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Abstract

Control of gene expression is essential to the establishment and maintenance of all cell types, and
its dysregulation is involved in pathogenesis of several diseases. Accurate computational predictions
of transcription factor regulation may thus help in understanding complex diseases, including
mental disorders in which dysregulation of neural gene expression is thought to play a key role.
However, biological mechanisms underlying the regulation of gene expression are not completely
understood, and predictions via bioinformatics tools are typically poorly specific.

We developed a bioinformatics workflow for the prediction of transcription factor binding sites
from several independent datasets. We show the advantages of integrating information based on
evolutionary conservation and gene expression, when tackling the problem of binding site
prediction. Consistent results were obtained on a large simulated dataset consisting of 13050 in
silico promoter sequences, on a set of 161 human gene promoters for which binding sites are
known, and on a smaller set of promoters of Myc target genes.

Our computational framework for binding site prediction can integrate multiple sources of data,
and its performance was tested on different datasets. Our results show that integrating information
from multiple data sources, such as genomic sequence of genes' promoters, conservation over
multiple species, and gene expression data, indeed improves the accuracy of computational
predictions.

Background

Control of gene expression is essential to the establish-
ment and maintenance of all cell types, and is involved in
pathogenesis of several diseases, possibly including many
complex diseases, such as mental disorders [1]. Neuronal
gene expression regulation is expected to be more com-
plex than other cell types. It is largely orchestrated by tran-

scription factors (TFs) that activate and repress specific
cohorts of genes in both neural and non-neural cells,
required for differentiation of adult neural stem cells and
is implicated in several neuropathologies including Hunt-
ington's disease, epilepsy and ischemia. Possibly all men-
tal disorders including schizophrenia and mood
disorders, for which a biological component is strongly
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supported by evidence, may be caused by a dysregulation
of neural gene expression during development or adult-
hood, rather than by structural variations in proteins [1].
The identification of genes that encode novel targets of
neural-specific transcription factor will provide insights
into the pathogenesis of mental disorders and in the iden-
tification of clinically relevant drug-induced gene expres-
sion patterns. Although the possibility of predicting the
regulation of gene expression is appealing, the underlying
biological mechanisms are not completely understood,
and the development of bioinformatics tools capable of
accurate predictions is far from trivial. It is known that the
mechanisms of regulation of gene expression involve the
binding of TFs to regulatory elements on gene promoters,
known as Transcription Factor Binding Sites (TFBSs), but
attempts to computationally predict such elements in
DNA sequences of gene promoters typically yield an
excess of false positives.

Computational identification of cis-Regulatory Elements
(CREs) is currently based mainly on three different
approaches: (i) identification of conserved motifs using
interspecies sequence global alignments [2]; (ii) motif-
finding algorithms that identify previously unknown
motifs that are overrepresented in the promoters of co-
expressed genes [3-9]; (iii) computational detection of
previously known motifs in promoters of genes for which
regulating TFs are unknown [10]. Limitations of the first
approach are caused by the high mutation, deletion and
insertion rates in gene promoter regions [11] that prevent
a correct alignment of the promoter region, and several
other reasons, including rearrangements of binding sites
within the non-coding regions or changes in regulation of
the ortholog genes. The second approach requires a large
number of sequences containing a highly overrepresented
motif. The third approach seems promising since the
quality of the motif models of each TF is increasing, allow-
ing for more accurate predictions of unknown target
genes.

Accurate predictions require the use of an appropriate sta-
tistical background model of DNA sequence and integra-
tion of several sources of data, such as genomic sequence
of gene promoters, as well as genomic sequence of
ortholog genes, and gene expression data. Different strat-
egies have been proposed to improve the accuracy of pre-
dictions, such as using a statistical background model or
the information vector of a position weight matrix (PWM)
[10], or, more recently, motif co-occurrence [12]. A prom-
ising approach was recently shown to successfully predict
TFBSs in higher eukaryotic genomes by considering over-
represented combinations of motifs in phylogenetically
conserved regions and correlate them with expression
profiles [13].

Tadesse et al. [14] could successfully improve specificity of
the identification of DNA regulatory motifs by fitting a
linear regression model to microarray data in yeast. A
novel computational tool was recently released by Halli-
kas et al. [15] for the prediction of distal enhancer ele-
ments in mammalian genomes, based on both genomic
sequence and conservation. This method tries to detect
highly conserved sequences containing clusters of TFBSs
by aligning large stretches (50 kb) of genomic DNA from
two species. Our focus is somewhat complimentary, as we
try to detect TFBSs in the proximal promoter of vertebrate
genes as opposed to distal enhancers. Proximal promoters
cannot be easily aligned with promoters of ortholog
genes, however, our method takes conservation into
account in a way that does not require alignment. Conlon
et al. [16] showed recently that integration of gene expres-
sion profiles and PWM scores through a linear regression
analysis can indeed improve the prediction accuracy.

Our Computational Framework for transcription factor
Binding site Identification (CFBI) supplies a set of novel
tools to fetch and integrate data from multiple sources
and analyze it to make predictions, all in an automated
and flexible bioinformatics workflow (Figure 1). Differ-
ently from previous approaches, CFBI does not require
alignment of ortholog gene promoters, nor a linearity
assumption, as in the case of linear regression based algo-
rithms. Our framework can also be applied to qualitative
expression data, such as developmental and/or neuroana-
tomical expression data such as that obtained by in situ
hybridization histochemistry.

Results

The CFBI approach we developed proceeds as follows
(Figure 1): the gene of interest is selected and its promoter
sequence, together with promoter sequences of ortholog
genes in other species are retrieved from ensembl database
http://www.ensembl.org and compara for orthology infor-
mation [17]. A list of motifs of all known vertebrate tran-
scription factors (TFs) is obtained by the TRANSFAC
database, or a list of novel motifs may be predicted by
MDScan [18]. Motifs are then modeled as Position Weight
Matrices (PWMs). A PWM score for each motif is com-
puted in each promoter of the ortholog gene set. The
PWM scores in the ortholog gene set are integrated using
a weighted sum calibrated on the phylogenetic distances
between the species. This final score can then be used to
rank the motifs and select the ones with the highest prob-
ability of being functional transcription factor binding
sites.

These predictions can be refined using logistic regression
to integrate data from potentially co-regulated genes. The
logistic regression makes use of two sets: a set of promot-
ers of potentially co-regulated genes, and a background set
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CFBI Overview. Diagram illustrating the structure of the framework for the computational prediction of transcription factor
binding sites. The diagram shows the multiple sources of input data, including ensembl, compara, TRANSFAC (or alternatively,
novel motifs obtained by a motif-finding algorithm, such as MDScan), the optional data preprocessing RepeatMasker step, and
the post-processing steps including data integration from multiple species and logistic regression of gene expression defined
classes of genes. Dotted lines indicate optional or alternative steps.
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of gene promoters that do share any regulatory motifs. For
further details please refer to the Methods section.

In order to establish the performance of CFBI, we counted
the number of true positives (TP), true negatives (TN),
false positives (FP), false negatives (FN), and presented

P
the results as Positive Predictive Value (PPV) = ——,
TP + FP
. P
and Sensitivity = ————.
TP + FN

Simulated data

Performance and usability of the CFBI was tested on an in
silico dataset consisting of 1450 genes with ortholog
sequences in 9 different species (see Methods).

The predictive performance of CFBI on this dataset is
shown in Figure 2. Robustness of the logistic regression
step was tested by progressively introducing 'noise' in the
set of co-regulated genes and in the background set of
genes (see Methods). Noise was added to simulate a more
realistic scenario, in which only some of the genes in the
co-regulated set, do share a common regulatory motif in
their promoters. The noise free case (black continuous
line in Figure 2) consisted of the 10 motif-positive pro-
moters assigned to the co-regulated set of genes, and the
null promoters (with no insertions) assigned to the back-
ground set. Promoters in the background set were progres-
sively misassigned to the co-regulated set, and the
corresponding performances are shown in Figure 2.

TRANSFAC genes dataset

The TRANSFAC dataset consists of promoters of 407
human genes from TRANSFAC gene table, for which tran-
scription factors are known and experimentally validated
with an annotated 5'-UTR. Ortholog gene sequences were
fetched via the automated workflow, for each of 9 species
where available. The analysis was limited to the subset of
161 groups of ortholog genes for which all 9 orthologs
were available, for a total of 1449 promoter sequences. All
promoters were 1 kb long, with 300 bp downstream of the
transcript start site.

Results on the human TRANSFAC genes dataset confirm
the results obtained on the simulated dataset. Single spe-
cies performance appears to resemble the evolutionary
distance of the species (Figure 3). The PPV reached a max-
imum of approximately 30% when the ortholog gene pro-
moter sequences are used, as compared to an average peak
of <20% for the human species alone. We also compared
the performance of CFBI with one of the most commonly
used algorithms for TFBS prediction, MATCH [10] using
both the 'minimize FP' and 'minimize FN' options (Figure
3).

Myc targets dataset

In order to confirm our results on an independent dataset,
we selected a subset of Myc target genes from the Myc
database [19]. The Myc gene a transcription factor vastly
implicated in neuroscience [20-22], whose primary tar-
gets have been extensively validated. Only the top 17 high
quality targets were included in the analysis, i.e. those val-
idated as primary targets by both Chromatin ImmunoPre-
cipitation (ChIP) and biochemical assays, in order to have
a small but highly reliable dataset [19].

Performance on this dataset confirms the advantage of
integrating phylogenetic sequence information over using
a single species, and a boost (> two fold) in performance
when integrating information on co-regulated genes via
logistic regression (Figure 4).

Discussion and Conclusion

Regulation of gene expression is a key factor determining
complexity of biological systems. There is an increasing
interest in understanding regulation of gene expression in
the brain, where the dynamics of gene expression may
play a role in drug response and in brain disorders. There
are examples in which neural gene expression profiles
could accurately discriminate among classes of psychoac-
tive compounds [23,24] or even between complex social
behaviors within honeybees [25].

Here, we developed a novel strategy for increasing the
accuracy of computational predictions of TFBSs on
genomic DNA sequences. Key factors of our computa-
tional framework include the integration of phylogenetic
information from multiple species, and the possibility to
include a priori information such as that available from
quantitative or qualitative gene expression data.

One novelty of our approach, compared to others that
make use of phylogenetic information, is that it does not
require aligning promoter sequences from different spe-
cies, thus overcoming the problem of aligning promoter
sequences that have diverged with evolution.

A second novelty is the use of non-linear logistic regres-
sion to integrate additional a priori information on gene
regulation. The source of a priori information could be
microarray gene expression profiles. Clusters of genes that
share a common expression profile with a gene of interest
can be identified, and considered against a set of genes
that do not change. The hypothesis is that genes that are
co-expressed should be co-regulated and therefore share
common regulatory motifs in their promoters, while the
second set of non-changing genes is used as a background
set to reduce false positives. Alternatively, contrasting sets
of genes could be identified from biological knowledge or
from different experimental data such as a specific pattern
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Figure 2

Performance on the Simulated Dataset. Positive Predictive Value (PPV) vs. Sensitivity plot showing the results in the sim-
ulated dataset. Continuous lines: performance profile obtained using the logistic regression step (black thick line shows per-
formance with zero noise, and thin gray scale lines show performance when miss-assignmets are progressively introduced).

of expression by in situ hybridization. For example, a pat-
tern of expression in specific neuroanatomical regions in
response to a drug may be used to select one group of
genes, whereas a (larger) set of genes not responding, or
responding with a different pattern may be used as the
background set. Logistic regression is different from the
linear regression method by Conlon et al. [14], in that the
linear regression model relies on the assumption that the
gene expression levels are linearly related to the sequence
matching scores of the motifs. Such an effect could be true
in lower animals but is not easy to detect in mammals. In
addition, the use a background set makes logistic regres-
sion less prone to false positive predictions.

Methods

Sequence and motif data retrieval

Promoter sequences were retrieved from the latest build of
ensembl database (build 32), and ortholog gene IDs were
obtained by querying the compara database [17]. Finally,
all of the 145 vertebrate motif data were fetched from
TRANSFAC 9.2. Each transcription binding site motif was
modeled as a position weight matrix (PWM).

Position weight matrix score

We computed PWM scores using a statistical formula pro-
posed by Stormo et al. [26,27]. This score is based on the
ratio between the probability of a subsequence being gen-
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Performance on the TRANSFAC Genes Dataset. PPV vs. Sensitivity on the TRANSFAC genes dataset. Plain gray lines:
scores obtained on the individual species; continuous lines: mammals (the thicker line is the human); dashed lines: chicken; dot
dashed: fugu and zebrafish. Performance obtained using MATCH: two bordered white diamonds correspond to 'minimize false

positives' and 'minimize false negatives'.

erated from the PWM over that of being generated by the
background Markov model. The score of a motif of length
w over a promoter sequence of length [ is given by:

w
I-w+1 gpij
s=logy, Y - (1)
i=1 pz’]
j=1

where p;; is the probability of a base at position i+j based
on the PWM and p.; is the probability of it being gener-
ated by the background Markov model. For this purpose a

species-specific 31 order Markov model was trained on
large (10 kb) intergenic regions upstream of a set of
human neural genes, including dopamine D, receptor, 5-
HT2A, tryptophan hydroxylase 1, homer 1, neuronal ace-
tylcholine receptor alpha-10, c-myc and c-fos. Alterna-
tively, a different set of background sequences may be
specified each time.

Phylogenetic data integration

For each motif, the PWM score in the promoter of
ortholog genes in k different species was integrated by the
following mathematical formula that is based on the

Page 6 of 8

(page number not for citation purposes)



BMC Neuroscience 2006, 7(Suppl 1):S8

0.25¢ ¥ - = =human |

relSum
*  logistic | |

0.2

0.15f

PPV

01f

005 il -

-
/” 1 e
-

’ L e

0 0.2 0.4 0.6 0.8 1
Sensitivity

Figure 4

Performance on the Myc Targets Dataset. PPV vs. Sen-
sitivity on the small set of 'high quality' Myc target genes data-
set. Continuous line: performance of the weighted sum over
9 species; dashed line: human alone. The asterisk shows the
peak performance obtained by the logistic of the |7 relSum
scores against 100 promoters of random genes not included
in the Myc database.

assumption that some of the regulatory machinery of gene
expression is conserved in evolutionary related species:

k
relSumzZsi(l—di) (2)

i=1
where s; is the PWM score of the motif in the promoter of
the gene in species i, and d; is a weight proportional to
evolutionary distance from the main species (human),
ranging from 0 (same species) to 1 (farthest species). The
distance weight d; was calculated using the multi-species
alignment of coding sequences of the myc gene using the
program DNADIST [28]. We named this score 'relatedness
sum' (relSum, for short) since it takes into account how
related promoters of different species are.

Qualitative data integration: Logistic regression

If a priori information is available indicating that a gene of
interest is part of a set of genes that may share common
regulatory motifs in their promoters, then this informa-
tion can be used to increase the specificity of in silico pre-
dictions. This a priori information can be obtained, for
example, by selecting a cluster of co-expressed genes from
microarray experiments. A value y = 1 is assigned to the
cluster of co-expressed genes to which the gene of interest
belongs, while a value y = 0 is assigned to a background
set of genes that are thought not to share any common
regulatory motifs. Logistic regression is then used to iden-

tify the shared regulatory motifs in the co-expressed data-
set. The general model for a logistic regression is:

Vi = fori=1...n (3)

140 b'x
where n is the total number of target genes in the two sets,
the response variable y;£{0,1} is equal to the class of the
i gene, and x is a vector of scores (relSums) for m 'candi-
date' motifs (regressors). The vectors a and b are the
parameters of the model. Parameter b is a vector of size m
of fitted weights. The greater the weight, the more likely
the corresponding motif is functional. The variance 62 of
b may be computed as:

§? = diag(X'wX)™!

where X is the n x m matrix of relSum scores and the diag-
onal matrix w is equal to:

e—Xb

(e Xy

Generation of the in silico promoter dataset

The sequence generator Seq-gen algorithm [29] was used
to build simulated datasets of ortholog sequences. Seq-gen
is able to generate simulated DNA sequences of a given
length and the corresponding 'ortholog' sequences at dif-
ferent evolutionary distances, starting from the 9-species
phylogenetic distance matrix previously described (Table
1). Seq-gen was run to generate 90 simulated DNA
sequences with the corresponding 'ortholog' in 9 species
(human, chimp, dog, cow, mouse, rat, chicken, fugu, and
zebrafish). This program implemented the Hasegawa,
Kishino and Yano (HKY) model [30] for the generation of
simulated data. Motif sequences were randomly selected
from the list of known binding sites in TRANSFAC, and
inserted in random non-overlapping positions within the
simulated promoter sequences. In order to account for the
evolutionary distance, we decreased the frequencies of

Table |I: Phylogenetic Distances. Phylogenetic distance weights
used to compute the 'relatedness sum' score (variable d in
equation 2).

Species distance
Human 0
Chimp 0.0041
Dog 0.0954
Cow 0.1071
Mouse 0.2595
Rat 0.1352
Chicken 0.3705
Fugu 0.4805
Zebrafish 0.7485
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inserted motifs with the evolutionary distance. Thus,
human and chimp promoters received two inserts, cow
and dog received 1.5 inserts on average, mouse and rat 1
insert, chicken 0.5 inserts and finally fugu and zebrafish
0.2 inserts. Only the high quality subset of 145 TRANS-
FAC matrices, i.e. compiled from 20 or more binding sites,
was considered for the generation of simulated datasets.
Thus a total of 13050 promoters were analyzed (145 dif-
ferent datasets of 90 genes).
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