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Abstract

Background: In 2009 and the early part of 2010, the northern hemisphere had to cope with the first waves of the
new influenza A (H1N1) pandemic. Despite high-profile vaccination campaigns in many countries, delays in
administration of vaccination programs were common, and high vaccination coverage levels were not achieved.
This experience suggests the need to explore the epidemiological and economic effectiveness of additional,
reactive strategies for combating pandemic influenza.

Methods: We use a stochastic model of pandemic influenza to investigate realistic strategies that can be used in
reaction to developing outbreaks. The model is calibrated to documented illness attack rates and basic
reproductive number (R0) estimates, and constructed to represent a typical mid-sized North American city.

Results: Our model predicts an average illness attack rate of 34.1% in the absence of intervention, with total costs
associated with morbidity and mortality of US$81 million for such a city. Attack rates and economic costs can be
reduced to 5.4% and US$37 million, respectively, when low-coverage reactive vaccination and limited antiviral use
are combined with practical, minimally disruptive social distancing strategies, including short-term, as-needed
closure of individual schools, even when vaccine supply-chain-related delays occur. Results improve with increasing
vaccination coverage and higher vaccine efficacy.

Conclusions: Such combination strategies can be substantially more effective than vaccination alone from
epidemiological and economic standpoints, and warrant strong consideration by public health authorities when
reacting to future outbreaks of pandemic influenza.

Background
In April, 2009, the World Health Organization (WHO)
announced the emergence of a new influenza A (H1N1)
virus, and on June 11, 2009, it declared that the world
was at the start of a new influenza pandemic [1]. WHO
reported more than 414,000 laboratory-confirmed cases of
H1N1 [2] — a gross underestimate, as many countries
simply stopped counting individual cases. The US Centers
for Disease Control and Prevention reported widespread
influenza activity in forty-six states, with influenza-like ill-
ness (ILI) activity in October 2009 higher than what is
seen during the peak of many regular flu seasons; and
further, “Almost all of the influenza viruses identified …
are 2009 H1N1 influenza A viruses” [3]. Countries found

themselves in the position of having to react to contain
already developing Fall outbreaks of influenza due to the
new pandemic strain, a position they are likely to find
themselves in again if and when future waves of pandemic
influenza occur.
Research has suggested that mass vaccination of 60–

70% of the population prior to the start of the flu season
could effectively contain outbreaks due to pandemic
strains [4-7]; and the public health preparedness plans of
most countries have, accordingly, emphasized vaccination
intervention strategies. However, the recent experience
with H1N1 suggests that high vaccination coverage levels
are difficult to achieve. In the case of H1N1, vaccination
programs in most northern hemisphere countries started
only after the virus was widely circulating. Furthermore,
in some countries, supplies of vaccine were limited [8],
delivery and administration occurred over a period of
several months [9,10], and there were reports of public
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skepticism regarding the necessity and safety of vaccina-
tion [11,12], all of which were strong indicators suggest-
ing that high vaccination coverage would be difficult to
achieve. While many institutions in the US and elsewhere
strongly encouraged and, in some cases, required workers
to be vaccinated against seasonal influenza in 2009,
H1N1 vaccination guidelines were focused mostly on
people in certain age and high-risk groups [13]. Delays,
limited and untimely vaccination supplies, and public
reluctance to be vaccinated are likely to reduce the effec-
tiveness of vaccination campaigns [4,5].
The issues outlined above for the recent outbreak of

H1N1 are likely to occur again in future outbreaks of
pandemic influenza. In this paper, we explore the effec-
tiveness of realistic reactive intervention strategies imple-
mented after the beginning of outbreaks of pandemic
influenza. We calibrate our model based on data for the
H1N1 pandemic (see Tuite et al. [14]), and we investigate
the impacts of (i) the moderate vaccination coverage
levels which, based on past experience, are likely to be
realized, as well as high levels which would be more
ideal; (ii) very limited treatment of cases with antivirals
and prophylaxis of cases’ households with antivirals; and
(iii) limited and practical social distancing measures such
as five-day closure of individual schools on an as-needed
basis, encouragement of liberal leave policies in the work-
place, and encouragement of self-isolation. Intervention
strategies that combine these approaches are also studied
(cf. Halloran et al. [15]). For all intervention strategies,
we provide cost estimates associated with morbidity and
mortality that take into account direct medical costs as
well as economic consequences resulting from school
closures and work loss.

Methods
The simulation model
We developed a portable and adaptable stochastic, indivi-
dual-level simulation model of influenza spread within a
structured population. The simulator is similar to models
developed by Longini et al. [7,16]. The simulation popu-
lation of 649,565 people was generated stochastically
to represent a typical North American city, namely,
Hamilton (Ontario), Canada, which was chosen due to
availability of demographic and epidemiological data
necessary for constructing and calibrating the simulator.
Our population is a collection of heterogeneous indivi-
duals with various attributes that impact whom they
interact with (and hence whom they may infect or get
infected by). More specifically, each individual has the
following stochastically generated attributes: age, house-
hold, playgroup or daycare attended (for pre-school chil-
dren), school attended (for school-age children),
workgroup (for working adults), household census tract
and workplace census subdivision, community, and

neighborhood. As in [16], a community consists of
approximately 2000 people living within the same census
tract, and a neighborhood consists of approximately 500
people living within proximity to each other within the
same community; also see the recent papers [17] and
[18], which incorporate more-detailed individual-level
behavior involving larger populations. Age and house-
hold-size distributions, shown in Figures 1 and 2, were
matched to 2001 Canadian census data [19,20]. House-
hold census tract assignments were made so that census
tract population sizes were consistent with 2006 census
statistics [21]. Workgroups were formed to match 2006
employment statistics [22] as well as census statistics on
the geographical distribution of workers [23]. Rather
than representing entire workplace institutions, we
formed workgroups of size 20 to represent the typical
number of co-workers an individual is likely to have
close contact with during the day. Average playgroup,
daycare, and lower and upper secondary school (i.e., mid-
dle and high school) contact group sizes were chosen for
similar reasons; see the Appendix.
Susceptible people are assumed to have daily contacts

with other individuals in their contact groups, i.e., their
household and school or workgroups, as well as with
people in their neighborhood and community. Infection
of susceptibles depends on the number of infected per-
sons in their contact groups, on the vaccine and anti-
viral-use status of susceptibles and their infectious
contacts, and on age- and contact-group-specific per-
contact transmission probabilities (Table 1). This disease
transmission model is based on previously described
models [7,16], and is detailed in the Appendix. People
infected with influenza first pass through a latent / incu-
bation period, during which they do not have influenza
symptoms. They are not infectious until the last day of
the period; at that point, they become half as infectious
as if they were to develop symptoms in the subsequent
period. During that subsequent infectious period, 67%
will develop influenza symptoms and 33% will be asymp-
tomatic (and will be half as infectious as those who are
symptomatic) [7]. The model allows for people to with-
draw from all of their mixing groups, except the house-
hold, if they become infected or have an infected child.
The simulator is calibrated to match documented ill-

ness attack rates and basic reproductive numbers (R0).
Baseline (no-intervention) scenario age-group-specific
attack rates were derived using 2009 estimates for the
H1N1 basic reproductive number in Ontario [14,24,25]
(see Table 2). These rates take into account reduced
risk in adults born prior to 1957 [24]. A compartmental
model parameterized in this way was well-calibrated to
observed attack rates during the Fall pandemic wave in
Ontario [25]. The simulator’s R0 value of 1.4 is also con-
sistent with other published reports [4,26,27].
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Intervention strategies
We modeled a baseline case where no intervention takes
place, along with strategies representing various combi-
nations of vaccination, antiviral treatment and house-
hold prophylaxis, school closure, and general social
distancing (see the results in Tables 3 and 4 and Supple-
mentary Data Table S1 provided in “Additional File 1”).

Each component of the strategies is described in detail
below. Interventions are triggered in a particular simula-
tion run when the overall illness attack rate reaches
0.01%. Twenty runs of the simulator were performed for
each intervention strategy, from which average illness
attack rates were calculated. We briefly describe the
interventions under consideration.

Figure 1 Age distribution for simulated population

Figure 2 Household size distribution for simulated population
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Vaccination
We model both pre-vaccination as well as reactive strate-
gies, with reactive vaccination programs beginning imme-
diately, 30 days, or 60 days after the trigger. The delays
model disruptions in vaccine production and supply
chains. We allow enough doses to cover either 35% or
70% of the population. In reactive strategies, we consider
cases where (i) all vaccines become available at the same
time, and (ii) the doses become available in three equal-
sized batches, two weeks apart, due to additional produc-
tion and supply-chain disruptions. We study a low-

efficacy single-dose vaccine (efficacy against susceptibility
to infection, VEs = 0.3, and efficacy against infectious-
ness, VEi = 0.2) as well as a moderate-efficacy vaccine
(VEs = 0.4, VEi = 0.5) [28]. Vaccine efficacy refers to the
reduction, after vaccination, in the probability of becom-
ing infected due to contact with an infected person
(VEs), or to the reduction, after vaccination, in the prob-
ability of infecting a susceptible contact (VEi). Vaccine
efficacy does not refer to the fraction of individuals hav-
ing an immunogenic response to the vaccine (which is
typically much larger than our measures).
Each day, our model randomly vaccinates any remain-

ing unvaccinated individuals who are either uninfected
or in the latent or asymptomatic phases of infection, all
with equal probability based on the number of available
doses. Moreover, protection from the vaccine builds
over time, with 50% of the vaccine’s efficacy realized
upon vaccination, and full protection after two weeks.
Antiviral treatment and household prophylaxis
We investigate strategies involving treatment of infected
individuals with a five-day course of antivirals, as well as
strategies that also allow for ten-day prophylaxis of the
infected individuals’ household members. We assume
that 1% of individuals do not complete their course. We
use an antiviral efficacy against susceptibility (AVEs) of
0.3 and against infectiousness (AVEi) of 0.7 [16]. Indivi-
duals receive direct benefit from antivirals only while
they are taking them. Antiviral use is considered alone
and in combination with other intervention strategies. It
is assumed that antiviral courses are available for 10% of
the population and that they are distributed to infected
individuals and their household members until the sup-
ply is exhausted.
School closure and social distancing
We implement a rolling school closure model, where a
daycare or school closes for five days if five or more
cases are identified in that group. Given that infected
individuals are on average infectious for 4.1 days (see
Figure 3), closing schools for fewer than 5 days is

Table 1 Per-contact influenza infection transmission
probabilities within contact groups

Contact Group Transmission Probability

Household1

Child-to-Child 0.8

Child-to-Adult 0.3

Adult-to-Child 0.3

Adult-to-Adult 0.4

Community2

Pre-schooler 0.000005

School child 0.000005

Adult (ages 19–52) 0.000075

Adult (ages 53+) 0.000055

Daycares/Playgroups2

Daycares 0.028

Playgroups 0.018

Schools2

Elementary schools 0.012

Middle schools 0.011

High schools 0.010

Workgroups 0.010

1. Within households, the probability that a symptomatic child (age 18 years
or less) infects a susceptible child is 0.8; that a symptomatic child infects a
susceptible adult (at least 19 years old), or that a symptomatic adult infects a
susceptible child, is 0.3; that a symptomatic adult infects a susceptible adult is
0.4 [16].

2. Probability that a susceptible person in the age or school group is infected
through contact with a symptomatic person in the group.

Table 2 Age-group-specific H1N1 influenza illness attack rates in Ontario, Canada, 2009, and calibrated attack rates

Simulated Ontario Illness Attack Rates by the Percentage of Adults 53+ Years Old with Pre-
existing Immunity1

Calibrated Attack Rates
(AR)

Age 30% 50% 70% Age AR

0–4 30.6% 31.0% 30.8% 0–4 29.5%

5–13 53.8% 55.0% 55.2% 5–18 55.9%

14–17 56.0% 57.1% 57.3%

18–22 48.9% 49.7% 49.7% 19–52 40.8%

23–52 39.6% 39.8% 39.3%

53–64 21.7% 15.3% 8.8% 53–59 14.3%

65+ 19.1% 13.2% 7.5% 60+ 11.0%

Overall 36.8% 35.4% 33.5% Overall 34.1%

1. See the discussion in [25].
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unlikely to be very effective. It is possible for these
groups to close more than once during the simulation.
We also model a reduction in workplace and general
community contacts of 20% (i.e., 20% of infected indivi-
duals in each contact group will not infect other mem-
bers of the group). This represents the exercise of a
general level of caution, including a modest limitation of
contacts within workgroups (e.g., by invoking occasional

telecommuting and other self-limiting behaviors, holding
fewer large meetings, etc.) and also within the general
community (e.g., reduction in attendance in social
groups and larger community events, etc.).

Economic cost estimation
We determine economic costs associated with the influ-
enza outbreaks and modeled intervention strategies

Table 3 Average overall illness attack rates and total costs of interventions with 35% vaccination coverage

Intervention1 Delay in Initiation of Vaccination2 No Post-initiation
Vaccination Delays

Post-initiation Vaccination
Delays3

Attack Rate (%) Cost (US$m) Attack Rate (%) Cost (US$m)

None 34.1 81.1

A 31.3 75.9

S 24.0 125.0

A+S 9.2 48.0

VL Pre-vaccination 26.1 71.1

VL Reactive, no delay 28.8 77.7 28.8 77.7

VL 30-day delay 29.0 78.1 29.5 79.3

VL 60-day delay 30.7 82.2 32.2 86.0

VM Pre-vaccination 18.8 53.7

VM Reactive, no delay 22.6 62.8 22.8 63.1

VM 30-day delay 23.0 63.7 24.6 67.5

VM 60-day delay 27.3 74.1 30.8 82.5

VL+A Pre-vaccination 19.3 56.4

VL+A Reactive, no delay 25.2 70.6 25.3 70.8

VL+A 30-day delay 25.4 71.1 25.7 71.8

VL+A 60-day delay 26.2 72.9 27.1 75.0

VM+A Pre-vaccination 2.1 16.1

VM+A Reactive, no delay 8.1 30.1 10.0 34.3

VM+A 30-day delay 12.4 40.2 15.8 48.2

VM+A 60-day delay 18.6 54.7 20.8 60.1

VL+S Pre-vaccination 12.7 69.9

VL+S Reactive, no delay 17.3 93.6 17.5 95.7

VL+S 30-day delay 17.8 96.5 18.3 99.0

VL+S 60-day delay 18.6 101.9 19.6 108.8

VM+S Pre-vaccination 2.3 19.6

VM+S Reactive, no delay 6.8 41.6 8.5 49.4

VM+S 30-day delay 9.9 56.3 15.4 87.3

VM+S 60-day delay 13.4 74.7 17.9 95.7

VL+A+S Pre-vaccination 1.0 15.9

VL+A+S Reactive, no delay 3.9 29.2 4.5 32.2

VL+A+S 30-day delay 4.6 32.6 4.9 34.2

VL+A+S 60-day delay 4.8 33.8 5.4 36.8

VM+A+S Pre-vaccination 0.2 11.9

VM+A+S Reactive, no delay 0.5 13.1 0.8 14.9

VM+A+S 30-day delay 1.2 16.6 1.6 18.6

VM+A+S 60-day delay 2.0 20.2 2.4 22.0

1. Abbreviations for modeled interventions: V (vaccination of up to 35% of the population), L (low efficacy), M (moderate efficacy), A (antiviral treatment and
household prophylaxis of up to 10% of the population), S (school closure and social distancing).

2. Initial supply-chain delays which prevent immediate initiation of vaccination programs after the intervention trigger occurs.

3. Additional supply-chain delays, after initiation of the vaccination program, as a result of which vaccines become available in three equal batches, spaced two
weeks apart.
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using methods described by Meltzer et al. [29]. We
include medical spending due to illness, costs of antivir-
als and vaccines, and costs associated with teachers and
other working adults staying home due to their own ill-
ness, illness of dependent children, or due to school clo-
sure. Medical spending includes co-payments and net
payments for outpatient visits and hospitalization, as
well as prescription and over-the-counter medications
for influenza and complications or secondary infections.
Costs are stratified by age-group and by low- or high-
risk status of individuals with respect to complications

of influenza. We also include the present value of earn-
ings lost due to premature mortality.
Cost estimates and probabilities of risk status and of

complications and death were taken from Meltzer et
al. [29], with costs inflated using 2008 consumer price
index and medical price index estimates [30-33].
These costs are combined with the data on age-speci-
fic attack rates, utilized vaccination doses, and days of
school closure obtained from our simulation model.
Details of the cost calculations are given in the
Appendix.

Table 4 Average overall illness attack rates and total costs of interventions with 70% vaccination coverage

Intervention1 Delay in Initiation of Vaccination2 No Post-initiation
Vaccination Delays

Post-initiation Vaccination
Delays3

Attack Rate (%) Cost (US$m) Attack Rate (%) Cost (US$m)

VL Pre-vaccination 12.0 47.0

VL Reactive, no delay 22.2 71.1 22.4 71.6

VL 30-day delay 22.7 72.4 24.1 75.7

VL 60-day delay 27.1 83.0 30.4 89.4

VM Pre-vaccination 0.2 19.3

VM Reactive, no delay 2.2 25.6 4.6 29.7

VM 30-day delay 8.1 39.5 13.3 50.2

VM 60-day delay 22.6 74.0 27.6 83.0

VL+A Pre-vaccination 3.3 28.3

VL+A Reactive, no delay 17.3 61.1 17.7 62.0

VL+A 30-day delay 17.9 62.5 18.4 63.9

VL+A 60-day delay 19.9 67.4 22.0 72.4

VM+A Pre-vaccination 0.1 20.7

VM+A Reactive, no delay 0.6 22.0 1.2 23.3

VM+A 30-day delay 2.4 26.2 4.4 30.9

VM+A 60-day delay 6.6 36.1 12.2 49.1

VL+S Pre-vaccination 0.7 22.0

VL+S Reactive, no delay 5.9 46.0 7.5 53.1

VL+S 30-day delay 9.5 63.0 11.0 70.6

VL+S 60-day delay 13.3 82.6 15.4 96.6

VM+S Pre-vaccination 0.04 19.1

VM+S Reactive, no delay 0.2 19.7 0.7 22.0

VM+S 30-day delay 1.5 25.9 3.2 34.7

VM+S 60-day delay 6.4 51.2 9.8 69.1

VL+A+S Pre-vaccination 0.2 21.3

VL+A+S Reactive, no delay 1.8 28.4 2.6 32.0

VL+A+S 30-day delay 2.9 33.6 3.2 35.2

VL+A+S 60-day delay 3.8 37.8 4.6 41.7

VM+A+S Pre-vaccination 0.02 20.6

VM+A+S Reactive, no delay 0.1 20.1 0.2 21.6

VM+A+S 30-day delay 0.5 22.8 0.7 23.8

VM+A+S 60-day delay 1.2 26.1 1.4 27.4

1. Abbreviations for modeled interventions: V (vaccination of up to 70% of the population), L (low efficacy), M (moderate efficacy), A (antiviral treatment and
household prophylaxis of up to 10% of the population), S (school closure and social distancing).

2. Initial supply-chain delays which prevent immediate initiation of vaccination programs after the intervention trigger occurs.

3. Additional supply-chain delays, after initiation of the vaccination program, as a result of which vaccines become available in three equal batches, spaced two
weeks apart
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Results
With no intervention, the average overall illness attack
rate is 34.1%, with an estimated total cost of $81.1 mil-
lion (Table 3). Pre-vaccination of 35% of the population
with a low-efficacy vaccine reduces the average overall
illness attack rate to 26.1% (total cost $71.1 million),
and with a moderate-efficacy vaccine to 18.8% (total
cost $53.7 million). Not surprisingly, pre-vaccination of
70% of the population is more effective (overall average
illness attack rate 12.0%, total cost $47.0 million for a
low-efficacy vaccine; and 0.2% and $19.3 million with a
moderate-efficacy vaccine; see Table 4).
Reactive vaccination alone, of 35% of the population

with a low-efficacy vaccine delivered in three batches,
reduces the overall average illness attack rate to 28.8%
(or 22.8% with a moderate-efficacy vaccine), with a total
cost of $77.7 million ($63.1 million with a moderate-
efficacy vaccine). Thirty- and 60-day delays in initiation
of reactive vaccination, with vaccines delivered in three
batches, result in attack rates of 29.5% (total cost $79.3
million) and 32.2% (total cost $86.0 million), respec-
tively, for a low-efficacy vaccine, and 24.6% (total cost
$67.5 million) and 30.8% (total cost $82.5 million),
respectively, for a moderate-efficacy vaccine. Clearly,
with a 60-day delay, interventions occur too late in the
epidemic to have any meaningful effect (see Figure 4).
Antiviral use at low (10%) coverage alone results in an

overall attack rate of 31.3% (total cost $75.9 million).

School closure and social distancing alone result in an
attack rate of 24.0%, with a total cost of $125.0 million.
Suppose we combine reactive low-efficacy vaccination

of 35% of the population delivered in three batches,
antivirals (10% coverage), and school closure and social
distancing. Then the overall average illness attack rate is
4.5% (total cost $32.2 million) if no delays occur in the
initiation of vaccination, and 5.4% (total cost $36.8 mil-
lion) if a 60-day delay occurs. With a moderate-efficacy
vaccine, the attack rate for this last scenario reduces to
2.4% (total cost $22.0 million). Similar relationships
between interventions are apparent for interventions
with 70% vaccination coverage, shown in Table 4. Vacci-
nation coverage of 70% with a moderate-efficacy vac-
cine, combined with antiviral treatment and school
closure, is highly effective, even with an initial 60-day
delay and additional supply-chain disruptions (average
illness attack rate 1.4%, total cost $27.4 million).
We note that the results when all vaccines are avail-

able at the same time are better than those involving
delivery in batches, and sometimes significantly so, espe-
cially for a moderate-efficacy vaccine (Tables 3 and 4).
Figures 5A through 5D illustrate the comparative illness
attack rates of the various intervention strategies dis-
cussed above for all combinations of low/moderate-effi-
cacy vaccine delivered in three batches and at 35% /
70% coverage as a function of the initial delay in vacci-
nation implementation due to supply-chain disruptions.

Figure 3 Simulation flowchart and modeled influenza natural history
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The impact of vaccinating 70% of the population, rather
than 35%, ranges from moderate to substantial, with the
increased coverage being most beneficial when the vac-
cine is delivered in a timely manner, and the vaccine is
either of moderate efficacy or of low efficacy applied in
combination with other intervention strategies.
Complete (age-stratified and overall) average illness

attack results for all modeled interventions are given in
Supplementary Data Table S1. The comparative effec-
tiveness of interventions is similar when age-group-spe-
cific results are studied.
Figure 6A illustrates attack rate and total cost combi-

nations for interventions that result in at least a 75%
reduction in cost compared to no intervention. The clo-
ser to the origin, the more desirable an intervention is
in terms of total cost and average illness attack rate.
Aside from pre-vaccination strategies, we see that 70%
reactive vaccination with a moderate-efficacy vaccine
and school closure and social distancing, or even 35%
reactive vaccination with a moderate-efficacy vaccine,
antiviral use, and school closure, also result in substan-
tial reductions in cost and attack rates. Figure 6B illus-
trates attack rate and cost results for interventions that
result in more-modest 50%–75% reductions in cost
compared to no intervention. Once again, several

strategies combining vaccination, antiviral use, and
school closure/social distancing are competitive with
pre-vaccination.

Discussion
Previously published research has shown that pre-vacci-
nation of 60%–70% of the population can contain seaso-
nal as well as pandemic influenza, but that delays in
vaccination can greatly reduce the effectiveness of the
vaccination programs [4-7]. Our model confirms these
results for moderate-efficacy vaccines (Tables 3, 4, and
S1). However, vaccination efforts in countries such as
the US, Canada, and others began well after the first
waves of H1N1 activity, and it is reasonable to believe
that the same will be true in future outbreaks of pan-
demic influenza. In particular, in the event of an out-
break, it will likely take time to achieve high levels of
vaccination coverage, and, if past experience with seaso-
nal influenza vaccination campaigns is an indication, it
is plausible that only low or moderate coverage will
eventually be achieved. The results of our simulation
model show that delayed and low-coverage reactive vac-
cination strategies (with a low-efficacy vaccine, plus lim-
ited use of antivirals) will not be enough to mitigate the
pandemic or to significantly reduce total costs associated

Figure 4 Daily attack rates for (i) the case of 70% coverage of low-efficacy vaccine with 60-day initial delay, and (ii) the baseline case.
For case (i), the vaccine is given on the 60th day followed by receipt of vaccine after two additional two-week delays (see arrows). Note that
vaccine given on the 60th day decreases the attack rate compared to the baseline; but the two subsequent receipts of vaccine do not result in
additional benefits.
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Figure 5 Average overall illness attack rates (%) for modeled interventions. Average overall illness attack rates for the following scenarios:
no intervention; pre-vaccination; reactive vaccination with delays in initiation of 0, 30, and 60 days after the intervention trigger of a 0.01%
overall illness attack rate; antiviral treatment or household prophylaxis with 10% population coverage (intervention “A”); rolling, as-needed five-
day individual school closures and social distancing (20% reduction in workgroup and general community contacts—intervention “S”); antiviral
use plus vaccination; school closure, and social distancing plus vaccination; antiviral use, school closure and social distancing, plus vaccination (“A
+S”). Vaccination coverage is 35% of the population in Figures 5A and 5B; it is 70% of the population in Figures 5C and 5D. In reactive
vaccination scenarios, additional supply-chain disruptions are assumed, such that vaccines are available in three equal batches, spaced two
weeks apart, after initiation of vaccination programs. In Figures 5A and 5C, a low-efficacy vaccine is assumed (efficacy against susceptibility, VEs,
0.3; efficacy against infectiousness, VEi, 0.2). In Figures 5B and 5D, a moderate-efficacy vaccine is assumed (VEs, 0.5; VEi, 0.5).
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Figure 6 Total cost of modeled intervention strategies (US$m) vs. average illness attack rate (%) Figure 6A shows results for
interventions with cost reductions of more than 75% compared with no intervention, and Figure 6B shows results for interventions with cost
reductions of 50%−75% compared with no intervention. Abbreviations for modeled interventions: PV (pre-vaccination), V (vaccination), L (low-
efficacy), M (moderate efficacy), 35 (35% coverage of population), 70 (70% coverage), A (antiviral treatment and household prophylaxis of up to
10% of the population), S (school closure and social distancing). Multiple occurrences of each plotting symbol may occur; occurrences at higher
costs and illness attack rates represent interventions with longer supply-chain delays.
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with influenza morbidity and mortality (based on results
from Table 3, average illness attack rates are only
reduced by 26% and total costs by 13%, compared to no
intervention).
According to our model, combining rolling, limited-

duration, as-needed closures of individual schools and a
practical social distancing policy with 35% reactive low-
efficacy vaccination coverage and low-level (10%) anti-
viral use can reduce illness attack rates by 89% com-
pared to no intervention, as well as total costs by 64%.
Similarly, combining interventions in this manner
reduces overall attack rates by 99% and costs by 84%
when a moderate-efficacy vaccine is available. This strat-
egy remains highly effective even when delays in imple-
menting vaccination of up to 60 days occur. Previously
published results have left open the question of how
costly interventions involving school closure might be
[5]. Our results show that reactive combination strate-
gies that include practical school closure measures,
when diligently implemented, can reduce total costs
associated with influenza morbidity and mortality
substantially.
Our model has several limitations. We do not con-

sider vaccination strategies targeted to high-risk groups,
which could reduce costs associated with complications
from influenza. We have not modeled co-circulating
strains of seasonal and pandemic influenza or possible
resistance to antiviral drugs (although, to mitigate this
limitation, our model assumes only low coverage with
antivirals, as well as interventions without antivirals). As
is always the case with simulation models, continuing
follow-up analyses are needed, including: (i) sensitivity
to model parameters; (ii) sensitivity to model interven-
tion triggers (e.g., overall illness attack rate, numbers of
cases detected in schools, etc.); (iii) sensitivity to R0,
which can be heterogeneous across cities and countries;
and (iv) results for new H1N1 natural history and trans-
mission parameters, and new cost estimates for compli-
cations resulting from H1N1 illness, as they become
known.
Our model has several strengths. We model a large,

realistic, heterogeneous population, base the simulation
model on well-studied and documented stochastic simu-
lators, calibrate to actual H1N1 attack rates and most-
likely R0 values, and have the ability to model large
numbers of scenarios in a relatively short amount of
time on a desktop platform. The model also provides
cost estimates that are useful for making policy deci-
sions about potentially expensive interventions. In parti-
cular, we model and analyze a variety of interventions
and combinations of interventions in terms of costs and
efficacy. We also take into consideration reactive strate-
gies incorporating supply-chain delays, and we identify
strategies that effectively contain outbreaks and costs

even in the presence of supply-chain delays, low vaccine
efficacy, and low vaccine coverage.

Conclusions
Our model illustrates the epidemiological effectiveness
of a combination strategy involving short-term closures
of individual schools on an as-needed basis, other prac-
tical social distancing activities, reactive vaccination of
35% or more of the population, and limited use of anti-
virals for treatment and prophylaxis. The model also
quantifies the cost savings for this and alternative reac-
tive strategies. Public health authorities should consider
placing renewed emphasis on such combination strate-
gies when reacting to possible additional waves of the
current pandemic, or to new waves of future pandemics.

Appendix
In this Appendix, we provide details on the simulation
model as well as economic cost considerations.

Simulation model
Our simulator is similar to those developed by Longini
et al. for high-end computing platforms [7,16]; our
simulator is programmed in C++ and runs on desktop
platforms. Population structure and influenza transmis-
sion model details are given below.
Population structure
As discussed in the main text, the stochastically gener-
ated attributes for each person in our population of
649,565 included: age, household, playgroup or daycare
attended (for pre-school children), school attended (for
children 5–18 years of age), workgroup (for working
adults and working 16–18 year old children), house-
hold census tract and workplace census subdivision,
community (approximately 2000 people), and neigh-
borhood (approximately 500 people). Thus individuals
belong to three or four contact groups. In particular,
each individual belongs to a household, neighborhood,
and community. In addition, children younger than 16
belong to either a playgroup, daycare, or school,
depending on age; most children in age range 16–18
belong to a school or workgroup; and most adults in
age range 19–59 belong to a workgroup. Preschool
children were categorized as belonging to a playgroup
/ daycare, each with 50% probability. We separated
secondary schools into middle schools and high
schools based on grade to allow different contact
group sizes and to make our model more representa-
tive of mid-sized US cities. The numbers of
playgroups, daycares, elementary, middle, and high
schools in each community were based on Longini et
al. [16], and were combined with the number of indivi-
duals in each category in our simulation population to
obtain the contact group sizes. The number of working
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adults (19–59 years old) was based on census data
[23]; and the number of working children (16–18 years
old) was based on Ontario data on drop-out rates [34]
and the employment rate for ages 15–24 [23].
Influenza transmission model
The simulator models influenza transmission over a
180-day period, within the contact groups previously
defined. Figure 3 depicts a flowchart of the model. The
modeled natural history and simulator dynamics para-
meters, described below and shown in Figure 3, were
based on Longini et al. [7,19].
To initiate influenza outbreaks, simulations are seeded

with approximately 100 randomly selected initial infec-
tives, with all other individuals considered susceptible
(state 0). Susceptible people have the opportunity, each
day, to become infected in their contact groups. As dis-
cussed in the main text, the daily probability of infection
for each susceptible person is determined by the num-
ber of infectious contacts in his contact groups, and on
the per-contact probability of transmission for each type
of contact. For example, the probability of a susceptible
child who attends daycare being infected on a particular
day is:
1 – [Pr(child is not infected in the household)
× Pr(child is not infected in the neighborhood)
× Pr(child is not infected in the community)
× Pr(child is not infected at the daycare center)].
Within each contact group, the probability of infection

of a susceptible individual depends on the number of
infectious individuals in the group. For example, sup-
pose that k1 children and k2 adults in a household are
infectious on a particular day. Then the probability of a
susceptible household member being infected in that
household on that day is:
1 – [Pr(not infected by a particular infected child in

the household)k1

× Pr(not infected by a particular infected adult in the
household)k2].
The number of infectious people in the contact groups

(e.g., k1 and k2), are random variables that are updated
at the beginning of each day.
Age- and contact-group-specific per-contact probabil-

ities of transmission of infection are given in Table 1.
The probability that infection is transmitted from an
infected person to a susceptible person also depends on
whether the infectious person is symptomatic or asymp-
tomatic. Table 1 shows the rates for symptomatic indivi-
duals. The transmission rates for asymptomatic
individuals are half of those shown in Table 1. These
probabilities are based on Longini et al. [7,16], with
adjustments made to calibrate baseline (no intervention)
results to age-group-specific illness attack rates and R0

estimates for novel A (H1N1) in Ontario [14,24,25]; see
Table 2.

Once infected, people enter a 1–3 day latent period
(state 1; average length 1.9 days). They are assumed to
become infectious on the last day of the latent period,
and are half as infectious as they will be after the latent
period ends. After the latent period, 67% of infectives
become symptomatic (state 2), and 33% are asympto-
matic (state 3). These infectious states last between 3
and 6 days. Symptomatic infectives are assumed to be
twice as infectious as asymptomatics, and have a chance
of withdrawing home during each day of illness (see Fig-
ure 3); upon withdrawal, they only make contacts within
their household and neighborhood, with transmission
probabilities doubled in the household contact group,
until they recover. If a school child withdraws home due
to illness, one adult in the household also stays home.
Each day in states 2 and 3, an infectious person has a
chance to exit the state and be removed from the simu-
lation (i.e., to recover or die — state 4). Probabilities for
transition into and out of states are given in Figure 3
and are based on Longini et al. [7,16].

Economic cost calculations
The total cost of each intervention scenario includes the
cost of vaccine doses and antiviral courses used, if any;
costs associated with parents staying at home with sick
children and school teachers, parents, and children stay-
ing home due to school closure; costs due to illness-
related absence from work; medical costs associated
with illness, including outpatient visits, prescription and
over-the-counter drugs, and hospitalization; and lost
earnings due to death.

Table 5 Proportions of influenza cases at high risk for
complications1

Age Group Proportion at High Risk

Children (0–18) 0.064

Adults (19–59) 0.144

Seniors (60+) 0.400

1. Proportions taken from Meltzer et al. [29], and adapted to our age groups

Table 6 Outpatient visit, hospitalization, and death rates,
by age group and risk status for complications1

Rates per 1000 persons ill

Outpatient Visits Hospitalizations Deaths

Not at High Risk

Children 165 0.2 0.014

Adults 40 0.18 0.025

Seniors 45 1.5 0.28

High Risk

Children 289 2.1 0.126

Adults 70 0.83 0.1

Seniors 79 4.0 2.76

1. Rates taken from Meltzer et al. [29]
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We use methods described by Meltzer et al. [29] to
quantify most medical and work-loss costs (see also
[33]). Table 5 shows the proportions of illnesses
assumed to be at high risk for complications among
children (0–18 years old), younger adults (19–59 years
old) and seniors (over 60). Table 6 shows estimated
rates of outpatient visits, hospitalizations, and death
used in our calculations for children, adults, and seniors
at high risk and not at high risk of complications. We
chose the ‘low’ rate estimates presented in Meltzer et al.
[29], which we believe to be most consistent with the
relatively low R0 (1.4) for our model. Outpatient visit,
hospitalization, and death costs are shown in Table 7;
cost figures from Meltzer et al. [29] have been inflated
using 2008 consumer price and medical price indexes
[30-32]. All the above costs were combined with age-
specific attack rates obtained from our simulation
model. In addition, we assume average costs of $25 per
vaccine dose or antiviral course used, consistent with
previous reports [35]. Table 8 shows other costs asso-
ciated with vaccination (i.e., the cost of lost time, travel,
and side effects). These costs are based on [34], inflated
as described above. The vaccination costs are combined
with the number of used vaccination doses obtained
from our simulation model. We assume that 1% of anti-
viral users discontinue use due to side effects; medical
and other costs associated with these side effects are not
included in our model.
To estimate costs of ill individuals staying home and

work-loss associated with parents staying at home with
sick children, we multiplied the number of days
(obtained from our simulation model) with the infla-
tion-adjusted average value of lost days from Table 7.
Similarly, we estimated the average number of teachers
at schools and daycares by dividing the total number of
such teachers in Hamilton [36] among the schools and
daycares in our model. To estimate the cost of lost tea-
cher productivity due to school closures, we multiplied
the number of days schools and daycares are closed in
our simulation model by the average number of teachers

Table 7 Frequency and costs (in US$) associated with
influenza-related outpatient visits, hospitalizations, and
deaths1

Age Group

Outcome Category Item Children Adults Seniors

Outpatient Visits

Average no. visits per case 1.52 1.52 1.52

Net payment per visit $80.90 $62.74 $82.55

Average copayment for outpatient
visit

$8.26 $6.60 $6.60

Net payment per prescription $41.28 $59.44 $59.44

Average prescriptions per visit 0.9 1.8 1.4

Average copayment per
prescription

$4.95 $4.95 $4.95

Days lost 3 2 5

Value of 1 day lost $91.85 $141.30 $91.85

Subtotal: Per-case Outpatient Costs $448.86 $496.50 $679.47

Hospitalization

Hospital cost $4,847.34 $9,932.42 $11,319.26

Net payment per outpatient visit $122.17 $155.19 $168.40

Average copayment for outpatient
visit

$8.26 $6.60 $6.60

Net payment for drug claims $42.93 $69.34 $67.69

Most likely days lost 5 8 10

Value of 1 day lost $91.85 $141.30 $91.85

Subtotal: Per-case Hospitalization
Costs

$5,479.92 $11,293.96 $12,480.40

Deaths

Average age (years) 9 35 74

PV earnings lost $1,435,750 $1,466,231 $93,027

Most likely hospital costs $5,671 $12,555 $13,718

Subtotal $1,441,422 $1,478,788 $106,746

Ill but no medical care sought

Days lost 3 2 5

Value of 1 day lost $91.85 $141.30 $91.85

Over-the-counter drugs $3.30 $3.30 $3.30

Subtotal: Per-case ill (no care
sought)

$278.84 $285.90 $462.53

1. Estimates based on figures from Meltzer et al. [29]. Cost estimates inflated
by 2008 consumer and medical price indices [30-32] as appropriate.

Table 8 Costs and impacts of vaccination1

Cost or Side Effect Item Probability of Side Effect Per-case Cost of Side Effect Cost Scenario (per patient)

Assumed cost of vaccination 25.00

Patient time 5.65

Patient travel costs 5.65

Side effects

Mild 0.0325 94 5.04

Guillain-Barré Syndrome (GBS) 0.000002 100,800 0.33

Anaphylaxis 0.000000157 2,490 0.0006

1. Estimates based on figures from Meltzer et al. [29]. Travel and side effect cost estimates inflated by 2008 consumer and medical price indices [30-32] as
appropriate.
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at Hamilton schools and daycares and by the average
value of a day of lost work obtained from Table 7.
Table S1 shows age-stratified and overall illness attack

rates for all modeled scenarios, along with total cost
estimates. Figure 7 depicts the total cost (US$) plotted
vs. average overall illness attack rate for each
intervention.

Additional material

Additional file 1: Supplementary Data for Reactive Strategies for
Containing Developing Outbreaks of Pandemic Influenza
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