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Background

All cellular activations are regulated by various signal
transduction pathways, which are the network of interact-
ing proteins used to carry over signals in the cell's environ-
ment for producing associate responses. The MAPK
(mitogen-activated protein kinase) or its synonymous
ERK (extracellular signal regulated kinase) pathway is one
of the major signal transduction systems which regulates
the cellular growth control of all eukaryotes like cell pro-
liferation or apoptosis. The complex structure of this reg-
ulatory mechanism whose main components are Ras, Raf,
and MEK proteins (see Figure 1) includes a number of
phosphorylations on the protein level. The functionality
of these proteins is stochastic in nature and directed by
positive and negative feedback loops that cause either acti-
vation or inhibition of other proteins.

Due to the importance in the cellular lifecycle, the MAPK/
ERK pathway has been intensively studied, thereby a
number of qualitative descriptions of this regulatory
mechanism are available in the literature. However none
of the sources describe the system by an explicit set of reac-
tions. Here we combine these qualitative sources for a rep-
resentation of the pathway as a list of (quasi) reactions
which is used to produce a basis for stochastic simulation.
For defining our reaction set we denote all components by
simple notations and use multiple parametrizations to
indicate different localization of the molecules in the cell
and to describe the protein using different binding sites as
well as various phosphorylations.

Modelling by diffusion approximation

Gene regulation is commonly modelled via ordinary dif-
ferential equations (ODEs). Although ODEs are successful
to represent some reactions like linear production and
degradation, they cannot describe the small system varia-
bility of the actual reactions. For biochemical systems, sto-
chastic processes are a natural choice as these kinds of
dynamic formalization take into account the probabilistic
manner of the different biological activations. In this
study under the assumption that the probability distribu-
tion of the number of the molecules of each species at t
depends on the continuous t and continuous number of
molecules, we use the diffusion approximation to explain
the change of state of each substrate at ¢. In this modelling
the current state is found by a Langevin approach, where
a correlated noise term describes the stochastic behaviour
of the model over and above the drift term via dY(t) = y(Y,
@®)dt + B2 (Y, @)dW(t) in which dW(t) is a s-dimensional
vector representing the change of a Brownian motion over
time and s is the total number of substrates in the system.
u(Y, ®) = V'a(Y, ©) and A(Y, ©) = V'diag{a(Y, ©)}V are
mean, or drift, and variance, or diffusion, matrices, respec-
tively, both depending on the state of the system Y at time
t, and the parameter vector © = (0;,...,0,)" explicitly. ©;(j
= 1,...,r) represents the stochastic rate constant of the j th
reaction and r denotes the total number of reaction.
Accordingly V is the net effect matrix and r-dimensional
vector a(Y,, ®) describes the hazard of each reaction at
time t. The algorithm computes the next state at t + dt by
replacing Y(t) by Y(t) + dY(t).
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Simple representation of the structure of MAPK/ERK pathway.
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Diffusion approximation for inference

For estimating the model parameters, i.e. the stochastic
rate constants, we apply the discretized version of diffu-
sion approximation, which is known as Euler approxima-
tion, AY, = (Y, ®)At + p2(Y, ®)AW, where AW, shows
a s-dimensional independent identically distributed N(O,
IAt) random vector. We define our data vector as a (n + 1)
x s matrix in which each column indicates a vector of
Y, = (¥,

[O'i’”"Ytn'i) and n stands for the total number of
observed time step. Finally I is the indicator of the i th sub-
strate. Since the change in state for a given At has a multi-
variate normal distribution, the likelihood associated

with this time increment is derived proportional to
n-1 - n-1 -

LY |©)= {H\ﬂm o' }xexp{—%Z(AYu — (Y, ©)ALY| BV, ©)a1 | (aY, ~u(Y, ©)ar) (1)
i=0 i=0

where Y; shows the state of the i th substrate at time ¢ and

AY,=Y,, 5 - Y, As can be seen from equation 1, the condi-
tional posterior density of reaction rates ® does not have
a known distribution. We compute the posterior distribu-
tion of ® using the MCMC method. Moreover to decrease
the bias causing by discretization we augment our obser-

vations by putting extra time states between given meas-
urements. Then conditional on accepted ®, we simulate
and update the missing states by implementing the

Metropolis-Hastings algorithm as one block of Y at a
time. On simulated data we observe that the sampler con-
verges well and is able to identify the dynamics of the
MAPK/ERK pathway.
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