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Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative and progressive disorder that results in brain
malfunctions. Resting-state (RS) functional magnetic resonance imaging (fMRI) techniques have been successfully
applied for quantifying brain activities of both Alzheimer’s disease (AD) and amnestic mild cognitive impairment
(aMCI) patients. Region-based approaches are widely utilized to classify patients from cognitively normal subjects
(CN). Nevertheless, region-based approaches have a few limitations, reproducibility owing to selection of disease-
specific brain regions, and heterogeneity of brain activities during disease progression. For coping with these
issues, network-based approaches have been suggested in the field of molecular bioinformatics. In comparison
with individual gene-based approaches, they acquired more accurate results in diverse disease classification, and
reproducibility was confirmed by replication studies. In our work, we applied a similar methodology integrating
brain pathway information into pathway activity inference, and permitting classification of both aMCI and AD
patients based on pathway activities rather than single region activities.

Results: After aggregating the 59 brain pathways from literature, we estimated brain pathway activities by using
exhaustive search algorithms between patients and cognitively normal subjects, and identified discriminatory
pathways according to disease progression. We used three different data sets and each data set consists of two
different groups. Our results show that the pathway-based approach (AUC = 0.89, 0.9, 0.75) outperformed the
region-based approach (AUC = 0.69, 0.8, 0.68). Also, our approach provided enhanced diagnostic power achieving
higher accuracy, sensitivity, and specificity (pathway-based approach: accuracy = 83%; sensitivity = 86%; specificity
= 78%, region-based approach: accuracy = 74%; sensitivity = 78%; specificity = 76%).

Conclusions: We proposed a novel method inferring brain pathway activities for disease classification. Our
approach shows better classification performance than region-based approach in four classification models. We
expect that brain pathway-based approach would be helpful for precise classification of brain disorders, and
provide new opportunities for uncovering disrupted brain pathways caused by disease. Moreover, discriminatory
pathways between patients and cognitively normal subjects may facilitate the interpretation of functional
alterations during disease progression.

Background
Resting-state (RS) functional magnetic resonance ima-
ging (fMRI) technology has been used to quantify func-
tional brain connectivity and neuronal changes of
Alzheimer’s disease (AD) [1]. In the resting condition,
functional alterations of brain disorders are measured by

spontaneous neuronal activity derived from blood-oxy-
gen-level-dependent (BOLD) signal fluctuations even in
the absence of external stimulus. Abnormalities in func-
tional communication of brain disorders are useful indi-
cators for classification between patients and CN
subjects.
A few RS-fMRI methods have been suggested for esti-

mating the functional alterations between AD patients
and CN subjects [2]. Among the model-dependent
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approaches, region-based approaches are typically used
to investigate the local functional connectivity changes of
AD patients, because they are sensitive for detecting
abnormalities of functional connections within disease-
specific regions, and interpretation of disease symptoms
is simple [3-5]. Region-based approaches estimate corre-
lations of BOLD signals between pre-defined regions of
interest (ROIs). However, region-based approaches have
a few limitations to discriminate both AD and aMCI
patients from CN subjects, because classification analysis
using limited brain regions has difficulties for evaluating
functional alterations in the whole brains. These
approaches are dependent on pre-defined brain regions,
and thus pathological mechanisms during AD progres-
sion could not be explained in the whole brain. Region-
based approaches focus on functional connectivity within
disease-specific regions, such as the hippocampus or the
posterior cingulate cortex (PCC) [6,7]. Also, well-defined
disease information is necessary to determine candidate
brain regions considering structural and functional system.
To overcome drawbacks of region-based approaches, a few
studies implemented large-scale RS-fMRI analysis for
investigating functional connectivity changes in the whole
brain [8,9]. The whole brain regions were divided into
hierarchically structured regions including frontal lobe,
temporal lobe, parietal lobe, occipital lobe, and limbic sys-
tem. The large-scale approaches can globally detect the
functional connectivity changes between paired brain
regions in the whole brain. However, significantly diverse
patterns of cognitive and functional decline in individual
AD patients were reported by using the quantitative mea-
surements [10]. These diverse patterns caused by cognitive
decline and functional degeneration lead to different func-
tional connectivities in AD patients. Hence, the heteroge-
neous connectivity patterns during AD progression have
to be seriously considered for precise disease classification.
Here, we propose a novel brain pathway-based classifi-

cation method to address these challenges. Our approach
incorporates brain pathway information into inferring
pathway activities, and then pathway activities were esti-
mated between patients with AD, aMCI and CN subjects.
The 59 brain pathways information was collected from
the literature, and these pathways contain brain connec-
tivity, lateralization, and associated functions. These
brain pathways were selected to cover behavioral
domains such as cognition, perception, sensation, motor,
and emotion function. Brain pathways consist of func-
tionally associated brain regions which are validated by
biological experiments or brain imaging studies. In cogni-
tively normal subject, functionally specialized regions are
connected each other to process information in brain
pathways, while their functional connectivities might be
disrupted in both aMCI and AD patients. Interestingly,
network-based approaches in the field of molecular

bioinformatics have been successfully applied to cope
with heterogeneity problems of samples [11]. They have
achieved more accurate and reproducible classification,
and discovered interpretable markers by incorporating
molecular pathway information into disease classification
[12,13]. Similarly, we evaluated pathway activities
inferred from brain pathways rather than single region
activities for discriminating patients with aMCI, AD from
CN subjects. In resting-state brain, the spontaneous
neural activations of cognitively normal subjects were
identified in behavioral domains such as vision, audition,
sensory-motor system [14,15]. We hypothesis that spon-
taneous neural activities between aMCI and AD patients
are abnormal versus CN subjects in behavioral domains,
and these phenomena result in disrupted brain activities
at rest. In comparison with region-based approaches, the
brain pathway-based approach could overcome heteroge-
neity problems through pathway activity inference. Also,
our approach could provide new opportunities for unveil-
ing dysregulated brain pathways during AD progression.

Methods
Subjects
This study was approved by the Institutional Review
Board of Samsung Medical Center. Written informed
consent was obtained from aMCI, AD patients, and cog-
nitively normal (CN) subjects. One hundred twenty
right-handed subjects were recruited through the Sam-
sung Medical Center: 22 cognitively normal (CN) sub-
jects, 37 aMCI patients, 61 AD patients (21 patients
with very mild AD, 27 patients with mild AD, 13
patients with moderate AD). The AD stages were cate-
gorized by the National Institute of Neurological and
Communicative Disorders and Stroke/ Alzheimer’s Dis-
ease and Related Disorders Association (NINCDS-
ADRDA) criteria [16]. For the diagnosis of aMCI
patients, Mayo Clinic criteria were used [17].

fMRI imaging
Magnetic resonance imaging (MRI) examination was
conducted on a 3.0-T MR scanner 3.0 T scanner (Model;
Philips Intera Achieva, Phillips Healthcare, Netherlands).
Scans involved the acquisition of 35 axial slices using a
gradient echo planar imaging pulse sequence: repetition
time (TR) = 3000 ms; echo time (TE) = 35 ms; acquisi-
tion time (TA) = 5 minutes; flip angle (FA) = 90°; field of
view (FOV) (RL, AP, FH) = 220 × 220 × 140 mm; voxel
size (RL, AP) = 2.875 mm × 2.875 mm with a slice thick-
ness of 4 mm. During the scan, participants were
instructed to lie still with their eyes open. Additionally
T1-weighted anatomical images were obtained for each
subject: TR = 1114 ms; TE = 10 ms; FA = 8°; FOV (RL,
AP, FH) = 220 × 220 × 132 mm; REC voxel size =
0.43 mm × 0.43 mm × 0.43 mm.
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Preprocessing of MR image data was performed by the
FMRIB Software Library, FSL 4.1 [18]. The first 6
volumes from the functional MRI runs were discarded
to avoid T1 equilibrium effects. Then, the following pre-
statistic processing steps were done: deleting non-brain
tissues from images using a Brain Extraction Tool
(BET), motion correction using MCFLIRT [19]. Grand
mean intensity normalization of the whole 4D data set
by a single multiplicative factor, spatial smoothing using
a Gaussian kernel of FWHM 5 mm, high pass temporal
filtering (Gaussian-weighted least-squares straight line
fitting, with sigma = 50 to ensure at least half power
was preserved for frequencies down to 0.01 Hz). The
corrected MR images were registered into the Montreal
Neurological Institute space (MNI-152 stereotactic tem-
plate) using FLIRT, FMRIB’s linear image registration
tool.

Integration of brain pathways
Brain pathways are comprised of anatomically separated
regions, but functionally connected regions. Brain path-
ways were characterized by biological functions and beha-
vioral domains such as perception, motor, cognition,
emotion, and sensation. These brain pathways have been
discovered and revised by in vivo and in vitro experiments.
For example, the Papez pathway was regarded as the emo-
tional pathway, but it was revised as the limbic system
pathway through other experimental validations [20].
In our study, the 59 brain pathways were selected based

on the behavioral domains, the associated functions, and
lateralization (Table 1). Brain pathways were divided into
the left (L) and the right (R) brain hemisphere except for 7
pathways. The 7 pathways are dominantly lateralized in
the left or the right brain hemisphere. In the default mode
network (DMN), the positively correlated networks of
both ventromedial prefrontal cortex (vmPFC) and poster-
ior cingulate cortex (PCC) regions were used as the brain
pathways. Among 59 brain pathways, 38 pathways are
well-known brain pathways covering systemic neu-
roscience [21,22]. Other 21 pathways were manually
curated from literature to supplement 38 well-known
pathways, considering specialized functional and structural
systems of the brain in cognitively normal subjects
[23-39]. For example, emotional domains of 38 pathways
describe general features of the emotion, however manu-
ally curated Krolak-Salmon (2004) pathway explain more
detailed phenomena of fear spreading in emotional
domain. These 21 pathways were aggregated with in vitro
imaging studies, such as diffusion tensor imaging (DTI),
electroencephalography (EEG), structural MRI, and func-
tional MRI. The manually curated 21 brain pathways were
named according to last name of first authors and publica-
tion years. The regional connectivity and lateralization of
59 brain pathways are described in Additional file 1.

Functional connectivity
The whole brain was divided into 116 brain regions
based on a gray matter mask with atlas labels by using
the automated anatomical labeling (AAL) atlas [40]. A
hierarchical segmentation of the whole brain covers the
cortical regions (frontal cortex, temporal cortex, parietal
cortex, and occipital cortex), subcortical regions (limbic
regions, insula, basal ganglia, thalamus), and cerebellar
hemisphere (Additional file 2). Using gray matter masks,
the averaged MR signals of 116 brain regions of both
CN subjects and patients were extracted by FSL tool.
The functional connectivities between paired brain

regions were measured by the Pearson’s correlation coef-
ficient (r). The types of functional connectivity were cate-
gorized according to strengths of linear relationships.
Positive correlations between paired regions indicate that
MR signals of one brain region were increased, and the
other brain region has a tendency to also increase, while
negative correlations has a tendency to decrease. Also, no
correlations between paired regions show that the other
brain region does not tend to either decrease or increase.
As a result, the 6670 (116 × 115 / 2) r values between
paired brain regions were produced of both CN subjects
and patients, and these r values were arranged into the
functional connectivity (R) matrix (Figure 1). Strengths of
functional connectivities between paired regions were
represented by color bars: red color indicates positive
correlations; blue color indicates negative correlations;
green color indicates no correlations.

Inferring pathway activity for the brain pathway-based
approach
In this work, we use three different data sets described in
Method, and each data set consists of two different groups:
the first data set (between 22 CN subjects and 37 aMCI
patients); the second data set (between 22 CN subjects
and 61 AD patients); the third data set (between 37 aMCI
and 61 AD patients). Pearson’s correlation coefficient (r)
values of all sample i over functional connectivity j were
arranged into the connectivity (F) matrix to aggregate the
functional connectivities between paired brain regions cor-
responding the brain pathway P (Figure 2A). For example,
the orbitofrontal pathway has sequential connections
from orbitofrontal cortex to caudate, globus pallidus,
thalamus, and orbitofrontal cortex [23]. The r values of
each data set (r1 between orbitofrontal cortex and cau-
date, r2 between caudate and globus pallidus, r3 between
globus pallidus and thalamus, r4 between thalamus and
orbitofrontal cortex) were arranged in the connectivity
(F) matrix. Fisher’s z transformation was applied to r
values to obtain the normal distributed values Rij of all
samples i over functional connectivity j. As a result, the
connectivity (F) matrix was acquired between two
groups in each data set.
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Table 1. The 59 Brain pathways with behavioral domains, associated functions, and lateralization

Behavioral domain Associated functions Brain pathways Lateralization Reference

Cognition Executive function Dorsolateral prefrontal left,right [23]

Decision making Orbitofrontal left,right [23]

Attention Medial prefrontal left,right [23]

Motivation Anterior cingulate left,right [24]

Memory storage Papez left,right [24]

Repeat spoken word Language(auditory) left [22]

Repeat written word Language(visual) left [22]

Fairness decisions Baumgartner (2011) right [25]

Efficient reading Richardson (2011) left,right [26]

Language Frey (2008) left [27]

Memory Ji (2007) left,right [28]

Decision making Walton (2004) left,right [29]

Error observation Van Schie (2004) left,right [30]

Reading Turkeltaub (2003) left [31]

Spontaneous thought DMN left,right [32]

Learning Benchenane (2010) left,right [33]

Emotion Fear conditioning Emotion(fear) left,right [22]

Emotion processing Emotion left,right [21]

Facial expression Emotion(expression) left,right [21]

Renewal of fear Orsini (2011) left,right [34]

Fear spreading Krolak-Salmon (2004) left [35]

Motor Control of movement Motor left,right [36]

Limb movement Cerebellar left,right [22]

Sensation Vision sensation Visual left,right [22]

Hearing sensation Auditory left,right [22]

Taste sensation Gustatory left,right [22]

Touch, pain Somatosensory left,right [22]

Smell sensation Olfactory left,right [22]

Aversive taste Nitschke (2006) left,right [37]

Attention to odor Plailly (2008) left,right [38]

Recognition Spatial vision Visual(dorsal) left,right [22]

Object recognition Visual(ventral) left,right [22]

Face recognition Druzgal (2001) left [39]

Figure 1 Functional connectivity (R) matrix between paired ROIs. (A) CN subjects (B) aMCI patients (C) AD patients. Each matrix has the
6670 r values calculated from combination of 116 brain regions. The color bar indicates the Pearson’s correlation coefficient (r) values.
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The exhaustive search was performed to identify the
discriminative connectivity set in connectivity (F) matrix
(Figure 2B). To detect dominant signals between two
groups, all the possible connectivities in connectivity (F)
matrix were considered through the exhaustive search,
and optimally discriminative connectivity set between
two groups was selected according to their statistical
significance. All the possible combinations of the func-
tional connectivities in the connectivity set Bn were con-
sidered from k = 1 to k = n. All Rij values in the
connectivity set Bk was transformed into averaged R
values which were designated the activity score apk.

Activity(apk)score =
k∑

s=1

Ris

k

All the possible combinations in the connectivity set
Bn, and activity matrices Apk

k = 1 → {b1}, {b2}, . . . . . . , {bn} → A1p1, A2p1, . . . . . . , Anp1

k = 2 → {b1, b2}, {b1, b3}, . . . , {bn - 1, bn} → A1p2, A2p2, . . . , A
n!

k!(n − k)!p2

. . . . . .

k = n → {b1, b2, . . . . . . ,bn} → A1pn

We defined the t-score T(Bpk) of the activity matrices
Apk derived from connectivity set Bk from k = 1 to k =
n. The normality of the activity matrices Apk was con-
firmed by Kolmogorov-Smirnov tests (p-value > 0.05,
normal distribution), and the equality of variance was
assessed by Levene’s tests (p-value < 0.05, unequal var-
iance) for the 2-tail t-test. In the brain pathway P, the
discriminative connectivity set was defined when the T
(Bpk) score reaches much higher than other t-score
values among the activity matrices Apk. The higher T
(Bpk) score between two groups indicates statistical dif-
ferences, and their connectivity set was regarded as
quantitative activity indices of brain pathways. The
activity matrix Ap acquired from the discriminative

Figure 2 Schematic diagram of the brain pathway activity inference. For the given brain pathway P, the activity Ap matrix was acquired
through the exhaustive search between two different groups.
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connectivity set between two groups was assigned as the
brain pathway P activity. If k = 2 with connectivity set
{b1, bn} shows the highest T(Bp2) score among all the
possible combinations of connectivity set Bn, and the
activity matrix Ap of connectivity set {b1, bn} was desig-
nated as the brain pathway P activity (Figure 2C).
The discriminative connectivity set between two

groups indicates brain malfunctions corresponding spe-
cific brain pathway. For example, if functions of memory
in the brain are disrupted during AD progression, func-
tional connectivities of memory pathways in AD patients
show abnormal patterns versus cognitively normal sub-
jects. These unusual patterns of functional connectivities
are selected as the discriminative connectivity set
between cognitively normal subjects and AD patients.
As a result, we obtained the 59 activity matrices
between two groups across 59 brain pathways (Figure
2D). In three different data sets, the 59 activity matrices
were generated between two groups. To clearly differ-
entiate 59 brain activities between two groups, they
were rearranged according to statistical significance
(Figure 3).

Regional functional correlation strength for the
region-based approach
The activities of 59 brain pathways were used as input
features for the brain pathway-based classification. In
order to compare the brain pathway-based approach
with the region-based approach in an unbiased manner,
we used the same number of input features for the
region-based approach. For selecting 59 input features
of the region-based approach, we estimated regional
functional correlation strength (RFCS) using previously
described method in imaging study [41]. In region a, the
correlation strength was defined as:

Correlation Strengthregion(a) =
1

N − 1

∑

i�=j
|rab|

where rab is the Pearson’s correlation coefficient (r)
values between brain region a and b, and N is the num-
ber of brain regions.
From the functional connectivity (R) matrix, we

acquired the RFCS scores of 116 regions between two
different groups, and then 2-tail t-test was performed
between two different groups to select the RFCS scores
of 59 brain regions as input features for the seed-based
approach. The RFCS scores of 116 brain regions were
rearranged by their t-test score in ascending order, and
then the RFSC scores of top 59 brain regions were
selected as input features for the seed-based approach.
As a result, we acquired the 59 RFCS matrices between
two groups across 59 brain regions in three different
data sets (Figure 4).

Evaluation methods for classification
We used the four supervised machine learning algo-
rithms for evaluating the classification performance. In
three different data sets, we trained on both 59 activity
matrices (pathway-based approach) and 59 RFSC
matrices (region-based approach) by using three linear
classifiers: Naïve Bayes (NB); logistic regression; support
vector machine (SVM) and one decision trees classifier:
random forest (RF).
All samples in both 59 activity matrices and 59 RFSC

matrices were randomly partitioned into ten equivalent
subsamples. Among the ten subsamples, nine subsamples
were used as training data set for building classifiers, and
one subsample was remained for testing the classification
models. The process of cross-validation was repeated 10
times, and each of ten subsamples employed just once as
the test set (10-fold cross-validation). Each fold calcu-
lated classification accuracy, and results of ten folds were
averaged to create a single evaluation. Performance of
four classifiers was estimated by the area under the curve
(AUC) in the receiver operating characteristics (ROC),
accuracy, sensitivity and specificity.

Figure 3 Inferred activity matrices using 59 brain pathways between two different groups. (A) between CN subjects and aMCI patients (B)
between CN subjects and AD patients (C) between aMCI and AD patients.
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Accuracy =
(TP + TN)

(TP + FP + TN + FN)

Sensitivity =
TP

(TP + FN)

Specificity =
TN

(FP + TN)

TP: True Positive, FP: False Positive, TN: True Nega-
tive, FN: False Negative

Feature selection
The quantification of the brain pathways importance is
necessary for interpretation of pathological symptoms
during AD progression. For identifying discriminatory
pathways between two groups, the feature selection was
performed by using the random forest (RF). RF is the
efficient algorithm for solving classification problems,
because classification performance of RF model is
enhanced by growing an ensemble of trees and letting
them vote for the most preferable group [42].
There are two scoring methods for measuring variable

importance with RF: mean decrease accuracy (MDA),
mean decrease Gini (MDG). Between two scoring meth-
ods, we adopted the MDA for evaluating variable impor-
tance within two groups; variables having higher MDA
values contribute importantly toward the classification,
and variables having lower MDA values could not affect
the classification. After calculating MDA scores between
two groups, we ranked the variables (59 brain pathways)
according to MDA scores, and selected the top-K vari-
ables as significant features. The K values were deter-
mined by the distribution of MDA scores, and we
defined the decreasing points of MDA scores when
slopes of distributions is dramatically changed, and
selected the variables before the first changing point in
the distribution as important features.

Results
Comparison of classification performance
Unlike NB and logistic regression classifier, classification
performance of both RF and SVM models were affected
by setting parameters. Among four kernel functions of
SVM model, we used the RBF kernel with c and gamma
parameters. The gamma parameter is the radius of RBF
kernel, and the c parameter controls the importance of
the training error with respect to the margin. Large c
values provide us low bias and high variance, while
small c values give us high bias and low variance. The
SVM classification model were estimated by tuning
gamma and c parameters, and their AUC values were
reported. The values of gamma and c parameters were
used in the range between 0.0001 and 10000. In three
different data sets, the AUC values of RF classification
model were measured by adjusting the number of trees
from 100 to 1000, and then 500 trees were fixed.
The classification performance of both the brain path-

way-based approach and the region-based approach was
shown by evaluating the area under the ROC curve (AUC)
with the four different classification models (Figure 5).
Overall, the brain pathway-based approach outperformed
the region-based approach in three different data sets. In
the brain pathway-based approach, the best performance
was yielded by the SVM classification model except for
between AD patients and CN subjects (between aMCI
patients and CN subjects, 0.89; between AD patients and
CN subjects, 0.87; between aMCI and AD patients, 0.75).
The highest AUC values of the SVM model in the brain
pathway-based approach were achieved by different com-
bination of gamma and c parameters: between aMCI
patients and CN subjects (c, 0.0001; gamma, 0.0001),
between AD patients and CN subjects (c, 1000; gamma,
0.01), between aMCI and AD patients (c, 0.0001; gamma,
0.001). Between AD patients and CN subjects, the highest
classification performance in brain pathway-based
approach was achieved by the NB classification model
(AUC = 0.9).

Figure 4 The 59 RFCS matrices between two different groups among 116 brain regions. (A) between CN subjects and aMCI patients (B)
between CN subjects and AD patients (C) between aMCI and AD patients.
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Similarly, the region-based approach yielded the best
performance in the SVM classification model except for
between aMCI patients and CN subjects (between aMCI
patients and CN subjects, 0.6; between AD patients and
CN subjects, 0.8; between aMCI and AD patients, 0.68).
Between aMCI patients and CN subjects, the highest
classification performance in region-based approach was
achieved by the RF classification model (AUC = 0.69).
The highest AUC values of the SVM model in region-
based approach were acquired by combination of both
the c and gamma values: between aMCI patients and
CN subjects (c, 0.001; gamma, 10), between AD patients
and CN subjects (c, 100; gamma, 0.1), between aMCI
and AD patients (c, 10000; gamma, 0.0001).

Comparison of diagnostic power
Table 2 shows that, for classification accuracy, sensitiv-
ity, and specificity of two groups in three different data
sets. In comparison with the region-based approach, the
pathway-based approach consistently achieved more
accurate classification between aMCI, AD patients and
CN subjects. For classifying aMCI patients from CN
subjects, the SVM classification model of the pathway-
based approach achieved the optimal diagnostic power
(accuracy, 83%; sensitivity, 86%; specificity, 78%), while
the region-based approach achieved the best diagnostic
power (accuracy, 62%; sensitivity, 76%; specificity, 51%).
In case of AD classification, the logistic regression
model of the pathway-based approach showed the opti-
mal diagnostic power (accuracy, 83%; sensitivity, 86%;
specificity, 83%).
Similarly, for classifying aMCI from AD patients, the

pathway-based approach outperformed the region-based
approach in four different classification models. Table 2
also indicates that, there are slight differences of both
accuracy and sensitivity of each classification model,

while the differences of specificity are relatively large in
the pathway-based approach. Both aMCI and AD classi-
fication with CN subjects, these characteristics of high
sensitivity might be beneficial for considering diagnostic
aspects, because the cost for misclassifying as patients
into CN subjects is much higher than vice versa.

Identification of discriminatory pathways
To select discriminatory brain pathways among 59 brain
pathways, MDA values were calculated by the RF classi-
fication model. The discriminatory brain pathways were
acquired by variable importance graph described in
Method. The default mode network (PCC) was consis-
tently selected by important features to discriminate two
groups in three different data sets (Table 3).
Between aMCI patients and CN subjects, three well-

known and two manually curated brain pathways were
chosen as the discriminatory pathways. The selected five
brain pathways cover diverse behavioral domains; cogni-
tion, sensation and motor functions. Between AD
patients and CN subjects, the six well-known brain
pathways were acquired as the discriminatory pathways.
Compared with the first data set between aMCI patients
and CN subjects, the emotional domain (top rank)
related to fear conditioning was additionally selected.
Between aMCI and AD patients, the four well-known
and one manually curated brain pathways were chosen
as the discriminatory pathways. Compared with the first
data set between aMCI patients and CN subjects, the
recognition domain (second rank) was also selected.

Discussion
Although the RS-fMRI technique using region-based
approaches has become an effective tool to discriminate
patients from CN subjects, several issues still remained.
Region-based approaches require the prior knowledge of

Figure 5 Performance comparison of two different approaches in three different data sets. Bar chart of the area under ROC curve (AUC):
blue color (region-based approach), red color (pathway-based approach). (A) between CN subjects and aMCI patients (B) between CN subjects
and AD patients (C) between aMCI and AD patients.
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brain regions related to the brain disorders. On the
other hand, the brain pathway-based approach is unrest-
ricted by these problems. Our approach could elucidate
pathological phenomena in the course of AD progres-
sion, and it yields robust classification performance
regardless of the classification models. Here, we explain
pathological symptoms in both aMCI and AD patients
by comparing our results with those of previous studies.
Between aMCI patients and CN subjects, the right

Nitschke (2006) pathway was selected as the most impor-
tant feature, and this pathway is related to the aversive
taste in the sensory domain. From the previous study, the
quantitative and qualitative taste functions of patients
with 29 MCI and 30 AD patients were investigated by
the taste strips test [43]. The total taste scores of both
MCI and AD patients were considerably decreased as
compared with healthy subjects. Second, the left Turkel-
taub (2003) pathway is related to reading in the cognitive
domain. In prior experiments, the significant reduction
of word-specific activation in 13 aMCI patients was
reported by chronometric analysis of word reading and
picture naming [44]. Third, the structural and functional
alterations of the default mode network (DMN) in AD
patients were reported by using imaging techniques such
as RS-fMRI, positron emission tomography (PET)
[45,46]. Recently, the decreased and dysfunctional DMN

connectivity in MCI patients was detected by comparison
with healthy subjects [47,48].
Between AD patients and CN subjects, the left emo-

tional pathway was considered as the most significant
feature. Deficits of emotional processing were reported in
both visual and auditory domain [49]. In both aMCI and
AD patients, the default mode network (DMN) was
obtained as important variables. Those results could elu-
cidate progressive and degenerative phenomena during
AD progression. Other selected discriminatory pathways
are related to the function of sensation and memory.
First, the left somatosensory pathway has an important
role to produce sensory modalities such as touch, pain,
and body position. For testing the somatosensory
response in both MCI and AD, MEG responses were
measured and analyzed with semi-automated source
localization algorithm [50]. They found that the primary
somatosensory cortex was affected in the early AD
patients. Second, the Papez pathway has the functions in
memory storage and emotion control. The integrity of
Papez circuit (hippocampus, fornix, mammillary bodies,
thalamus, cingulate cortex) in AD patients was investi-
gated in vivo and at post-mortem [51]. Between aMCI
and AD patients, the left motor pathway was chosen as
the most significant variable. One study reported a rela-
tionship between upper and lower extremity motor

Table 2. Comparison of diagnostic power between brain pathway-based approach and region-based approach

(A) Pathway-based approach

Classification Models aMCI vs. CN AD vs. CN aMCI vs. AD

Acc(%) Sen(%) Spe(%) Acc(%) Sen(%) Spe(%) Acc(%) Sen(%) Spe(%)

NB 77 83 73 81 86 78 68 70 63

Logistic regression 72 81 69 83 86 83 66 72 64

RF 77 78 67 79 83 73 69 70 61

SVM 83 86 78 79 85 73 67 70 64

(B) Region-based approach

Classification aMCI vs. CN AD vs. CN aMCI vs. AD

Models Acc(%) Sen(%) Spe(%) Acc(%) Sen(%) Spe(%) Acc(%) Sen(%) Spe(%)

NB 61 67 60 73 70 50 57 56 53

Logistic regression 59 59 55 72 68 64 62 70 60

RF 61 64 69 74 72 64 60 78 61

SVM 62 76 51 74 78 69 66 72 60

Acc = Accuracy, Sen = Sensitivity, Spe = Specificity

Table 3. Discriminatory brain pathways between two groups of three different data sets

Rank aMCI vs. CN AD vs. CN aMCI vs. AD

1 Right Nitschke (2006) Left Emotion fear Left Motor

2 Left Turkeltaub (2003) Default mode network (PCC) Right Dorsal visual

3 Right Orbitofrontal Right Papez Right Nitschke (2006)

4 Right Motor Default mode network (vmPFC) Default mode network (PCC)

5 Default mode network (PCC) Left Papez Right Papez

6 Left Somatosensory
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function and functional impairment by testing 371 prob-
able AD patients [52].
Heterogeneity in the course of AD was investigated

using quantitative measurement, the Global Deterioration
Scale (GDS) and Functional Assessment Staging procedure
(FAST) [10]. Significantly diverse patterns of cognitive and
functional decline were found in corresponding individual
AD patients. Considering the heterogeneity in the course
of AD, the region-based approaches have weak points
since these approaches are dependent on the functional
connectivity of AD between paired regions. In the course
of AD progress, the diversity of functional connectivity
raises several problems for the precise AD classification.
Thus, in response to the heterogeneity of AD patients,
more comprehensive approaches are necessary rather than
limited region-based approaches. Interestingly, our results
showed homogenous aspects in discriminatory brain path-
ways as an important variable to differentiate both aMCI
and AD patients from CN subjects. In both aMCI and AD
patients, the discriminatory pathways concerning cognitive
functions were concurrently selected by the important fea-
ture. From these results, we could effectively detect func-
tional alterations using brain pathway information
regardless of the AD stages. Also, the brain pathway-based
approach does not depend on any assumption or hypoth-
esis, such as the hippocampal connectivity or small world
network. We can observe global dysfunction of the brain
in the progression of AD. We identified functionally dis-
rupted pathways between CN subjects and patients in the
cognition, motor, emotion, sensation, and recognition
domain. Our approach provides effective interpretation
using discriminatory brain pathways between CN subjects
and patients. Moreover, our method yielded better classifi-
cation performance compared to the seed-based approach
regardless of both classification models and AD stages.

Conclusions
To examine the alterations in brain activities among
anatomical brain regions, we used pathway-based
approach in both cognitively normal (CN) subjects and
Alzheimer’s disease (AD), amnestic mild cognitive
impairment (aMCI) patients. We suggested the new
method incorporating brain pathway information into
discriminatory analysis between two groups, and
inferred brain activities by using 59 brain pathways
show better classification performance than the region-
based approach in four classification models. Also, our
approach provided significantly increased diagnostic
power achieving higher accuracy, sensitivity, and specifi-
city in between aMCI, AD patients and CN subjects.
The major contribution of this work is twofold. First,

we could cope with individual heterogeneity problems
owing to disease progression by using pathway informa-
tion, because brain regions in specific pathway connect

with each other to process the information. Second, dis-
criminatory pathways between groups could provide
neurologist with a clue to explain pathological symp-
toms and investigate potential candidates in the course
of AD. Additionally, brain connectivity databases are
increasing gradually at present, allowing further oppor-
tunities to discover novel brain pathways along AD
stages.

Additional material

Additional file 1: The regional connectivity and lateralization of 59
brain pathways.

Additional file 2: Automatically parcellated 116 brain regions.
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