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Abstract

Background: Pinpointing genes involved in inherited human diseases remains a great challenge in the post-
genomics era. Although approaches have been proposed either based on the guilt-by-association principle or
making use of disease phenotype similarities, the low coverage of both diseases and genes in existing methods has
been preventing the scan of causative genes for a significant proportion of diseases at the whole-genome level.

Results: To overcome this limitation, we proposed a rigorous statistical method called pgFusion to prioritize
candidate genes by integrating one type of disease phenotype similarity derived from the Unified Medical Language
System (UMLS) and seven types of gene functional similarities calculated from gene expression, gene ontology,
pathway membership, protein sequence, protein domain, protein-protein interaction and regulation pattern,
respectively. Our method covered a total of 7,719 diseases and 20,327 genes, achieving the highest coverage thus far
for both diseases and genes. We performed leave-one-out cross-validation experiments to demonstrate the superior
performance of our method and applied it to a real exome sequencing dataset of epileptic encephalopathies,
showing the capability of this approach in finding causative genes for complex diseases. We further provided the
standalone software and online services of pgFusion at http://bioinfo.au.tsinghua.edu.cn/jianglab/pgfusion.

Conclusions: pgFusion not only provided an effective way for prioritizing candidate genes, but also demonstrated
feasible solutions to two fundamental questions in the analysis of big genomic data: the comparability of
heterogeneous data and the integration of multiple types of data. Applications of this method in exome or whole
genome sequencing studies would accelerate the finding of causative genes for human diseases. Other research
fields in genomics could also benefit from the incorporation of our data fusion methodology.

Background

Pinpointing genes causative for inherited human diseases
is the primary step towards the understanding of intrinsic
mechanisms of such diseases. In the post-genomics era,
the analysis of human genetic data is often combined
with the mining of functional genomic data to facilitate
the identification of potential causative genes [1,2]. For
example, via genome-wide association (GWA) studies,
genetic factors related to a query disease can typically be
located within a region of 10M basepairs, containing
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about 100 candidate genes [3]. The problem is then how
to rank these genes according to their strength of asso-
ciation with the query disease. Resorting to the whole-
exome sequencing technique, dozens or hundreds of de
novo mutations can be screened for a query disease [4].
The question is then how to infer true causative genes
from candidate genes that contain such mutations.
Targeting on these demands, two groups of computa-
tional approaches have been proposed for the prioritiza-
tion of candidate genes. The first group is designed based
on the guilt-by-association principle, which suggests that
genes associated with the same type of disease are similar
in their functions [5]. Accordingly, candidate genes can
be ranked according to their functional similarity to a set
of seed genes that are known to be associated with the
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query disease. In existing studies belonging to this cate-
gory, such similarities have been quantified based on
gene expression [6], gene ontology [7], protein sequences
[8], protein-protein interactions [9], and many others
[10-12]. Methods have also been proposed to integrate
multiple data sources for achieving high accuracy [13].
Nevertheless, the requirement of a predefined set of seed
genes may greatly restrict the scope of applications of
these methods, since according to the OMIM (Online
Mendelian Inheritance in Man) database [14], genetic
bases for a significant proportion of human diseases are
completely unknown, making the selection of seed genes
for such diseases a problem.

To overcome this limitation, the second group of meth-
ods, with the hallmark of using disease phenotype similar-
ity data, has been proposed. For example, Lage et al.
proposed a Bayesian model to integrate phenotypic simila-
rities and protein-protein interaction (PPI) data [15]. Wu
et al. suggested to quantify the strength of association
between a disease and a gene using correlation between
phenotype similarities and gene proximities [16]. Wu et al.
further proposed to perform a local alignment of a pheno-
type network against a PPI network [17]. Li and Patra
adopted a random walk with restart model on an inte-
grated network composed of both diseases and genes [18].
Vanunu et al. proposed to simulate how disease status
propagated through candidate genes [19]. Chen et al. pro-
posed to quantify the strength of association between a
disease and a gene using the maximum information flow
in a phenome-interactome network [20]. These methods,
though demonstrating higher accuracy and wider scope of
applications than the guilt-by-association approaches, are
often restricted by two factors: 1) the availability of the
phenotype similarity data and 2) the coverage of the gene
similarity data. For example, there are a total of 7,719 dis-
eases recorded in the OMIM database till February 2014,
whereas the most widely used phenotype similarity data as
published in [21] covers only 5,080 (~66%) of such dis-
eases. It is estimated that the human genome contains
more than 20,000 genes, whereas the most widely used
PPI data as published in [22] covers only 9,515 (< 50%)
genes.

Motivated by these understandings, we propose a rigor-
ous statistical model named pgFusion that integrates one
type of phenotype similarity and seven types of gene simi-
larities to pinpoint disease genes. The phenotype similarity
data, which covers 7,719 diseases in the OMIM database,
is derived using a text mining technique based on the Uni-
fied Medical Language System (UMLS) [23] and is the
most comprehensive one among such data. The seven
types of gene similarity data, including gene expression,
gene ontology, pathway membership, protein sequence,
protein domain, protein-protein interaction and regulation
pattern, cover as many as 20,327 human genes, making
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the whole-genome scan of causative genes for a query dis-
ease possible. Based on these data, our method resorts to a
linear regression model and a hypothesis testing procedure
to derive 7 scores that quantify the strength of association
between a query disease and a candidate gene from differ-
ent perspectives, and further adopts the Fisher’s method
with dependence correction to combine these scores. We
performed leave-one-out validation experiments to
demonstrate the superior performance of pgFusion, and
applied it to a real exome sequencing data set of epileptic
encephalopathies [24], showing the capability of this
approach in finding causative genes for complex disease.
We finally provided the standalone software and user-
friendly online services of our method at http://bioinfo.au.
tsinghua.edu.cn/jianglab/pgfusion.

Methods

Workflow of pgFusion

The proposed method, named pgFusion, was designed
based on the assumption that genes associated with dis-
eases that shared common clinical traits would also
share similar properties across multiple genomic data
sources. As shown in Figure 1, inputs of this method
included a query disease and a set of candidate genes,
and the objective was to rank these genes according to
their strength of association with the query disease. For
this purpose, pgFusion relied on the OMIM and UMLS
databases to calculate a phenotype similarity matrix for
a total of 7,719 diseases and resorted to 7 genomic data
sources (gene expression, gene ontology, KEGG path-
way, protein sequence, protein domain, protein-protein
interaction and regulation pattern) to derive 7 gene
functional similarity matrices for a total of 20,327
human genes. With such phenomic and genomic infor-
mation available, pgFusion resorted to a regression
model and the Fisher’s method to examine one candi-
date gene at a time. In the regression model, pgFusion
explained the phenotype similarity between two diseases
using their genotype similarity, which was defined as the
total functional similarities of their associated genes
under a certain genomic data source. The strength of
association between the query disease and a candidate
gene was then assessed by a hypothesis testing proce-
dure and quantified by the corresponding p-value. Final
results were then 7 p-values, one for a genomic data
source. In the Fisher’s method, pgFusion integrated the
7 p-values to calculate a single p-value, with the consid-
eration of the dependence between these p-values. A
multiple testing correction procedure was then applied
to the final p-values of all candidate genes to control
the positive false discovery rate of the results by calcu-
lating g-values from p-values. Finally, candidate genes
were sorted according to their g-values to produce the
output ranking list.
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Figure 1 Diagram of pgFusion. Given a query disease and a list of candidate genes, pgFusion calculates the statistical significance that a
candidate gene is causative for the query disease by integrating phenomic and genomic data, thereby providing a means of prioritizing the
candidate genes.

Derivation of phenotype similarity

We adopted the text mining technique to derive pairwise
phenotype similarity between diseases. Briefly, we first
extracted a total of 7,719 disease records from the
OMIM database and split sentences in the TX and the
CS fields of these records into words. Then, we mapped
these words onto concepts in the UMLS database by
using the MetaMap program [25]. Next, for each OMIM
record, we counted the frequency of occurrence of each
concept in the record, obtaining a high dimensional
numeric vector. Finally, we calculated pairwise phenotype
similarity between diseases as the cosine of the angle
between corresponding vectors. We assessed relation-
ships between the phenotype similarity derived this way
and several genotype similarities, and we found strong
evidence to support the existence of correlations between
the phenotype and genotype similarities.

Derivation of gene similarities

We derived gene functional similarity scores from 7 types
of genomic data, including gene expression, gene ontology,
pathway membership, protein sequence, protein domain,
protein-protein interaction and regulation pattern. Each of
such scores ranged from 0 to 1, denoting the lowest and
highest similarities, respectively.

Gene expression

Focusing on whole-genome microarrays for a total of
44,775 transcripts across 79 tissues [26], we characterized
each human gene with a 79-dimensional numeric vector
that represented expression levels of the gene across the
tissues. For a pair of two genes, we calculated the abso-
lute value of the Pearson’s correlation coefficient of the

corresponding vectors to obtain their raw similarity
scores. Considering that such raw scores may include
noise in the original expression data, we further applied
an exponential transformation to convert raw scores into
final similarity scores, as

(sexp) \ 2
&) _ oxpy | — 1= g,
gh o (8exp) !
where go(gexp ) was the final score for two genes g and 4,

gh
wéflexp) the raw score, and 6¢™® the standard deviation
of raw scores for all gene pairs. With this transforma-
tion, the highest raw score (1.0) kept highest, while the
lowest raw score (0.0) became exp[—(O'(geXP))'z], which
was close to zero because the standard deviation o‘&*P)
was typically small.

Gene ontology

Focusing on the biological process domain of the gene
ontology and associated annotations [27], we collected a
total of 25,616 concepts in the annotations and charac-
terized each human gene using a numeric vector of
such number of dimensions, with each element being
the information content of the corresponding concept.
For a pair of two genes, we calculated the cosine of the
angle between the corresponding vectors to obtain their
raw similarity scores and further applied the aforemen-
tioned exponential transformation to convert raw scores
into final similarity scores. Note that although there
have been quite a few methods for calculating gene
semantic similarity based on the gene ontology [28], it
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has been shown recently that the cosine measure,
though simple, often produces reasonable results [29].
Pathway membership

Focusing on human pathways in the KEGG database [30]
and discarding diseases-related ones to avoid biases
towards well-studied diseases, we obtained a total of 238
pathways and characterized each human gene using a bin-
ary vector of such number of dimensions. For a pair of
two genes, we calculated the cosine of the angle between
the corresponding vectors to obtain their raw similarity
scores and further applied the exponential transformation
to obtain final similarity scores.

Protein sequence

We extracted a total of 20,274 human protein sequences
from the Swiss-prot database [31] and ran the Smith-
Waterman algorithm implemented in SSEARCH [32] to
obtain their pairwise local sequence alignments. Then,
we constructed a sequence similarity network of these
proteins by connecting two proteins with an undirected
edge if their alignment e-value is less than a predefined
threshold (10™*). Next, we calculated the shortest path
distance (8;{23“7)) for every pair of proteins (g and %) in
this network and converted it to a similarity value in the
range of 0 and 1 (a)éﬁseq) =1- 8;5564)/ max 8;2524)). Finally,
we applied the exponential transformation to obtain the
similarity score. Note that the construction of a
sequence similarity network in this procedure greatly
reduced the sensitivity to the parameters involved and
thus enhanced the robustness of this method.

Protein domain

We obtained a total of 14,831 domains from the Pfam
database (Version 27.0) [33] and characterized each
human protein using a binary vector of such number of
dimensions. For a pair of two genes, we calculated the
cosine of the angle between the corresponding vectors
to obtain their raw similarity scores and further applied
the exponential transformation to obtain final similarity
scores.

Protein-protein interaction

We extracted a total of 403,514 interactions among
13,747 proteins from the STRING database (Version
9.1) [34] and constructed a protein-protein interaction
network accordingly. Then, we calculated the shortest

path distance (8§;trg)) for every pair of proteins (g and k)
in this network and converted it into a value in the

range of 0 and 1 (a);;lrg) =1-— 55(;;"3) / maxsgl"g)). Finally,
we applied the exponential transformation to obtain the
similarity score.

Regulation pattern

We extracted a total of 218 high confidence position
specific scoring matrices for the same number of verte-

brate transcription factors from the TRANSFAC
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database [35]. We then searched 1,000 basepairs
upstream for each human gene using the program
MATCH to identify potential binding sites for each
transcription factor. Next, we characterized each gene
using a numeric vector of 218 dimensions, with each
element indexing the number of potential binding sites
for the corresponding transcription factor. Finally, for
each pair of two genes, we calculated the cosine of the
angle between the corresponding vectors to obtain their
raw similarity scores and further applied the exponential
transformation to obtain final similarity scores.

Scoring association strength by regression and
hypothesis testing

Given the phenotype similarity matrix and a gene func-
tional similarity matrix derived from a type of genomic
data, we adopted a linear model as proposed in the lit-
erature [16] to explain the phenotype similarity between
two diseases using functional similarities of genes asso-
ciated with the diseases, as

Yie = @ + BXie + €

where d and e indexes two diseases, Y, their pheno-
type similarity, ¢,, Gaussian noise, and x,, their geno-
type similarity defined as

Xde = Z Z Pgh

geD heE

with D and E being sets of genes known as associated
with diseases d and e, respectively, and ¢y, the func-
tional similarity between genes g and / according to the
genomic data in use.

Particularly, suppose d to be the query disease and g a
candidate gene, we assumed g would be the only gene
associated with d and wrote a regression model as

Y=a+pBx+¢g,

where o and B are regression intercept and slope,
respectively, Y = (Yy1,..., Ya,)",,, the vector composed
of phenotype similarities between 4 and all other # dis-
eases in the similarity matrix, x = (x41,..., %), the
vector of corresponding genotype similarities with

Xdi = dei ¢gr and I; the set of genes known as asso-

ciated with the i-th disease for i = 1,...,n, and ¢ =
(e1ytn) T with & ~ N(0,6%) independent and identically
distributed for i = 1,...,n.

With this regression model, we quantified the strength
of association between the query disease d and the can-
didate gene g using the statistical significance of the
hypothesis testing problem

Ho:B8=0vsH;:8>0.
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Define the test statistic T as,

N

p
VSIS (6 -5

$2 =3 (Vi-d—pu)'/(n - 2)
CEDNCED (A BINCETE

& = Y—g‘c,é. It is obvious that the statistic has a stu-
dent’s ¢ distribution with #-2 degrees of freedom under
the null hypothesis and the normal assumption. The
p-value of the proposed test can then be calculated as
P(T,_, = t) with ¢ the realized value of the statistic.

However, in the case that the normal assumption does
not hold, the p-value obtained from the ¢ distribution
may not reliably reflect the true statistical significance.
We therefore calibrated the p-value by simulating the
distribution of raw p-values for all disease-gene pairs
that were not included in annotated associations and
calculating the adjusted p-value as the proportion of raw
p-values in this distribution that was smaller than or
equal to the raw p-value need to be calibrated.

T =

where

and

Fusion of association scores for multiple genomic data
sources
We adopted Fisher’s method to integrate p-value
derived from different types of genomic data to obtain a
single score, with an extra effort on the correction of
dependence between the p-values.

Specifically, given the p-values to be combined,
denoted by p,....pr, where k = 7 is the total number of
data sources, we defined the fisher’s statistic as

k
X = ZVl» with V; = =2 logpi.
i=1
It is clear that under the null hypothesis, p; ~ Uniform
(0,1) and V; ~ x2 In the independent case, it is obvious
that Zle Vi ~ x3,- In the dependent case, we follow the
literature [36] to assume that T follows a scaled chi-
squared distribution as X = Zle Vi ~ rx2 The problem
is therefore how to estimate the scale r and the degrees
of freedom v. Resorting to the method of moments,
population mean and variance are given as

E[rx2] = rv and Var[rx?2] = 212,

while the corresponding sample mean and variance
are derived as

kK
E[X] = 2k and Var[X] = Y~ ) " cov (V;, V).

i=1 j=1
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Matching these quantities for the population and the
sample, we obtain

1 kEk

= Z Zcov (Vi, Vj) and i = 2k/7.
i=1 j=1

Covariances cov(V;,V}) can be estimated using a nor-
mal model as follows. Suppose p; = ®(1 - z;), where ©(.)
is the cumulative distribution function of the standard
normal distribution and Z; a statistic that has a standard
normal distribution under the null hypothesis. As sug-
gested in the literature [36], let

0ii = Cor(Z;, Zi)and pii = p;j | 1 . '65
= 7 o= D + )
Pij ir £ Pij = Pij m—1

The covariance is then calculated as
~ ~2 ~3 ~4
Cov(Vi, Vj) = a1pij + azpjj + as oy + aa pjj,

where a; =3.263119, 4, = 0.709866, a5 = 0.026589, as = —0.709866/n,
n the sample size for obtaining Z;.

We further applied multiple testing corrections to the
combined p-values by controlling the positive false dis-
covery rate (pFDR) of candidate genes through their g-
values [37]. Existing studies have shown the significant
improvement in the test power of this method over the
traditional approach of Benjamini-Hochberg that con-
trols the false discovery rate (FDR) [38]. It is possible
that some data sources are absent for a candidate gene.
To deal with this problem, we ignored the missing data
source in the Fisher’s method and decreased the total
number of p-values to be combined accordingly.

Results

Data sources

We extracted a total of 7,719 diseases from the OMIM
database (accessed in February 2014) and derived pair-
wise phenotype similarities of these diseases by applying
the text mining technique to their OMIM records with
the use of UMLS (version 2014AA) as the standard
vocabulary. We extracted a total of 4,368 associations
between 3,709 of these diseases and 2,870 genes using
the tool BioMart [39].

We obtained gene expression data that measured
whole genome transcripts across 79 human tissues from
the literature [26] and derived pairwise expression simi-
larities (gexp for short) between 12,462 genes. We
extracted the biological process domain of the gene
ontology and associated annotations for human genes
(both released on 2014-02-13), and we derived pairwise
semantic similarities (gobp) between 14,465 genes. We
downloaded a total of 283 KEGG pathway for human
(released on 2014-03-11) and derived pairwise pathway
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similarities (kegg) between 6,468 genes. We extracted a
total of 20,272 human protein sequences from the
Swiss-prot database (release 2014_01) and derived pair-
wise sequence similarities (pseq) between 14,196 genes.
We extracted a total of 14,831 protein domains from
the Pfam database (version 27.0) and derived pairwise
domain similarities (pfam) between 17,091 genes. We
extracted a total of 403,514 interactions between 13,747
human proteins from the STRING database (version
9.1) and derived pairwise network similarities (strg)
between 12,432 genes. We extracted high quality posi-
tion specific scoring matrices for 218 vertebrate tran-
scription factors from the TRANSFAC database (release
2013.1) and derived pairwise regulation similarities (tsfc)
between 20,314 genes. Putting together, we obtained a
total of 20,327 genes that were present in at least one of
the 7 data sources. The method for deriving each type
of gene similarity is detailed in the method section. The
coverage of each data source is shown in Table 1.

Phenotype similarity correlates with genotype similarity
We first validated whether the derived phenotype similar-
ity was correlated with genotype similarities according to
annotated associations between diseases and genes. For a
pair of two diseases, we defined their phenotype similarity
as the cosine value calculated by the text mining technique
and their genotype similarity under a certain genomic data
source as the total pairwise similarity of their associated
genes derived from the genomic data. With these defini-
tions, we calculated the phenotype similarity between each
pair of the 3,709 diseases with associated genes, parti-
tioned the resulting 6,876,486 values into 10 equal bins,
averaged over genotype similarities of disease pairs in each
bin, and plotted the resulting relationships between
phenotype and genotype similarities in Figure 2.

From the figure, we clearly see strong correlation
between phenotype similarity and genotype similarity
derived from each of the 7 genomic data sources. Taking
gene expression as an example (Figure 2A), for disease
pairs with very weak phenotype similarity (0.0~0.1), the

Table 1 Coverage and accuracy of individual data sources
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genotype similarity is only 0.0145 on average. For disease
pairs with strong phenotype similarity (0.9~1.0), the gen-
otype similarity is as high as 0.2204 on average. For dis-
ease pairs with medium phenotype similarity (0.4~0.5),
the genotype similarity is also at the medium level
(0.0409). Furthermore, it is obvious that with the increase
of the phenotype similarity, the genotype similarity also
increases. For the other 6 genomic data, we observe simi-
lar pattern. These results suggest that diseases having
weak phenotypic overlap tend to have small genotypic
overlap, while diseases having strong phenotypic overlap
tend to have large genotypic overlap, in accord with one
of our previous analysis [17].

To quantitatively measure the correlation between
phenotype similarity and genotype similarity, we derived
for each genomic data source two vectors, one com-
posed of mean phenotype similarities of disease pairs in
the 10 bins and the other consisting of corresponding
mean genotype similarities. We then calculated Pear-
son’s correlation coefficient of these two vectors for
each type of data. Results show that the correlation
coefficients are 0.9626 (p-value = 8.193 x 10°) for gene
expression, 0.9341 (p-value = 7.607 x 10™) for gene
ontology, 0.9404 (p-value = 5.133 x 107°) for KEGG
pathway, 0.8987 (p-value = 4.076 x 10™*) for protein
sequence, 0.9449 (p-value = 3.778 x 107) for protein
domain, 0.9408 (p-value = 4.994 x 10°°) for protein-pro-
tein interaction, and 0.9322 (p-value = 8.512 x 107°) for
regulation pattern. We then conclude that the pheno-
type similarity positively correlates with the genotype
similarity with strong statistical significance.

Data fusion improves prioritization performance

We then validated pgFusion using the 4,368 annotated
associations between 3,709 diseases and 2,870 genes by a
large-scale leave-one-out cross-validation experiment
against a linkage interval. In each validation run, we
focused on one disease-gene pair in an annotated associa-
tion and saw whether our method can correctly identify
the gene from a set of control genes. For this purpose, we

Data source Coverage Linkage Interval Random Control
Genes Ratio (%) TOP (%) MRR (%) AUC (%) TOP (%) MRR (%) AUC (%)
gexp 12,462 61.31 49.43 23.99 76.47 50.32 23.62 76.87
gobp 14,465 71.16 7747 11.94 88.56 7848 11.18 89.35
kegg 6,468 31.82 5298 15.27 85.85 53.73 14.20 86.97
pseq 14,196 69.84 51.21 18.55 8212 51.85 17.76 82.96
pfam 17,091 84.08 60.87 15.86 84.83 62.25 14.52 86.25
strg 12,432 61.16 7299 12.64 88.04 73.60 11.84 88.90
tsfc 20314 99.94 5213 26.38 7497 51.90 26.19 7448
all 20,327 100.0 79.65 9.45 91.37 81.85 9.94 90.48

Results are obtained according to the leave-one-out cross-validation experiments.
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took the disease as the query disease and the gene as the
test gene, collected a set of 99 control genes that had
the shortest distance to the test gene among all genes in
the same chromosome as the test one, and ranked the test
gene against the control genes using our method. In this
procedure, we removed all annotated associations between
the query disease and genes in the regression model to
simulate the circumstance that the genetic basis of the
query disease is completely unknown.

We summarized ranks of the test genes in Figure 3(A).
In a total of 4,368 validation runs, pgFusion ranked 2,295
test genes at the top and 3,479 among top 10. In contrast,
with a random guess procedure, one can only expect
4,368/100~43.7 test genes ranked at the top and 10 x
4,368/100~436.8 enriched among top 10. These results
suggest the capability of our method in identifying dis-
ease genes from a linkage interval. We then derived two
criteria to quantify the performance of pgFusion. Divid-
ing the rank of a test gene by the total number of test
and control genes in a validation run, we obtained the
rank ratio of the test gene. Averaging rank ratios of all
test genes, we obtained the first criterion called the Mean
Rank Ratio (MRR). At a certain threshold of the rank
ratio, we defined the sensitivity and the specificity as the
fraction of test and control genes ranked above and
below the threshold, respectively. Varying the threshold,
we plotted the rank operating characteristic (ROC) curve
(sensitivity versus 1-specificity) and further calculated
the area under this curve as the second criterion called

the AUC score. As shown in Figure 3(B), the ROC curve
of pgFusion (black solid line) climbs fast towards the
upper left corner of the plot, suggesting the capability of
this method in achieving high sensitivity while maintain-
ing high specificity. As shown in Table 1, the MRR and
AUC for the 4,368 validation runs are 9.45% and 91.37%
respectively. These results further suggest the effective-
ness of our method, considering that random guess can
only yield an MRR of 50% and an AUC of 50%.

We then compared the performance of pgFusion with
that of individual genomic data sources. As shown in
Table 1, among the 7 data sources, the gene ontology
(gobp) yields the highest performance (MRR = 11.94%,
AUC = 88.56%), followed by the protein-protein interac-
tion (strg) (MRR = 12.64%, AUC = 88.04%). The regula-
tion pattern (tsfc) yields the lowest performance (MRR =
26.38%, AUC = 74.97%), followed by the gene expression
(gexp) (MRR = 23.99%, AUC = 76.47%). The improve-
ments of pgFusion over individual data sources are then
as high as 64.19% when compared with the regulation
pattern and as low as 20.89% when compared with the
gene ontology, in terms of the MRR. These results clearly
demonstrate the vast improvement of pgFusion over
individual genomic data sources in the prioritization
accuracy and suggest the power of data fusion.

In exome sequencing studies, genetic variants are
sequence across the whole exome, it is therefore necessary
to validate whether pgFusion is capable of identifying dis-
ease genes for a query disease from candidate genes
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spreading over the entire genome. For this purpose, we
performed a large-scale leave-one-out cross-validation
experiment against random controls. Specifically, in each
validation run, we focused on one disease-gene pair in an
annotated association, took the disease as the query dis-
ease and the gene as the test gene, collected a set of 99
control genes that were selected at random from the entire
genome, and ranked the test gene against the control
genes using our method. We also removed all annotated
associations between the query disease and genes in the
regression model to pretend that the genetic basis of the
query disease is completely unknown. We summarized
ranks of the test genes in this validation in Figure 2(C). In
a total of 4,368 validation runs, pgFusion ranked 2,371 test
genes at the top and 3,575 among top 10. Considering
that a random guess procedure can only rank 43.7 test
genes ranked at the top and 436.8 genes among top 10,

the capability of our method in identifying disease genes
from random controls is strongly supported. Besides, the
low MRR (9.94%) and high AUC (90.48%) as shown in
Table 1, together with the fast climbing shape of the ROC
curve in Figure 3(D), further confirm the effectiveness of
our method in this validation. Furthermore, comparison
with individual data sources, as shown in Table 1, also
demonstrate the vast improvement in the performance of
pgFusion. For example, the improvements of pgFusion
over the gene ontology (gobp) is 11.19% in terms of
the MRR.

More importantly, the coverage of pgFusion also bene-
fits from data fusion. For example, as shown in Table 1,
KEGG covers only 6,468 genes. Gene ontology (gobp) cov-
ers 14,465 genes. Protein-protein interaction (strg) covers
12,432 genes. Regulation pattern (tsfc), though covers
20,314 genes, can only achieve the lowest accuracy. With
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data fusion, however, pgFusion covers 20,327 genes, much
more than most individual data sources, and thus makes it
feasible to perform a whole-genome scan for disease genes
for a query disease.

Contributions of individual data sources

We presented pairwise Pearson’s correlation coefficient
of p-values produced by the 7 genomic data sources in
Figure 4. Briefly, gene expression (gexp) and regulation
pattern (tsfc) exhibit weak correlations with the other 5
data sources, which however show medium pairwise
correlations. This evidence suggests the necessity of per-
forming dependence correction in the Fisher’s combine
probability test.

Considering the existence of such correlations, the
prediction power of an individual data source may not
reflect its real contribution to the final performance of
our method. We therefore evaluated relative contribu-
tion of a data source by erasing the data source from
the Fisher’s method and repeating the validation experi-
ment against a linkage interval. As shown in Figure 5,
for each of the 7 genomic data sources, the MRR
increases while the AUC decreases after the removal of
the data source, suggesting its positive contribution. In
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detail, the gene ontology exhibits the highest contribu-
tion because with its removal the MRR increases from
9.45% to 11.90%. The protein-protein interaction exhi-
bits the second highest contribution since its removal
resulted in an increment of MRR from 9.45% to 10.87%.
It is also interesting to see that the removal of the gene
expression resulted in an increment of MRR from 9.45%
to 9.95%, suggesting this data sources has the third
highest contribution. However, using this data source
alone only yields the second worst performance (Table
1). We conjecture this inconsistency is due to the fact
that the gene expression exhibits weak correlations
between the other data sources, and thus information
provided by this data source could complement that
provided by the others to facilitate the accurate prioriti-
zation of candidate genes.

Comparison with existing methods

We compared the performance of pgFusion with that of
two representative methods for gene prioritization,
Cipher [16] and Endeavour [13]. Briefly, Cipher repre-
sents a category of methods that rely on a single source
of phenomic data and a single source of genomic data.
This method is mathematically equivalent to our

\

gexp gobp kegg pseq pfam strg tsfe
gexp 0.15 0.18 0.13 0.15 0.15 0.08
gobp | 0.15 0.37 0.28 0.34 0.34 0.11
kegg | 0.18 = 037 ' 041 035 016
pseq | 0.13 028 033 027  0.09
plam | 015 = 034 041 052 030 015
srg | 015 034 035 027 @ 030
tsfe 0.08 0.11 0.16 0.09 0.15 0.00 |
Figure 4 Pearson’s correlation coefficients between individual data sources.

12

Mean rank ratio (%)

10

AUGC score (%)
90 91 92

89

1

all gexp gobp kegg pseq pfam strg tsfc

Data sources

combined p-value.

\

Figure 5 Contributions of individual data sources. Results are obtained by excluding individual data sources in the calculation of the

88

all gexp gobp kegg pseq pfam strg tsfc
Data sources




Jiang et al. BMC Genomics 2015, 16(Suppl 2):S3
http://www.biomedcentral.com/qc/1471-2164/16/S2/S3

approach when using PPI information only. Therefore, it
is obvious that our method outperforms Cipher in all
evaluation criteria, as demonstrated in Table 1 and ana-
lysed in the above section.

Endeavour represents another category of methods that
rely on multiple sources of genomic data to prioritize
genes. This method was developed according to the
guilt-by-association principle [5] and thus required a set
of seed genes known to be associated with a query dis-
ease as an extra input [13]. To meet this requirement, for
a query disease, we resorted to the phenotype similarity
data to select 5 to 20 diseases that owned the highest
phenotype similarities with the query disease and then
used genes known as associated with these diseases as
seed genes for the query disease. We repeated the leave-
one-out cross-validation experiment against a linkage
interval for Endeavour, using the same 7 sources of geno-
mic data. Results show that Endeavour achieves the high-
est performance (MRR = 16.61% and AUC = 83.64%)
when seed genes are obtained from 20 diseases that are
most similar to the query one. When 5, 10 and 15 most
similar diseases are used to obtain seed genes, Endeavour
achieves MRRs of 18.40%, 18.17% and 17.11%, respec-
tively and AUCs of 81.86%, 82.09% and 83.14%, respec-
tively. All these criteria are much lower than those
achieved by pgFusion (MRR = 9.45% and AUC =
91.37%). We conjecture this observation can probably be
attributed to the fact that pgFusion uses phenomic data
in a global way, while in our experiment Endeavour only
partially uses such information.

Application to exome sequencing studies

Recent advancements in exome sequencing studies have
demonstrated that the collection of de novo mutations
affecting different genes in different individuals might
explain a proportion of such common complex diseases
as epileptic encephalopathies [24]. We therefore apply
our method to the exome sequencing data of this com-
plex disease to demonstrate the power of our method in
diagnosing disease genes.

Epileptic encephalopathies (MIM: 615369) refer to a
group of severe childhood epilepsy disorders for which the
cause remains largely unknown [24]. These disorders typi-
cally affect the cognitive and behaviour of the patients,
especially infant and children, and sometimes may cause
an early death. Recently, exome sequencing was success-
fully applied to the study of this group of complex diseases,
showing strong statistical evidence on the association of
several de novo mutations with epileptic encephalopathies
(PMID 23934111) [24]. From the sequencing data of
264 probands and their parents in this study, we collected
179 unique candidate genes that contained 192 unique de
novo mutations, and 19 of these genes were reported as
likely functional in the literature [24]. When looking at the
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results produced by our method with the assumption
that genetic bases of this disease is completely unknown
(Table 2), we observe that all genes ranked among top 5
have been reported as likely functional, yielding a p-value
of 8.03 x 10°° according to the one-sided Fisher’s exact test
against the alternative hypothesis that the probability of
observing 5 functional genes among top 5 is significantly
higher than the random guess. Moreover, 9 genes ranked
among top 10 and 14 genes ranked among top 20 are likely
functional, yielding p-values of 2.06 x 10 and 1.60 x 102,
respectively. At the g-value cut-off value 0.001, 7 out of
8 candidate genes are likely functional, yielding a p-value of
3.65 x 107, At the g-value cut-off value 0.01, 10 out of
11 candidate genes are likely functional, yielding a p-value
of 1.34 x 107'°. All these results strongly support the cap-
ability of our method in identifying disease genes for this
complex disease.

Whole-genome scan of disease genes

We further performed a whole-genome scan of causative
genes for a total of 7,719 diseases in the phenotype simi-
larity matrix. Focusing on genes collected in either of the
seven genomic data sources, we extracted a total of
20,327 genes that spread over the entire genome and
applied pgFusion to score these genes for each disease.
Prediction results, together with an online service and
the standalone software of pgFusion, are available at
http://bioinfo.au.tsinghua.edu.cn/jianglab/pgfusion.

Table 2 Top 20 candidate genes for epileptic
encephalopathies

Rank Chromosome Gene p-value  g-value Functional
1 2 SCN2A 1.03E-06 0.000118 Yes
2 5 GABRA1 1.38E-06 0.000118 Yes
3 2 SCN1A  2.04E-06 0.000118 Yes
4 15 GABRB3 6.37E-06 0.000277 Yes
5 9 KCNT1 1.03E-05 0.000359 Yes
6 20 KCNQ2 1.46E-05 0.000423 Yes
7 GABRB1 3.07E-05  0.000702 -
8 KCNQ3  3.23E-05 0.000702 Yes
9 12 SCN8A  6.59E-05 0.001153 Yes

10 9 STXBP1 6.62E-05 0.001153 Yes
11 X ALG13  0.000256 0.004053 Yes
12 X CDKL5 0.005170 0.074969 Yes
13 20 KCNB1 0.008351  0.111775 -
14 10 ANK3  0.010374 0.128932 Yes
15 1 FAMB6CT  0.012323  0.138576 -
16 5 GPR98 0.013428 0.138576 —
17 9 GRIN1 0.013539 0.138576 Yes
18 1 NFASC 0.015651  0.151292 -
19 12 CUX2 0016939  0.155127 -
20 12 GRIN2B  0.018004 0.156637 Yes

Genes marked as functional are those that have been reported as likely
functional in the literature (PMID 23934111).
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Conclusions and discussion

In this paper, we have proposed a bioinformatics approach
called pgFusion that integrated one type of phenotype
similarity and seven types of gene similarities for the infer-
ence of disease genes. The success of our method can be
attributed to the carefully designed statistical model that
relates the calculation of association strength to a hypoth-
esis testing problem and combines multiple data sources
with the consideration of their pairwise correlations.
Grounded on the theoretical modelling, our method
achieves not only high coverage but also superior accu-
racy, thereby providing a practical way in such analysis as
the prioritization of candidate genes in whole-exome
sequencing studies.

Certainly, our method can further be improved from
the following aspects. First, although we currently
focus on UMLS to derive phenotype similarity, other
standard vocabularies such as the Medical Subject
Headings (MeSH) and the human phenotype ontology
(HPO) can also be adopted. Second, most existing
methods for prioritizing candidate genes so far do not
explicitly address the possible bias towards well-studied
genes. This bias issue is alleviated with the integration
of multiple types of data, because ddifferent data
sources measure gene functions from different points
of view and do not depend on a single type of data to
make inference. However, how to explicitly eliminate
the influence of bias is still an open question worth
exploration. Third, we currently do not weight different
data sources. Although theoretically it is not hard to
assign different weights to different data sources in
Fisher’s method, how to determine these weights is
itself a problem that needs careful exploration. Finally,
in the era of big data, the integration of multiple types
of heterogeneous data is itself an important problem,
the method we used in this paper provides a means for
solving two basic questions, the comparability of het-
erogeneous data and the integration of multiple types
of data. How to incorporate our method into other
research fields in systems biology is one of our future
focuses.
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