Jung et al. BMC Medical Informatics and Decision Making 2015, 15(Suppl 1):S6

http://www.biomedcentral.com/1472-6947/15/51/56
p BMC

Medical Informatics & Decision Making

RESEARCH ARTICLE Open Access

Identification of genomic features in the
classification of loss- and gain-of-function mutation

Seunghwan Jung', Sejoon Lee?, Sangwoo Kim?, Hojung Nam'"

From ACM Eighth International Workshop on Data and Text Mining in Biomedical Informatics
Shanghai, China. 7 November 2014

Abstract

Background: Alterations of a genome can lead to changes in protein functions. Through these genetic mutations,
a protein can lose its native function (loss-of-function, LoF), or it can confer a new function (gain-of-function, GoF).
However, when a mutation occurs, it is difficult to determine whether it will result in a LoF or a GoF. Therefore, in
this paper, we propose a study that analyzes the genomic features of LoF and GoF instances to find features that

can be used to classify LoF and GoF mutations.

71.28%, and 70.19%, respectively.

features have good discriminative power.

Methods: In order to collect experimentally verified LoF and GoF mutational information, we obtained 816 LoF
mutations and 474 GoF mutations from a literature text-mining process. Next, with data-preprocessing steps, 258
LoF and 129 GoF mutations remained for a further analysis. We analyzed the properties of these LoF and GoF
mutations. Among the properties, we selected features which show different tendencies between the two groups
and implemented classifications using support vector machine, random forest, and linear logistic regression
methods to confirm whether or not these features can identify LoF and GoF mutations.

Results: We analyzed the properties of the LoF and GoF mutations and identified six features which have
discriminative power between LoF and GoF conditions: the reference allele, the substituted allele, mutation type,
mutation impact, subcellular location, and protein domain. When using the six selected features with the random
forest, support vector machine, and linear logistic regression classifiers, the result showed accuracy levels of 72.23%,

Conclusions: We analyzed LoF and GoF mutations and selected several properties which were different between
the two classes. By implementing classifications with the selected features, it is demonstrated that the selected

Background

A mutation refers to a change of the genomic sequence,
which contains all of the genetic information of an organ-
ism. Because proteins are generated and regulated based
on the genome sequence, alterations of the genome can
lead to changes of protein functions [1]. Through these
genetic mutations, a protein can loss its native function
(loss-of-function), or it can confer a new function (gain-
of-function) [2-5]. For example, a mutated fumarate
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hydratase (FH) loses its native catalytic activity [6], and
heterozygous point mutations in isocitrate dehydrogenase
(IDH1, IDH2) confer a new metabolic enzymatic activity
that produces 2-hydroxyglutarate [7,8]. In addition, in
the FGFR1 gene, GoF and LoF mutations can lead to dif-
ferent diseases, craniosynostosis and Kallmann syndrome,
respectively [9-12]. Therefore, it is important to under-
stand the characteristics of functional mutations and to
determine which mutations lead to LoF and GoF results
for clinical target.

There are many studies of mutations, including LoF
and GoF mutations. MacArthur et al. implemented a
systematic survey of LoF variants. They showed many
LoF variant properties compared to other mutations,
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such as the allele frequency and the degrees of associa-
tions with diseases. They also showed the effects of LoF
variants, including phenotypes, diseases, and gene
expressions. However, missense mutations were
excluded from the LoF mutations which they defined
[4]. In our study, many mutations were missense muta-
tions; therefore, we chose to address missense muta-
tions. Reva et al. estimated functional effects of
missense mutations using evolutionary conservation
information [13]. Lee et al. discussed the bi- directional
SIFT (B-SIFT), which is a modified form of SIFT. In
addition, the B-SIFT algorithm calculates scores of
mutation alleles based on evolutionary conservation
information [3]. They used the scores to identify muta-
tions which cause hyperactivation or gain-of-function
outcomes, but our work uses not only the functional
effects of mutations but also several other properties.
However, most previous studies focused on either LoF
or GoF mutations or on functional changes in a specific
gene.

In this work, we propose a comprehensive analysis of
the genomic features in mutations to classify LoF and
GoF mutations. Figure 1 shows an overview of our study.
First, from the literature, 14,259 gene-sentence relations
for GoF and 29,586 relations for LoF were determined.
By removing genes without sentences and extracting
mutations and their locations from the sentences, we
obtained information on 816 LoF and 474 GoF muta-
tions. Next, we applied a data-preprocessing technique.
During this process, mutations with an amino acid loca-
tion were converted into those with a genomic location,
and amino acid residues were converted into 3-mer
nucleotide alleles, after which the mutation subtypes
were determined. In addition, mutations whose reference
allele is not matched with the reference genome as well
as mutations published before 2009 were removed. After
this processes, 258 LoF mutations and 129 GoF muta-
tions remained. Second, with the remaining mutations,
we extracted the features which have discriminative
power between LoF and GoF mutations. Lastly, we
implemented a classification process using the selected
features to confirm whether they can be used to classify
the two types. Here, we show six properties of mutations
which can contribute to the identification of a LoF or a
GoF outcome. These six are the subcellular location, the
mutation subtype, the reference and substituted allele,
the functional impact, and the protein domain.

Method

Text mining

Mutation information with the experimentally character-
ized LoF and GoF outcomes was collected from the lit-
erature. In this case, we extracted information about LoF
and GoF outcomes from PubMed. First, we searched all
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PubMed abstracts which contain the acronyms “GOF”
and “LOF” and the words “gain of function,” “gain-of-
function,” “loss of function” and “loss-of-function” as
keywords. Then, we found all related genes for each
abstract and sentence containing the relevant genes using
Gene2Pubmed [14]. Next, we tagged the mutations and
their locations using tmVar, which is a previously pub-
lished software, to extract mutation information from the
literature : substitutions, insertions, deletions, and SNP
and frameshift mutations of DNA and protein sequences,
so we also used CRF features as mentioned in the refer-
ence [15].

Data preprocessing

Once the LoF and GoF mutation information was col-
lected from the literature, the mutation data set was
preprocessed for further analysis. First, we selected LoF
and GoF mutations that were published after the year
2010 in order to filter out mutations which had been
identified against older versions of the reference gen-
ome. Second, mutations that are represented with an
amino acid information were converted into those with
a genomic location using the exon and intro information
in Consensus CDS (CCDS, using GRCh37.p13) [16-18]
so that we could observe the differences between LoF
and GoF mutations at the nucleotide sequence level.
Also, amino acid residues were converted into 3-mer
nucleotide alleles by incorporating the CCDS nucleotide
sequence and the amino acid codon table. In addition,
substituted mutations were subgrouped into missense,
nonsense and silent mutations according to the amino
acid residue. During this step, silent mutations were
removed. After these preprocessing steps, 258 LoF
mutations and 129 GoF mutations remained.

Mutation impact

In order to evaluate the significance of missense mutation
effects on protein functions, the functional impact scores
(FIS) of the LoF and GoF mutations were evaluated using
the FIS method [13], which calculates the significance
scores of point mutations based on evolutionary conserva-
tion of the mutation sites. We used the following informa-
tion as the input of the FIS method: hg version,
chromosome, mutation location, reference allele, substi-
tuted allele.

Protein domain

To demonstrate the relationships between the protein
domain functions and the LoF and GoF mutations, we
used the Pfam database [19], which makes available
large-scale protein domain information about proteins.
We found protein domains corresponding to LoF and
GoF mutation locations and formulated a distribution of
the protein domains of the two classes with all 55931
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Figure 1 The flow chart of this study. An overview of the analysis of LoF and GoF features is given. First, from the literature, we obtained LoF
and GoF mutation information. Next, we applied a data-preprocessing step. During this step, we converted amino acid locations into genomic
locations and amino acid residues into 3-mer nucleotide base alleles, after which we determined mutation subtypes. In addition, mutations
whose reference allele was not matched to a reference genome or mutations published before 2009 were removed. Next, with the remaining
mutations, features which have discriminative power between LoF and GoF mutations were extracted. Lastly, three classifications were
implemented using the selected features to confirm whether the features can be used to classify the two classes.
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human genes as the background. With this information,
we performed a hypergeometric test to find the protein
domains which had significantly different distributions.

Machine learning

In order to classify LoF and GoF mutations based on our
defined features, we utilized the support vector machine
(SVM) with normalized poly kernel, random forest (RF)
with 100 trees, logistic regression methods using the
WEKA package [20,21]. Both SVM and logistic regres-
sion use linear decision boundaries, but unlike the logis-
tic regression, not all instances affect building classifier

function in the SVM. Only instances near the boundary
are considered, and such difference between two classi-
fiers can lead to different result. Six features were
selected to build a classifier: the reference allele, the sub-
stituted allele, the mutation type, the mutation impact,
the subcellular location and the protein domain. Among
these features, the mutation impacts are continuous attri-
butes, and the other features are nominal attributes.
Then, WEKA package automatically transformed nom-
inal attributes into binary ones if classifier cannot handle
the nominal attributes. To avoid bias due to the different
data sizes in the two classes, we randomly chose 100
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instances of mutation data from each of the LoF and GoF
data sets, after which the random selections were iterated
50 times, so 50 equal size data sets were made. For each
data set, we performed five-fold cross validation and
repeated the five-fold cross validation process 100 times.
For each five-fold cross validation, 160 instances were
used to train the classifiers, and 40 instances were used
to test. As a result, we obtained 5,000 five-fold cross
validation results. Table 1 shows an example of input
instances.

Results

Tagged mutations from the literature

We obtained 14,259 gene-sentence relationships for GoF
and 29,586 relationships for LoF. From these relation-
ships, genes which did not have sentences were
removed. We obtained 2,142 sentences for GoF and
4,600 sentences for LoF as a result. Next, tmVar [15]
found 474 mutations for GoF and 816 mutations for
LoF. Consequently, we obtained 474 mutations from
2,142 sentences for GoF and 816 mutations from 4,600
sentences for GoF.

Overlapping genes

First, from the literature, we obtained mutation informa-
tion for 816 LoF and 474 GoF mutations. Next, during the
data-preprocessing step, mutations whose reference alleles
were not matched with a reference genome or mutations
published before 2009 were removed. As a result, there
remained 258 LoF mutations and 129 GoF mutations. We
extracted gene names from the 258 LoF mutations and
129 GoF mutations. Finally, 109 LoF genes and 59 GoF
genes were selected for further analysis. Figure 2 demon-
strates that there were 15 common genes. However, since
the gene names are distributed broadly, there is no pattern
that can be used to classify LoF and GoF mutations.

Subcellular location

The subcellular location information of the proteins was
collected from the UniProt database [22]. We then ana-
lyzed the enriched subcellular locations of the LoF and
GoF mutant genes using a hypergeometric test against
the information of the total of 22119 subcellular loca-
tions of human proteins. Figure 3A shows the calculated
distributions of the subcellular locations of the LoF and

Table 1. Input format example

REF SUB TYPE SCORE SL PD Class
A G Missense 1.78 Cell membrane Cadherin - GoF
T G Missense  3.62 Isoform?2 SelR LoF
T A Missense -1.505  Apical cell membrane ASC LoF

Six features were used: the reference allele (REF), the substituted allele (SUB),
the mutation type (TYPE), the mutation impact (SCORE), the subcellular
location (SL) and the protein domain (PD).
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LoF Gene List = 109

GoF Gene List = 59

Figure 2 The number of genes in LoF and GoF mutations. The
number of gene lists for LoF and GoF mutations

GoF genes, including in each case the nucleus, cell
membrane, cytoplasm, membrane, and secreted. The
subcellular location which contains the highest number
of LoF mutated genes is the nucleus (19.61%), while in
GoF it is the cell membrane (23.44%). When we imple-
mented the hypergeometric test to compare the distri-
butions between the LoF and the human results, and
between the GoF and the human results, we found that
the distributions of the subcellular locations of LoF
mutations and the background subcellular locations
were significantly different in the cell membrane and
cytoplasm (P-value = 0.0159, 0.0180). In addition, the
distributions of the subcellular locations of the GoF
mutations and the background subcellular locations
were significantly different in the nucleus, cell mem-
brane, and membrane (P-value = 0.0356, 0.0001, 0.0254,
respectively).

Mutation subtypes

Next, we extracted mutation subtypes from the LoF and
GoF mutations and compared their distributions. In this
work, we used six types of mutations: missense, nonsense,
deletion, indel, duplication and frame shift. Figure 3B
shows the distribution of the mutation subtypes of LoF
and GoF. MacArthur et al. studied LoF variants, but did
not focus on the missense mutations [4]. However, our
study shows that the most frequently found type of muta-
tion is the missense mutation in both cases for LoF and
GoF mutations. This ratio indicates that missense muta-
tions are also an important proportion of the mutations
which affect protein functions. The second most fre-
quently found mutation is the nonsense mutation in LoF;
for GoF, it was the deletion mutation. These results indi-
cate that nonsense mutations usually lead to a protein
which causes a loss of function and not a gain of a new
function.
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Reference and substituted allele ratio

We extracted the nucleotide reference alleles and substi-
tuted alleles and classified allele pairs into two groups
based on their nitrogenous bases. If a reference allele
and a substituted allele were of the same nitrogenous
base (purine and purine, pyrimidine and pyrimidine),
the mutation was classified as a transition (Ti). Other-
wise, if the two nitrogenous bases were different, it was
classified as a transversion (Tv). We then analyzed the
differences in the proportions of the each allele pairs
between the LoF and GoF mutations. Figure 4 shows
the ratio of reference and the substituted allele pairs,
and Table 2 describes P-values pertaining to the result
of comparing the LoF and GoF mutations using the pro-
positional binomial. There were no significant differ-
ences found in the TiTv ratio between LoF and GoF,
but for the LoF case, the transition (Ti) percentage is
higher than the transversion (Tv) percentage. In addi-
tion, the AG, CT, AT, and GT results show significant
differences (P-values: 0.0347, 0.0376, 0.0426, and 0.0399,
respectively).

Protein domain

We collected the protein domain function information
of each mutation. Figure 5 shows the distribution of the
protein domain functions of the LoF and GoF muta-
tions. The protein domain functions are distributed
broadly, but some of them show several exclusive cases
between the two classes. This result indicates that LoF
and GoF mutations tend to affect different protein func-
tions. Next, we analyzed the protein domain functions

of the LoF and GoF mutations using a hypergeometric
test against 55931 human protein domain functions.

Mutation impact

The FIS method was used to estimate the significance of
the missense mutation effects on the protein functions,
classifying mutations into four grades based on the esti-
mated scores: high, medium, low, and neutral [13]. Muta-
tions classified as a higher grade mutation have a more of
an effect on protein functions than those classified as a
lower grade mutation. Figure 6 shows the distributions of
the functional impact grades of the LoF and GoF muta-
tions. The percentages differ in high-impact mutations as
compared to low-impact mutations. The LoF results
shows a higher percentage of high-impact mutations than
the GoF results (LoF: 24.49%, GoF: 14.81%) as well as a
lower percentage in low-impact mutations (LoF: 20.41%,
GoF: 29.63%). This result indicates that LoF mutations
affect the protein function more than GoF mutations.

Classification of LoF versus GoF with selected features

To confirm whether or not the properties can be used
as criteria for distinguishing LoF and GoF mutations, we
implemented a classification technique using the sup-
port vector machine, random forest, and linear logistic
regression methods with 50 data sets which contain
equal numbers of LoF and GoF mutations to avoid bias.
As a result of five-fold cross validation repeated 100
times, we obtained 25,000 results for each classifier and
calculated the averages of the total accuracy, true posi-
tive rates (rates of LoF correctly classified as LoF), and
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true negative rates (rates of GoF correctly classified as
GoF). Figure 7A shows the accuracy rates, the true posi-
tive rates (sensitivity), and the true negative rates (speci-
ficity); while Figure 7B shows the AUC rates. The
average percent correctly classified was 71.28% for the
support vector machine method, 72.23% for the random
forest method, and 70.19% for the linear logistic regres-
sion method, while the AUC values for each classifica-
tion were 0.7128, 0.7880, and 0.7646. From these
results, we can confirm the discriminative power of the
six features.

Table 2. Allele P-value

Allele Pair P-value
AG 0.0347
GA 0.7908
cT 0.0376
TC 0.2639
Transition 04987
AC 0.9707
AT 0.0426
GC 0.1224
GT 0.036
CA 0.7162
CG 0.261
TA 0.3627
TG 0.158
Transversion 0.4987

P-values from the comparison of the proportions of 12 references, i.e., the
substituted allele pairs and the transition (Ti) and transversion (Tv) ratios
between the LoF and GoF mutations.

Conclusion and Discussion

By mining the literature, 14,259 gene-sentence relation-
ships for GoF and 29,586 relationships for LoF were col-
lected. From these, genes without sentences were
removed. Thus, 2,142 sentences for GoF and 4,600 sen-
tences for LoF remained. We then tagged the mutations
and their locations from the sentences. Consequently we
obtained 474 mutations from 2,142 sentences for GoF and
816 mutations from 4,600 sentences for GoF. In addition,
during the data-preprocessing step, mutations whose
reference allele was not matched with a reference genome
or mutations published before 2009 were removed. Hence,
we analyzed 258 LoF mutations and 129 GoF mutations.
As a result, we found six features which can distinguish
LoF and GoF mutations: the subcellular location, the
mutation subtype, the reference and substituted allele, the
functional impact, and the protein domain. We used these
features for classification to confirm whether or not they
can identify LoF and GoF mutations. Finally, we obtained
72.23% accuracy for the random forest, 71.28% accuracy
for the support vector machine, and 70.19% accuracy for
the linear logistic regression methods, with AUC values of
0.7880, 0.7128, and 0.7646, respectively. As a result, we
can conclude that the selected features can contribute to
the identification of LoF and GoF mutations.

Limitations and Future Work

Since the LoF and GoF mutation data were derived from
the literature, the number of mutation data was limited
and was not enough to understand overall tendency of the
LoF and GoF mutations. In addition, although we selected
mutations that were published after the year 2010, there
were mutations not matched with the reference genome.
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In this work, we studied the LoF and GoF mutation prop-
erties, and we expect that this study can contribute to bet-
ter understanding of the mutation effects on the biological
systems. Through the analysis of associations between
mutations and protein functions and the analysis of how
the affected proteins influence the biological pathways, we
can clarify biological mechanism from mutations to
systems.
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