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Abstract

this type of investigation.

Background: It has been reported that several brain diseases can be treated as transnosological manner
implicating possible common molecular basis under those diseases. However, molecular level commonality among
those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to
find genes associated with brain diseases but most of those studies were restricted either to an individual disease
or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it
used typical methods depending on differentially expressed genes.

Results: In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five
neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and
fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find
4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in
individual brain diseases. The function enrichment analysis of those gene sets showed many new possible
functional bases as well as neurological processes that are common or specific for those eight diseases.

Conclusions: This study introduces possible common molecular bases for several brain diseases, which open the
opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of
correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in

Background

It has been shown that various neurodegenerative dis-
eases and even psychiatric disorders have a large extent
of similarity in terms of neurological dysfunction [1]. In
clinical practices in these diseases, transnosologically
oriented treatments are often used based on the assump-
tion of this similarity. Therefore, it seems important to
find common molecular mechanisms of transnosological
aspect of neurological diseases as well as the unique char-
acteristics of individual diseases. The similarity among
some representative brain diseases has been observed
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and summarized at the phenotypic level. However, the
molecular level commonality is yet largely uncharacter-
ized due to the lack of the application of currently devel-
oped method appropriate for this type of investigation.
Transcriptome analysis have been suggested for com-
prehensive gene level interpretation of many diseases.
Transcriptome data is also one of the most available
resources for human brain study. Various methods for
transcriptome analysis have been developed for identifi-
cation of differentially expressed genes, correlated genes,
and significant functional modules [2-7]. There have
been several transcriptome analyses of human brain dis-
eases using microarray [8]. Most of the previous studies
focused on identifying differentially expressed genes
under various neurodegenerative diseases such as
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Alzheimer’s disease [9-11]. Though they suggested sets
of individual molecular players associated with brain dis-
ease etiology, it has been recommended to investigate
system-level transcriptomic changes by identifying gene
sets that show coexpression under either brain disease or
normal condition in order to get more comprehensive
understanding on highly complex brain diseases [8,12].
Those previous approaches were, however, restricted to
individual brain diseases so that identification of molecu-
lar basis common to multiple brain diseases was difficult.
Integrative analysis uses an integrated data of multiple
microarray datasets via adjusting batch effects, or sys-
tematic difference between datasets, which is promising
approach to identify robust molecular basis associated to
multiple brain diseases. In addition, biclustering analysis
is a good candidate for searching coexpressed gene sets
under specific subset of samples. Given that there are
many brain diseases to be simultaneously investigated
and it is unclear which brain disease combinations would
have common molecular basis, a biclustering analysis is
expected to provide efficient method to identify common
coexpressed gene sets under various combinations of
brain diseases. Both integrative approach and biclustering
analysis showed its utility in studies of other transcrip-
tome data for complex diseases such as cancers [13,14]
but there have not been applied to investigate brain tran-
scriptome data.

To this end, we used an integrative approach on three
microarray datasets covering five neurodegenerative dis-
eases, three psychiatric disorders and normal conditions
to identify common molecular basis of various brain dis-
ease combinations in a transnosological manner. Using a
biclustering analysis and post-processing, we efficiently
identified large number of gene sets that gained or lost
correlation under all or specific combinations of brain
diseases compared to the normal conditions. Large por-
tion of those common gene sets were enriched for genes
having known association with brain diseases, implicating
system-level change of transcriptional organization to the
multiple brain diseases. A function enrichment analysis
on the identified gene sets showed that the common
coexpressed gene sets were more enriched for the biolo-
gical processes associated with neurological processes
compared to individual single disease-specific gene sets,
indicating that they might serve as good starting points
in studies discovering key targets of drug intervention of
transnosological aspect.

Results

Identification of brain disease-specific coexpressed gene
sets

We aimed to identify coexpressed gene sets either in
brain diseases or in normal to find molecular mechan-
isms potentially associated with brain diseases. Especially,
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we focused on finding molecular mechanisms common
to multiple brain diseases. We chose five neurodegenera-
tive and three psychiatric disorders, covering Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, multi-
ple sclerosis, amyotrophic lateral sclerosis, schizophrenia,
bipolar disorder, and autism along with controls. For an
integrative gene expression analysis, we combined three
microarray datasets into a single dataset by adjusting
batch-specific effects using ComBat method [15]. As a
result, we could get a microarray dataset with 6688 dis-
tinct genes and 237 samples. We applied the biclustering
method to the combined microarray dataset to efficiently
get initial sets of biclusters in which at least genes show
correlated expression values under arbitrary subset of
samples with average Pearson’s correlation coefficients
(PCC) equal or greater than 0.7 in a transnosological
manner. We chose 0.7 as the threshold based on our
empirical simulation result that the probability that an
arbitrarily composed bicluster has average PCC equal or
greater than 0.7 is statistically significantly rare (P = 1E-
04). We selected only those biclusters containing all sam-
ples from one or more of classes (e.g. all samples from
multiple sclerosis class and all samples from Alzheimer’s
disease class). We eliminated samples from each of the
selected biclusters if the samples are just part of certain
class. With the refined biclusters, we next determined
whether the gene coexpression is substantially gained or
lost in brain diseases compared to normal. For this pro-
cess, we separately calculated average PCC of the genes
included in each refined bicluster in included brain dis-
eases and in normal, and got the difference in the average
PCCs. We assigned p-values to the difference by using
background distribution of difference of average PCCs
between brain diseases and normal from 100,000 random
gene groups. We finally identified coexpressed gene sets
showing statistically significant gain or loss of coexpres-
sion in brain.

A total of 4,307 gene sets were identified to be coex-
pressed in at least two brain diseases, implying that there
might be large number of molecular mechanisms com-
monly associated to multiple brain diseases with Benjamini
corrected p-value of 0.005. Given that the number of coex-
pressed gene sets specific to individual brain diseases is
3,409, our finding supports the hypothesis that there are
huge similarity between the investigated brain diseases at
molecular level for the first time. The numbers of shared
coexpressed sets show degree of association among differ-
ent combinations of brain diseases in Figure 1. We found
the similarity group among brain diseases by the number
of total coexpressed gene sets between all possible combi-
nations of two brain diseases. ALS and MS is the most
similar disease with 1,684 coexpression gene sets. Other
brain diseases are listed with AD, SCH, PD, HD, AUT, and
BD in the order of the number of shared gene sets. This
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Figure 1 Summary of brain disease combinations sharing common coexpressed gene sets.
J
result shows shared mechanism of molecular level among Figure 2 shows two types of top 30 genes in gene sets

neurodegenerative diseases. Particularly, SCH, classified by  of single brain disease and at least two brain diseases.
psychiatric disorder, highly correlated with neurodegenera- To discover the biological meaning and functions of
tive disease. each gene set from single and multiple brain disease,



Cha et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 1):57

http://www.biomedcentral.com/1472-6947/15/51/S7

Page 4 of 8

(A)

Il
1

== NN
(o, o ld Rale)]

il

1

1
1

# gene sets

# gene sets

single brain disease-specific gene sets.

Figure 2 Top 30 genes most frequently found in the coexpressed gene sets. (A) Gene sets shared by at least two brain diseases and (B)

function enrichment analysis of each gene list was
performed using DAVID. As the results, the fourteen
genes (RTN3, LANCL1, YWHAQ, COX5B, DYNCI1H],
HNRNPD, MIF, NEDDS8, PRKAR1A, PSMC1, RPL31,
TBCA, VDAC3, and CDC42) in gene sets of one brain
disease were significantly enriched only ‘acetylation’
term of SwissProt PIR Keyword with Benjamini cor-
rected p-value of 0.006. The three genes (AP2A2,
CACNG2, and RAB3A) in gene sets of at least two
brain diseases were significantly enriched ‘synaptic
transmission’ term of Reactome pathway with Benjamini
corrected p-value of 0.022. This result shows that fre-
quently found genes in gene sets sharing brain diseases
are different from genes of only one brain disease in
terms of cellular function. In particular, frequently
observed genes in gene sets sharing multiple brain dis-
eases are distributed the important pathway of neurolo-
gical processes.

Coexpressed gene sets across multiple brain diseases are
enriched for known disease-associated genes

We could find 1 and 7 coexpressed gene sets shared by
all and 7 different brain diseases, respectively in Table 1.
To find association between the genes in 8 coexpressed
sets and brain diseases, we checked genes in coex-
pressed gene sets with known brain disease-associated
genes by directly and first-order interacting proteins.
First, we collected brain disease-associated genes using
public available disease databases. The collected 2,697
genes comprising 1,310 for AD, 985 for SCH, 534 for

MS, 517 for BD, 352 for PD, 186 for AUT and 44 for
HD are used. Second, we used our comprehensive pro-
tein interaction database, ComBiCom [16], to find nonre-
dundant protein interaction relationships. As the result,
the three genes (ATP1A1 for BD, RBFOX1 for BD, and
KLC1 for AD and PD) are directly related to brain dis-
eases. Moreover, 10 genes (ATP1Al, ATP6V1D,
Cl6orfd5, CROCC, KLC1, LUC7L2, PIAS2, PRKAR1B,
RBFOX1, and RPL19) interacts with at least one brain
disease-associated gene. Our approach offers the poten-
tial to discovery more reliable and accurate drug targets
covering multiple brain diseases with shared molecular
mechanisms. These genes are also associated with brain
function, biological process or pathway, such as hormone
synthesis, metabolic pathway, cell death, synaptic vesicle
cycle, and nervous system development.

Functional characteristics of coexpressed gene sets
shared by multiple brain diseases

As we observed previously, there might be functional dif-
ference between the single brain disease-specific gene
sets and shared gene sets. We further investigated the
functional characteristics of the 4,299 shared gene sets in
comparison with the 3,409 disease-specific gene sets. For
this, we carried out a function enrichment analysis for
each shared gene sets and single disease-specific gene
sets using the Gene Ontology (GO) biological process at
Benjamini corrected p-value of 0.01. We assigned each
gene sets to one or more of the representative biological
processes according to the enriched biological processes
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Table 1. Coexpressed gene sets shared by more than 7 brain diseases
Brain diseases sharing gene sets Avg. PCC Diff significance* Genes
AD ALS HD MS PD SCH BD AUT Brain disease Normal P-value Benjamini
1 1 1 1 1 1 1 1 0.908 0.509 1.30E-03 4.804E-03 AKR1D1, FKTN
1 1 1 1 1 1 0 1 0.854 0.084 4.00E-05 8.759E-04 LUC7L2, SULTTA1
1 1 1 1 1 1 0 1 0.884 0.343 4.20E-04 2791803 ARHGEF3, ATP1A1
1 1 1 1 1 1 0 1 0.711 0.184 4.70E-04 2.977E-03 CROCC, PDE9A
1 1 1 1 1 1 0 1 0.879 0431 9.60E-04 4.301E-03 C16orf45, RBFOX1
1 1 1 1 1 1 0 1 0.813 0.368 9.80E-04 4.301E-03 PIAS2, PRKAR1B
1 1 1 1 1 1 0 1 0.820 0417 1.27€-03 4.790E-03 RPL19, RPL39
1 1 1 1 1 1 1 0 0.800 0404 1.32E-03 4.828E-03  ATP6V1D, KLC1

* Diff. significance: Statistical significance of the avg. PCC brain disease - avg. PCC normal empirically calculated based on the background distribution of 100,000

random gene groups.

to identify the functional categories that are relatively
overrepresented by the multiple brain disease gene sets
compared to the single disease-specific gene sets. For fair
comparison, we normalized the number of assigned gene
sets by dividing the number of identified gene sets in
each functional category by the total number of identified
gene sets. Figure 3A and Figure 3B shows 10 functional
categories of the highest counts in multiple brain disease-
specific and single brain disease-specific gene sets. In
Figure 3C, we only showed 20 functional categories
showing the highest and the lowest fold. While the single
brain disease-specific gene sets were more frequently
enriched for the metabolic processes, the functional cate-
gories such as “cell cycle”, “neurological system process”
and “cell-cell signaling” had nearly 2-fold greater repre-
sentation among the shared gene sets. This is notable
since the category “neurological system process” involves
a wide variety of biological processes that directly regu-
late or at least substantially affect neurological processes
at the phenotypic level. The overrepresentation of “cell
morphogenesis”, “cell death”, “developmental matura-
tion”, and “cell-cell signaling”, indicates that the shared
gene sets are more likely to have implications for brain
cell development and degradation, and neuron-to-neuron
or glia-to-neuron interaction, respectively. Taken together,
our data suggests that the shared molecular bases among
multiple brain diseases are more enriched in the functional
categories that are associated with neurological function.
This might reflect the fact that the multiple brain diseases
in our study have great similarity in terms of neurological
deficit even though the pathology or other symptoms vary
greatly from disease to disease. Thus, identifying the
shared gene sets rather than sing disease-specific gene sets
might increase the chances of discovering more extensive
and plausible molecular bases that are tightly associated
with neurological impairment.

Conclusions
We carried out an integrative biclustering analysis of tran-
scriptome data from multiple diseases that are known to

similarly neurological dysfunction. We demonstrated large
number of potential molecular bases shared among multi-
ple brain diseases and revealed high extent of heterogene-
ity among samples in a disease, which collectively
emphasize the benefits of our analysis for the identification
of the novel molecular mechanisms underlying multiple
brain diseases in a transnosological manner. Our analysis
showed that the number of gene sets in multiple brain
disease is substantially larger than that of single disease-
specific gene sets, and that the shared gene sets are more
likely to be associated with the pronounced biological pro-
cesses underlying cognition. The results provide new type
of information on the specific relationships among genes,
gene sets, and combinations of brain diseases, which form
a complex network that covers several known facts and
suggests previously unknown relationships and character-
istics. This study can be used as a promising strategy that
efficiently maximize utilization of currently limited human
brain transcriptome data for the extensive identification of
potentially valuable molecular basis for neurological dys-
function commonly in multiple brain diseases.

Methods

Collection of microarray data

Microarray data were derived from the NCBI GEO web
site by keyword search using the names of the neurode-
generative and psychiatric disorders. Since we are inter-
ested in brain mechanisms, we focused only on the
microarray data produced using postmortem human
brain samples and tried to minimize the number of
microarray data to be combined while trying to maximize
the number of brain diseases. We selected 3 sets of
microarray data: GSE26927, GSE5388, and GSE28521.
The set GSE26927 included 11 samples with Alzheimer’s
disease, 10 samples with amyotrophic lateral sclerosis, 10
samples with Huntington’s disease, 10 samples multiple
sclerosis, 12 samples with Parkinson’s disease, 10 samples
with schizophrenia, and 55 control samples extracted
from the entorhinal cortex; this dataset is based on the
Illumina humanRef-8 v2.0 expression beadchip. The
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Figure 3 Functional distribution of the shared gene sets and the single brain disease-specific gene sets. The x-axis shows the
representative functional categories (biological processes) selected. (A)(B) The number of assigned gene sets shared by multiple brain disease and
single brain-specific gene sets in each functional category. (C) Ratio of the number of shared gene sets over single disease-specific gene sets
J

GSE5388 dataset included 30 samples with bipolar disor-
der and 31 control samples of the dorsolateral prefrontal
cortex measured on the Affymetrix Human Genome
U133A Array (Affymetrix Santa Clara, CA) [17]. Lastly,
the GSE28521 data was for 29 autism patients and 29
controls and was based on the Illumina HumanRef-8 v3.0
expression beadchip [12]. We parsed the SOFT formatted
files of 3 sets of microarray data using the GEOquery R
package [18].

Combining microarray data

We transformed the GSE28521 data by inverting the
log2-transformed expression data using the exponential
function. Then, we applied quantile normalization to
each of the 3 selected sets of microarray data using the
functionalities in the limma R package [19]. Because all
the selected microarray data have different platforms,
we converted the probe IDs into Entrez Gene IDs using
the biomaRt R package for the GSE5388 dataset and the
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lumiHumanIDMapping R package for the GSE26927 and
GSE28521 data sets in order to allow the different data-
sets to possess a unified ID structure. After excluding
probes whose expression values were missing in
GSE28521, we identified probe IDs that were mapped to
the same Entrez GenelDs in each set of microarray data
and collapsed their expression values by averaging them
to make each microarray dataset contain non-redundant
sets of genes. Then, we combined the 3 preprocessed sets
of microarray data using ComBat [15], the batch effect
adjusting method known to outperform other methods
[20] implemented in the inSilicoMerging R package [21].

Identification of coexpressed gene sets

We used BICLIC, our recently developed biclustering
method [5], to efficiently identify sets of genes that are
correlated in individual or multiple combinations of non-
normal (i.e. brain diseases) in an unsupervised manner.
The BICLIC divides the clustering problem into indivi-
dual sample clustering problems. In each sample, the
ordered gene expression values were grouped into small
sized clusters to efficiently identify initial seed biclusters
by collecting samples in which clusters had the same
genes. The seed biclusters had at least 2 genes and 3 sam-
ples, in accordance with the minimum requirement for
the normal calculation of the Pearson’s correlation coeffi-
cient (PCC) as coexpression measurement. We expanded
each seed bicluster in 2 ways by including genes and
samples, while keeping the average PCC of the expanded
bicluster that is higher than the designated correlation
threshold, 0.7. We set the maximum number of genes in
a bicluster at 50 in this analysis, but we did not set the
maximum number of samples, in order to focus on the
identification of molecular bases shared by as many brain
diseases as possible. Once a seed bicluster is expanded in
the gene direction and in the sample direction, separately,
we can assume that this is a bicluster that contains all of
the genes and samples needed to set a search space for
identifying an optimal bicluster. Within the search space,
we eliminated subsets of genes or samples until the aver-
age PCC became larger than the correlation threshold for
the first time, while maximizing the number of involved
samples.

Function enrichment analysis

To identify functional meaning of discovered coex-
pressed gene sets, we performed functional enrichment
analysis by COFECO [22]. We selected the biological
process of Gene Ontology terms with a corrected p-
value of 0.005.

Collection of brain disease-associated genes
We collected disease-associated genes from six data-
bases: OMIM (Online Mendelian Inheritance in Man),
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Genetic Association Database [23], PharmGKB [24],
KEGG DISEASE [25], and Huge Navigator [26]. Because
the disease names vary among the source databases, we
standardized the disease names by extracting the Unified
Medical Language System (UMLS) [27] IDs using Meta-
Map [28]. The UMLS IDs were converted once more
into ICD-10-CM (International Classification of Dis-
eases, 10th Revision, Clinical Modification) using the
mapping information provided in the UMLS.
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