-
lular life and for designing efficient drug doses. Synchro-
nization is a type of typical collective behavior and is a
basic motion in nature that can explain many natural
phenomena [4,5]. Recent studies have shown that cellu-
lar communication is accomplished by synchronization,
and a number of simulations and fundamental
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experimental studies have also confirmed synchroniza-
tion mechanisms in some interacting or independent
biological systems [6-9]. The revealed synchronization
mechanisms and the dynamics of control in multi-cellu-
lar systems are essential for understanding inherent
mechanisms of living organisms at both the molecular
and cellular levels [10-12].
The biochemical oscillator that controls periodic

events during the Xenopus embryonic cell cycle is cen-
tered on the activity of CDKs, and the cell cycle is dri-
ven by a protein circuit that is centered on the cyclin-
dependent protein kinase CDK1 and the anaphase-pro-
moting complex (APC). Many studies have been con-
ducted that confirm that the interactions in the cell
cycle can produce oscillations and predict behaviors
such as synchronization [13-16], but much less is
known about how the various elaborations and collec-
tive behavior of the basic oscillators can affect the
robustness of the system and how cells use the informa-
tion to control the cell cycle.
The experiments indicated that the cyclin-dependent

kinases (CDKs) are not solely responsible for establishing
the global cell-cycle transcription program, although they
have a function in the regulation of cell cycle transcription,
and the precise cell cycle could be controlled by coupling a
transcription factor network oscillator with the cyclin-
CDK oscillator [13]. To elucidate various synchronization
mechanisms (from the viewpoint of the dynamics) by
investigating the effects of various biologically plausible
couplings and external stimuli, in this paper we use the
three-order ordinary differential equation (ODE) model of
the Xenopus embryonic cell cycle that was presented in
the literature [1] as a basic model for one oscillator and
study the synchronization for a network of N oscillators in
which all of the units were indirectly coupled by interact-
ing with a common environment. We present the coupled
model of cell cycle oscillators and the synchronization fea-
ture of the coupled system, and we determine the synchro-
nization intervals of system parameters and analyze the
effects of parameters on the period and amplitude when
synchronization is achieved.
Furthermore, the recent biological experiments found

that cell cycle oscillations in Xenopus early embryonic
extracts might not be driven by constant cyclin B synth-
esis ([17] and [18]). Therefore, we consider the cyclin
synthesis rate as four possible impulse signals, including
a constant input signal, square-wave periodic signal, a
sinusoidal signal and a noise signal, and investigate the
synchronization ability under different external stimuli
by defining two measures, including the synchronization
time and the robustness index. These studies are viewed
as an important step toward the comprehensive under-
standing of mechanisms of the Xenopus embryonic cell
cycle.

Results
Synchronization of a population of N-cell cycle oscillators
For simplicity, we analyze the case of ten identical oscilla-
tors (N = 10), and the same results can be obtained when
N is set to be greater than 10. By the numerical simula-
tion, all of the parameters of the coupled system that can
reach synchronization are obtained (Table 1), and the
synchronization diagram (Additional file 1). The oscilla-
tion period of the coupled system is approximately 4.315
min when synchronization is achieved, and the period of
a single oscillator is approximately 3.78 min.

Parameter sensitivity analysis of the coupled system
The range of the parameter distributions is set to be a
random number between [0, 1], and we obtain an aver-
age over 100 runs. All of the results are normalized, and
the effects of the parameter changes on the amounts of
the three variables and the complex protein R in equa-
tion (2) (Additional file 2). From Additional file 2 we
can see that the most sensitive parameter is K1, followed
by a1, Ka, K2, K3, b2, b3, a3 and km.

Synchronization intervals for the selected parameters
The bifurcation diagram for the parameters of the varia-
tions in the complex protein CDK1 (C1) of the first
oscillator in the coupled system (Additional files 3, 4, 5).
From Additional file 3, we find an interesting phenom-
enon, which is that there are two stable states for para-
meters K2 (Additional file 3 (B)) and b2 (Additional file
4 (A)), when K2 varies in [0, 0.8] and when b2 varies in
[0, 2], respectively.
Furthermore, we searched for the synchronization

intervals of these parameters through numerical simula-
tions. We assume that the system achieves synchroniza-
tion when the synchronization error is smaller than 1e-
5. The synchronization intervals obtained for the para-
meters are shown in Table 2.
From Table 2 we can see that there are two synchro-

nization intervals for K2, and the other parameters have
only one synchronization interval. Although there are
two stable states for the degradation rate b2, there is
only one synchronization interval. We can also observe
that the more sensitive parameters have smaller syn-
chronization intervals.
To further investigate the dynamical features of the

system in the synchronization intervals, we provide
some two-parameter bifurcation diagrams with the

Table 1 The parameter settings of the coupled system

a1 a2 a3 b1 b2 b3 K1 K2 K3

0.1 3 3 3 1 1 0.5 0.5 0.5

n1 n2 n3 n k0 Ka km k KL

4 4 4 3 2 0.5 1.5 1 0.5
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XPPAUT software [19]; these diagrams are shown in
Figures 1 and 2. Figure 1 further demonstrates an oscil-
lation feature in the determined synchronization inter-
vals. Figure 2 shows that the oscillation system can
reach synchronization as long as the Hill coefficients n1,
n2 and n3 are greater than 3 when the coupled Hill coef-
ficient n is set to be no smaller than 3, indicating the
rationality of the parameter settings for the Hill coeffi-
cients in Table 1.

The effects of sensitive parameters on the
synchronization period and amplitude
(A)The effects of the activation coefficients K1, K2, and K3 in
the Hill functions
From Additional file 6 we can observe that the activa-
tion coefficients K1 and K3 have the same influence on
the period and amplitude, which is that the oscillation
period and amplitude are almost linearly decreased with
increases in K1 and K3.
However, the activation coefficient K2 has distinct

influences on the period and amplitude of the synchro-
nization system in different synchronization intervals
(Additional file 7). In the first interval [0.185, 0.22], the
period increases and the amplitude is almost the same,
but in the second interval, the period and amplitudes
decrease.
When K2 varies in the interval [0.35, 0.42], and the

parameter a2 changes from 1.6 to 1.0 (Figure 3(A) and
Figure 3(C)) or a3 changes from 1.6 to 1.2 (Figure 3(B)
and Figure 3(D)), the coupled system switches from
stable period oscillations to a stable steady state (Figure
3).
To consider the influence of noise on the features of

the system, we introduce the inner noise in the system
(2). Figure 4 and 5 show stochastic transitions between
the stable steady state and the stable limit cycle when
the intensity of the inner noise is 0.001 and the para-
meter a2 changes from 0.9 to 1.7 or the parameter a3

changes from 1.2 to 1.6, respectively, indicating that the
coupled system can switch between a stable state and a
stable periodic orbit regardless of whether there is noise.
(B)The effects of a1 and a3 on the period and amplitude
when synchronization is achieved
The simulated course of the period and amplitude with
changes in a1 and a3 are depicted (Additional file 8).

From Additional file 8 we can see that the oscillation
period and amplitude decreased with an increase in a1

and increase with an increase in a3, but the change of
the period for both a1 and a3 is obvious and the change
in the amplitude is slight. This observation further
demonstrates that the activation rates can adjust the
oscillation period in the coupled system, which is the
same as in the single oscillator of interlinked positive
and negative feedback [20].
(C) The effects of coupling parameters on the period and
amplitude when synchronization is achieved
The effects of the coupling strength k, the ratio coeffi-
cient k0 and the activation coefficients KL and Ka on the
period and amplitude are shown in Additional files 9
and 10. With an increase in these parameters, the oscil-
lation periods for parameters KL, Ka and K increase, but
the oscillation period for parameter K0 decreases. The
trend of the oscillation amplitudes is similar to the peri-
ods except for the coupling strength k. However, the
influence of the coupling parameters on the period is
greater than the influence on the amplitude, especially
for the activation coefficient Ka of the Hill function of
Ci.

Comparisons of synchronization abilities based on the
synchronization time and robustness index
To evaluate the synchronization ability of a coupled sys-
tem, we simulated two metrics, the synchronization
time and the robustness index (see Methods). First, we
analyzed the effect of K2 on the synchronization time
(Figure 6); we found that the synchronization time
increased with an increase of K2 in the first interval and
the synchronization time decreased with an increase of
K2 in the second interval. We also observed that the
synchronization time in the first interval was much
shorter than the synchronization time in the second
interval, but the synchronization was very sensitive to
changes in the initial values.
Figure 7 shows how the different signal strengths

affect the synchronization time with an increase in the
coupling strength under a constant input signal, a
square-wave periodic signal, a sinusoidal signal and a
noise signal, respectively. From this figure, we can
observe that the synchronization time decreases with a
growth in the impulse strength and a coupling strength
under a constant signal (Figure 7(A)), a square-wave
periodic signal (Figure 7(B)) and a noise signal (Figure 7
(D)), which indicate that the synchronization ability is
improved when the coupling strength and the impulse
strength are increased and is most obvious under a
square-wave periodic signal. However, the synchroniza-
tion time has no clear trend with a change in the cou-
pling strength and the impulse strength if the cyclin
synthesis is the sinusoidal signal (Figure 7(C)), which

Table 2 The synchronization intervals for the sensitive
parameters

K1 K2 K3 a1 a3 b2
[0.48, 0.57] [0.185, 0.22]

[0.48, 0.57]
[0.48, 0.57] [0.09, 0.21] [2.2, 3.5] [0.9, 1.3]

b3 km KL Ka k k0

[0.89, 1.3] [1.3, 1.6] [0.44, 0.55] [0.46, 0.52] [0.92, 1.3] [1.85, 2.3]
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Figure 1 Two-parameter bifurcation diagrams for four groups of parameters. (A) The bifurcation diagram for the coupling strength k and
the synthetic rate a1. The whole region is divided into three regions I, II and III. I and III: stable regions. II: oscillation region. (B) The bifurcation
diagram for the coupling strength k and the coefficient k0. I: oscillation region. II: stable region. (C) The bifurcation diagram for the degradation
rate km and the coefficient k0. I: oscillation region. II: stable region. The behavior of the system in the region between two lines is unclear. (D)
The bifurcation diagrams for the degradation rates b1 and b2. I, II and III: stable regions. Region IV: oscillation region.
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indicates that the coupling strength and impulse
strength have no obvious influence.
Figure 8 displays the robustness indexes under three

different signals: a constant input signal, a square-wave
periodic signal and a sinusoidal signal with an increase
in the signal strength under a variation in the para-
meters of 10% (Figure 8(A)) and 20% (Figure 8(B)). This
figure shows that the robustness of the square-wave per-
iodic signal is the strongest of all of the signals, regard-
less of how much the variation of the parameters is.

Figure 9 depicts the effects of the noise strength for the
noise signal on the robustness index under two types of
variation strengths of parameters, indicating that the
relatively small variation of parameters is benefited to
the robustness of the system under the noise signal.

Discussion
In this study, we investigated the synchronization fea-
ture of one coupling system of N cell-cycle oscillators
that were coupled through a common complex protein.

Figure 2 Bifurcation diagrams for the Hill coefficients. (A)The single parameter bifurcation diagram of n, n1, n2 and n3, with an increase of
the parameter n the concentration of CDK1 decreases slightly but the concentration of CDK1 increases gradually with increases in n1, n2 and n3.
The changing of n2 is very sensitivity to the concentration of CDK1. (B)(C) and (D) are two-parameter bifurcation diagrams for each pair among
n, n1, n2 and n3, respectively. I: stable region, and II and III: oscillation regions.
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The work of Mclsaac. R et al. [21] analyzed the spatial
synchronization oscillation of Xenopus embryos that
was triggered by the fertilization-initiated calcium wave;
this investigation may offer insights into determining
the components of the complex protein R.
The cell division cycle of the Xenopus embryo was

demonstrated to consist of two phases: interphase and
metaphase [21], which are characterized by low and
high levels of CDK1 activity, respectively. In the work of
Pomerening et al. [18], a numerical model of the
embryonic cell-cycle network was developed, in which

the CDK1 activity was increased by dual positive feed-
back, while the CDK1 activity was reduced by a single
negative feedback to explain the possible underlying
bistability of the network. We can also observe a similar
phenomenon in the coupled model through the bifurca-
tion analysis of the coupling strength k (Figure 10).
From Figure 10, we can see that the coupled system can
exhibit bistability when the coupling strength k is
increased to the region between two saddle-node bifur-
cations. We can see that the coupled system exhibits
some hysteresis, i.e., CDK1 converges to a low or high

Figure 3 The coupled system switches from stable period oscillations to the stable steady state. (A) The coupled system switches from
stable period oscillation when a2 = 1.6 to the stable steady state (C) when a2 = 1, the other parameters are set as Table 1. The coupled system
switches from the stable period oscillation (B) when a3 = 1.6 to the stable steady state (D) when a3 = 1.2.
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state depending on the initial condition, which is a spe-
cific feature of the coupled system.
There are also some limitations to our approach. In

our proposed coupled model, we chose three compo-
nents, which composed a negative feedback loop as the
basic model; this configuration captured the main fea-
tures of the cell cycle but may have limitations for inter-
preting the details of the mechanism of the cell cycle,
for example, adding the positive feedback of the Wee1

as well as Cdc25 on the cyclin CDK1 may contribute a
more widely tunable period and amplitude of the oscilla-
tion [18].
Although we have mainly examined effects of the

most sensitive parameters and coupled parameters on
the cellular dynamics, there are also other important
factors that may play important roles in biological pro-
cesses and should be further investigated from theoreti-
cal viewpoints.

Figure 4 The coupled system switch from a stable steady state to stable period oscillations when intrinsic noises are added and the
parameter a2 is changed. The coupled system switches from a stable steady state to stable period oscillations if inner noises are introduced
when K2 is set to be between two different synchronization intervals (The intensity of inner noise is 0.001 and the parameter a2 changes from
0.9 to 1.7)
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Conclusions
In this paper, a new dynamical global coupled model
for cell cycle oscillators is presented. Through bifurca-
tion analysis and numerical simulations, we determined
synchronization intervals of the coupled system. Our
simulation results show that the more sensitive para-
meters have smaller synchronization intervals. Further-
more, we find that there are two synchronization
intervals of the activation coefficient in the Hill func-
tion of the activated CDK1 that activate the Plk1, and
different synchronization intervals have distinct influ-
ences on the period and amplitude of the synchroniza-
tion system. Afterwards, when this parameter shifts

from two different synchronization intervals, the
coupled system can switch from stable period oscilla-
tions to a stable steady state. Computational results
through the two metrics, the synchronization time and
the robustness index, indicate that a larger coupling
strength has a shorter synchronization time for the
three signals, and the robustness index for the square-
wave periodic signal of cyclin synthesis is strongest in
comparison to the other signals. These results suggest
that the reaction process in which the activated cyclin-
CDK1 activates the Plk1 has a very important influence
on the synchronization features of the coupled system.
The square-wave periodic signal of cyclin synthesis is

Figure 5 The coupled system switch from a stable steady state to stable period oscillations when intrinsic noises are added and the
parameter a3 is changed. The coupled system switches from a stable steady state to stable period oscillations if inner noises are introduced
when K2 is between two different synchronization intervals (The intensity of inner noise is 0.001 and the parameter a3 changes from 1.2 to 1.6)
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more beneficial to the synchronization and robustness
of the coupled cell-cycle oscillators.
Our work not only can be viewed as an important step

toward the comprehensive understanding of the mechan-
isms of the Xenopus embryonic cell cycle but also can
provide a guide for further biological experiments.

Models and methods
Model of coupled cell cycle regulatory oscillators
The simplified reaction diagram of the Embryonic cell
cycle is depicted in Figure 11(A). The cyclin-dependent
protein kinase CDK1 is activated by the rapid, high-affi-
nity binding of cyclin, and forms the synthesized protein
Cyclin-CDK1, which is the master regulator of mitosis.
A protein such as Polo-like kinase (Plk1) cooperates
with cyclin-CDK1 to activate the E3 ubiquitin ligase
APC-Cdc20, and APC-Cdc20 inactivates cyclin-CDK1.
For cell i, we assume that CDK1 is activated by a con-

stant rate of cyclin synthesis (a1), and the inactivation rate
is proportional to the concentration of CDK1* (Ci) times a
Hill function of APC*(Ai). The activation of Plk1 (Pi) by
CDK1* is proportional to the concentration of inactive
Plk1 (we also assume the total concentration of active and
inactive Plk1 to be constant, specifically 1-Pi) times a Hill
function of CDK1*(Ci), and the inactivation is proportional
to Plk1*(Pi). The activation of APC (Ai) by Plk1 is propor-
tional to the concentration of inactive APC (1- Ai) times a
Hill function of Plk1 (Pi), and the rate of inactivation of
APC is described by simple mass action kinetics. The
resulting three-ODE model is the following:

dCi

dt
= α1 − β1Ci

Ai
n1

K1
n1 + Ai

n1

dPi
dt

= α2(1 − Pi)
Ci

n2

K2
n2 + Ci

n2
− β2Pi

dAi

dt
= α3(1 − Ai)

Pin3

K3
n3 + Pin3

− β3Ai

(1)

where the parameters ai, bi (i = 1, 2 and 3), K1, K2

and K3 are set to be the same as those in the Literature
[1], except for the Hill coefficients n1, n2 and n3, which
are set to be 4.
To reveal the internal mechanism of the Xenopus

embryonic cell cycle, we assume that all of the cells are
coupled indirectly through the common extracellular
medium, in other words, they are coupled through a
complex protein (R) that excites the protein of Cyclin-
CDK1 in the core cell cycle regulatory pathway. The
diagram for global coupling of the cell cycle oscillators
is shown as in Figure 11(B).
The ODE equations for N cell oscillators (denoted by i

= 1, 2,.., N) are written as follows:

dCi

dt
= α1 − β1Ci

Ai
n1

K1
n1 + Ai

n1 + k
Rn

KL
n + Rn

dPi
dt

= α2(1 − Pi)
Ci

n2

K2
n2 + Ci

n2
− β2Pi

dAi

dt
= α3(1 − Ai)

Pin3

K3
n3 + Pin3

− β3Ai

dR
dt

=
k0
N

N∑
i=1

Ci
n

Ka
n + Ci

n − kmR

(2)

Figure 6 The effects of parameter K2 on the synchronization time in two different synchronization intervals. (A) The synchronization
time of K2 in the first synchronization interval. It shows the synchronization time increases with an increase in K2. (B) The synchronization time
of K2 in the second synchronization interval. It shows the synchronization time decreases with an increase of K2.
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Figure 7 The effects of the coupling strength on the synchronization time under different impulse signals and impulse strengths. (A)
The effects of the coupling strength k on the synchronization time under a constant signal input with the impulse strengths 0.1, 0.15 and 0.2,
respectively. (B) The effects of the coupling strength k on the synchronization time under a square wave signal input with the impulse strengths
0.4, 0.6, 0.8 and 1, respectively. (C) The effects of the coupling strength k on the synchronization time under a sine signal input with the impulse
strengths 0.8, 1, 1.2 and 1.4, respectively. (C) The effects of the coupling strength k on the synchronization time under the Gauss noise input
with the mean strengths 0.01, 0.03, 0.05 and 0.07, respectively and standard deviation 0.001. Where the constant signal: the cyclic synthesis a1 =
aq. The square wave signal, the sine signal and the noise signal are corresponding to the following formula:

α1 (t) =
{
aq sin (t) if sin (t) > 0

0 otherwise
, α1 (t) =

{
aq sin (t) if sin (t) > 0

0 otherwise
, α1 (t) = aq + bq ∗ rand . Where aq is the signal

strength, t0 is set to 4 and t1 is set to 2 in the square wave signal, bq is set to 0.001 when aq is 0.01 and bq is set to 0.01 when aq is larger
than 0.01 in the noise signal.
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Synchronization of a population of N-cell cycle oscillators
In order to quantify the level of synchronization of the
coupled system, we introduce the synchronization error
proposed in [22] as follows.

E =
1
N

N∑
i=2

[(Ci − C1)
2 + (Pi − P1)

2 + (Ai − A1)2]

The coupled system is defined to achieve synchroniza-
tion when E reaches zero in a limited amount of time.
In our simulation, we assume that the system achieves
synchronization when the synchronization error E is
smaller than 1e-5.

Parameter sensitivity analysis of the coupled system
To investigate the effects of parameter changes on the
amount of all of the variables in the coupled system, we
make the sensitivity analysis of parameters with an
approach proposed in [23]. For the continuous state
equation that has continuous first-order partial deriva-
tives with parameters l0, we have the following:

dx
dt

= f (t, x,λ0)

x(t0) = x0

(4)

The solution can be approximated by expanding the
Taylor series about the nominal solution x(t, l0).

x(t,λ) ≈ x(t,λ0) + S(t)(λ − λ0) (5)

Figure 8 The effects of the signal strength on the robustness in three different signal inputs under the variation of parameters at
10% and 20%. (A) The effects of the signal strength on the robustness index under a constant signal, a square wave signal and a sine signal at
the variation of 10%. (B) The effects of the signal strength on the robustness index under a constant signal, a square wave signal and a sine
signal at the variation of 20%.

Figure 9 The effects of the signal strength on the robustness
in noise signal input under the variation of parameters at 10%
and 20%. The legend with circle and star lines represent the
variation of 10% and 20%, respectively.
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The sensitivity function S (t) provides the first-order
estimates of the effects of the parameter variations on
the solutions. When all of the values l are in a small
ball centered at l0, the sensitivity function suffices to
approximate the solution. Then, we can calculate the
sensitivity of the system parameters by solving the fol-
lowing sensitivity equation (See [23] for details):

dS(t)
dt

= [
∂f (t , x,λ)

∂x
]|λ=λ0S + [

∂f (t , x,λ)
∂λ

]|λ=λ0 , S(t0) = 0 (6)

The range of the parameter distributions is set to be a
random number between [0, 1] and we obtain an aver-
age over 100 runs; all of the results are normalized.

Figure 10 The bifurcation diagram for the coupling strength k. (A) Bifurcation diagram for the coupling strength k. When the coupling
strength is increased to the range between two saddle-node bifurcations, the coupled system can exhibit bistability and also exhibits some
hysteresis, i.e., CDK1 converges to a low or a high state depending on the initial conditions. But when k is set to 1.6 and the synthetic rate a1 of
CDK1 is changed into the square wave signal, the coupled system behaviors as (B): a pulse input drives CDK1 into the upper state and then
oscillates, or oscillates all the time which depends on the initial state of the coupled system. (C) The bifurcation diagram for k when K2 = 0.35,
a3 = 1.6 and other parameters are set as Table 1. (D) shows that the pulse input drives CDK1 into the upper state and cannot get back. SN:
Saddle-Node point. HB: Hopf bifurcation point.
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Identification of the synchronization intervals for the
selected parameters
To analyze the effects on the synchronization when the
parameters change, we perform a bifurcation analysis
for the sensitive parameters and the coupling parameters
by varying the chosen parameter and fixing the other
parameters.

Calculation of the synchronization time and robustness
index
To quantify the speediness and robustness of the synchro-
nization, we use two quantities, the synchronization time
and robustness index, to evaluate the synchronization abil-
ity under different conditions. The synchronization time is
calculated according to the time when the synchronization
error of the coupled system is smaller than 1e-5. The
robustness index (r) is computed with the following for-
mula, which is similar to the formulas in [24,25].

r =
1

Nlog2N

M∑
k=1

bklog2bk (7)

where M is the number of equally divided regions
according to the distribution of the oscillation period
and bk is the number of the distribution of periods of
the kth region; N is the total number of the distribution
of periods that are obtained through using the Latin
sampling method [26] by a variation of the parameters
10% or 20%. (In our study, N = 1000). Obviously, 0 ≤ r
≤ 1, where r = 1 corresponds to perfect synchronization
and perfect robustness (M = 1 and b1 = N), and r = 0
corresponds to no synchronization and poor robustness
(M = N and bk = 1).

Additional material

Additional file 1: The synchronization behavior of the coupled
oscillators. The coupled system achieved synchronization when the
parameters were set as in Table 1. N is the number of cells. The

character C refers to CDK1, P refers to PLK1, A refers to APC and R refers
to the complex protein.

Additional file 2: The sensitivity of the coupled system to the
perturbation of parameters. (A) Sensitivity of CDK1 to the perturbation
of parameters. (B) Sensitivity of PLK1 to the perturbation of parameters.
(C) Sensitivity of APC to the perturbation of parameters. (D) Sensitivity of
R to the perturbation of parameters.

Additional file 3: The bifurcation diagrams for K1, K2, a1 and a3. (A)
The bifurcation diagrams of the activation coefficients K1 in the Hill
function. (B) The bifurcation diagrams of the activation coefficients K2 in
the Hill function. (C) The bifurcation diagrams of the activation constants
a1. (D) The bifurcation diagrams of the activation constants a3.

Additional file 4: The bifurcation diagrams for the degradation
rates. (A) The bifurcation diagrams of degradation rates b2. (B) The
bifurcation diagrams of degradation rates b3. (C) The bifurcation
diagrams of the degradation rate of complex protein R. (D) The coupled
system achieved an asymptotically steady state when km = 1.25.

Additional file 5: The bifurcation diagrams for the coupling
parameters. (A) The bifurcation diagrams for the activation coefficients
KL in the Hill function. (B) The bifurcation diagrams for the activation
coefficients Ka in the Hill function. (C) The bifurcation diagrams for the
coupling strength k. (D) The bifurcation diagram for the activation
constant k0.

Additional file 6: The effects of K1 and K3 on the period and
amplitude. The above two diagrams show the effects of K1 on the
period and amplitude of the coupled system when synchronization is
achieved. The two diagrams below show the effects of K3 on the period
and amplitude of the coupled system when synchronization is achieved.

Additional file 7: The effects of K2 on the period and amplitude. The
above two diagrams show the effects of K2 on the period and amplitude
of the coupled system when synchronization is achieved at the first
synchronization interval. The two diagrams below show the effects of K2
on the period and amplitude of the coupled system when
synchronization is achieved at the second synchronization interval.

Additional file 8: The effects of a1 and a3 on the period and
amplitude when synchronization is achieved. The left two diagrams
show the effects of a1 on the period and amplitude of the coupled
system when synchronization is achieved at the first synchronization
interval. The two diagrams on the right show the effects of a3 on the
period and amplitude of the coupled system when synchronization is
achieved at the second synchronization interval.

Additional file 9: The effects of parameters KL, Ka, k and k0 on the
period when synchronization is achieved. With an increase in these
parameters in their synchronization intervals, the oscillation periods for
parameters KL, Ka and k increase, but the oscillation period for parameter
k0 decreases.

Additional file 10: The effects of parameters KL, Ka, k and k0 on the
amplitude when achieved synchronization. With an increase in these

Figure 11 The simplified diagrams of the Xenopus Embryonic cell cycle and global coupling style between oscillators. (A) The
simplified diagrams of the Xenopus Embryonic cell cycle (redrawn from [1]). (B) Global coupling style between N oscillators.
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parameters in their synchronization intervals, the oscillation amplitudes
for parameters KL and Ka increase, but the oscillation amplitudes for
parameters k and k0 decreases.
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