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Abstract

We present a computational framework tailored for the modeling of the complex, dynamic relationships that are
encountered in splicing regulation. The starting point is whole-genome transcriptomic data from high-throughput
array or sequencing methods that are used to quantify gene expression and alternative splicing across multiple
contexts. This information is used as input for state of the art methods for Graphical Model Selection in order to
recover the structure of a composite network that simultaneously models exon co-regulation and their cognate
regulators. Community structure detection and social network analysis methods are used to identify distinct
modules and key actors within the network. As a proof of concept for our framework we studied the splicing
regulatory network for Drosophila development using the publicly available modENCODE data. The final model
offers a comprehensive view of the splicing circuitry that underlies fly development. Identified modules are
associated with major developmental hallmarks including maternally loaded RNAs, onset of zygotic gene
expression, transitions between life stages and sex differentiation. Within-module key actors include well-known
developmental-specific splicing regulators from the literature while additional factors previously unassociated with
developmental-specific splicing are also highlighted. Finally we analyze an extensive battery of Splicing Factor
knock-down transcriptome data and demonstrate that our approach captures true regulatory relationships.

Background
Alternative splicing is a widespread regulatory mechanism
whose correct function is important for normal develop-
ment and cellular behavior, and whose dysfunction plays
an increasingly prominent role in the causation and mod-
ulation of human disease [1]. Basic splicing processes are
fairly well understood, and progress has been made in
defining several of the mechanisms and factors involved in
alternative splicing regulation [2].
A large part of our current view of alternative splicing

regulation is based on studies of single splicing events.
These efforts have substantially advanced our

understanding of the process, but they are often limited by
their narrow scope and generalizing the conclusions is not
straightforward. At the other end of the spectrum, high-
throughput approaches (genome-wide knock downs,
CLIP-related techniques) can provide more general infor-
mation on splicing regulation; however, practical consid-
erations typically constrain their focus to small groups of
factors. Furthermore, computational approaches to solve
“splicing codes” (e.g [3,4]) are mainly focused on genome-
wide prediction of cis-regulatory elements. Validation of
results and inferences from these approaches still requires
slow and expensive low-throughput approaches.
Another limitation of current approaches is their static

focus (e.g. the patterns observed in the presence or
absence of a given factor in a given cell line or develop-
mental stage). The dynamic nature of splicing regulation
in different contexts remains a challenge, but is also a rich
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source of information for elucidating regulatory mechan-
isms. High-throughput analyses are now generating
copious data on stage-and tissue-specific transcriptome
composition but the problem remains of how to exploit
and build upon such data to arrive efficiently at compre-
hensive regulatory models.
To address these challenges, we propose an approach

based on the application of network reconstruction and
analysis methods to high-throughput transcriptome data.
Our approach derives a heterogeneous graphical model
that simultaneously captures co-regulated groups of exons
as well as their putative cognate regulators. This compo-
site representation can be valuable for highlighting and
assigning function to previously uncharacterized compo-
nents of the system and for pinpointing novel regulatory
relationships, while analysis of its topology can reveal
organizational features such as central players that are cri-
tical for the flow of regulatory information or modules of
densely interconnected units that correspond to meaning-
ful functional groupings. As a proof of concept this strat-
egy is applied to the Drosophila developmental data
generated from the modENCODE project [5]. Detailed
analysis of module and central component characteristics
in the final model and the overlay with orthogonal annota-
tion and functional data demonstrate the merits of our
approach.
The splicing machinery, mechanisms, and known regu-

latory factors are well conserved between Drosophila and
mammals, and the frequency and complexity of alternative
splicing are comparable. Thus, the strategies developed in
this study and the biological insights are transferable to
more complex mammalian systems.

Results and discussion
Quantification of alternative splicing during Drosophila
development from modENCODE tiling-array and RNAseq
data
Alternative Splicing was quantified for 28 time points
during fly development using the publicly available mod-
ENCODE transcriptome data [5,6]. The time points corre-
spond to 12 embryonic stages taken at 2h intervals,
6 larval stages, 6 pupal stages, day 1 and 5 adult males,
and day 1 and 5 adult females. First, individual exon Per-
cent Spliced In (PSI, [7]) indices were calculated for all
internal exons using the tiling array data for each develop-
mental time point. Estimation is based on normalizing the
average array signal over the exon, over robust estimates
for total gene expression (see Methods for details). Out of
the total 31,342 strictly internal exons, 2,855 exhibited
appreciable PSI fluctuations during development (coeffi-
cient of variation cv = σ /μ > 0.2).
Next, we obtained independent estimates of exonic PSIs

by reanalyzing the RNAseq data for the same timepoints
(~3.5 billion 76nt reads, ~125 million reads per condition

on average). RNAseq-based PSIs were calculated as the
ratio of inclusion-supporting junction reads over the sum
of inclusion and skipping junction reads (see also Meth-
ods). We constrained our analysis to exons with sufficient
junction coverage in the dataset (≥10 inclusion plus skip-
ping junction reads for at least half of the developmental
timepoints), resulting in estimates for <50% of the exons
quantified using the first type of analysis. Of those, 1,277
appeared variable in development using the same criterion
as before.
Comparison of the PSI values from the two types of ana-

lysis shows reasonably good correlation across develop-
mental stages suggesting our methods yield reliable
estimates of exon usage (Additional File 1: Figure S1). For
the purposes of this study we decided to use the more
populous dataset of fluctuating exons and the correspond-
ing PSI-values coming from the tiling array based analysis.
The PSIs of all development-variable exons were then cen-
tered and scaled. The resulting values reflect changes over
the basal (average) developmental inclusion at each time
point. Standardization of the events also ensures that only
the shape and not the magnitude of the fluctuations is
important during network reconstruction. The develop-
mental profiles of both the raw and standardized PSIs are
shown in Additional File 1: Figure S2.
In a next step we analyzed 421 RNA-Binding Protein

(RBP) genes implicated in RNA processing according to
Flybase annotation. Among these, we identified 349 genes
with variable expression levels across development (cv
>0.2). The standardized expression values of these genes
were used along with the standardized PSIs to compute a
single sample covariance matrix. In the case of highly cor-
related entries coming from the same transcription unit
only one of them was selected, based on the L1-norm of
its correlation vector, in order to minimize redundancies
in the final network (see Methods). This dataset was used
as input in order to reconstruct a composite network that
captures both developmental splicing profiles and poten-
tial regulatory relationships between exon targets and
RBPs.

Reconstruction of a composite splicing regulatory
network for fly development
The time series partial correlations of exon inclusion
levels as well as RBP expression formed the basis for
deriving a splicing regulatory network for Drosophila
development. Our strategy for network reconstruction
was based on the graphical lasso (glasso) algorithm [8]
for sparse network estimation and is described in detail
in Methods. Briefly, the composite sample covariance
matrix described above was passed on as input to glasso
for estimation of a sparse inverse covariance matrix,
which directly corresponds to a unique undirected graph
(see also Methods). The distinction between the two
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types of network nodes (fluctuating exons as targets and
RBPs as putative regulators) was incorporated naturally
as prior information in glasso by specifying a lower regu-
larization parameter for regulator-to-exon edges and a
higher one for exon-to-exon edges (see also Methods).
This strategy encourages connections between potential
regulators and alternative exons during network recon-
struction and attempts to at least partially explain exon
variability during development as a consequence of regu-
lator variability.
The resulting developmental splicing regulatory network

is shown in Figure 1. The network contains 2,091 con-
nected components of which 1,756 are exons and 335 are
RBPs (see also Additional File 2 and Additional File 3).
Gene Ontology analysis on the genes with exons partaking
in the network reveals enrichment almost exclusively for
terms related to both general and stage-specific organismal
development and morphogenesis (Table 1). Interestingly,
protein-binding is also among the top enriched GO terms
suggesting that developmental progression involves exten-
sive rewiring of protein-protein interactions via alternative

splicing. These results indicate that our analysis success-
fully captures events involved in fly development and high-
lights the functional impact of alternative splicing in
developmental progression.

Identification of splicing regulatory modules using
community structure detection
Network modules or communities can be defined loosely
as sets of nodes with a more dense connection pattern
among their members than between their members and
the remainder of the network [9,10]. Module detection in
real-world graphs is of considerable practical interest as
they often capture meaningful functional groupings [9-11].
Here, we identify modules in the developmental splicing

network using the greedy community detection algorithm
[12] (see also Methods). The goal is to identify groups of
exons that exhibit similar splicing regulatory patterns in
the course of development and/or are under the control of
the same regulatory circuitry. This analysis reveals a net-
work community structure with a modularity value of
0.42, which indicates strong natural divisions in the

Figure 1 Inferred Splicing Regulatory Network for Fly Development. Only components that belong to modules with>5 members are
shown. Circular and square nodes correspond to exon and RBP gene components respectively. Larger circles signify exons originating from RBP
genes. Node coloring signifies membership to distinct modules. Inset: Inter-module connectivity in the inferred network. Circle area is
proportional to module membership. Edge thickness is proportional to the fraction of observed exon-exon connections over the total possible
connections among pairs of modules.
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network [13]. Both the identified network community
structure as well as a simplified network topology illustrat-
ing the relationships between the largest modules are
shown in Figure 1. RBP and exon components of these
modules are listed in Additional File 4.
The identified exon modules exhibit distinct time series

profiles of changes in exon inclusion (Figure 2) that are
largely independent of the expression pattern of the origi-
nating genes (Additional File 1: Figure S3). The observed
exon inclusion dynamics reveal mostly sharp inflections
at specific time-points in development suggesting transi-
ent regulation. In order to obtain a comprehensive func-
tional profile for each module we carried out a GO
enrichment analysis within every module as well as an
analysis of the top interacting module partners based on
genetic and physical interactions (Table 1).
Modules 1,2 and 3 show similar peaks during pupal

stages, although modules 1 and 3 present more complex
splicing dynamics. All are enriched for terms related to
instar larva or pupal morphogenesis and development. In
addition modules 1 and 2 are both significantly enriched
for interactions with genes required for dorsal closure (hep,
slpr) as well as components of the DREAM complex (E2f,
Dp, Rbf) which regulates transcription of developmentally

controlled targets, whereas module 3 is specifically GO-
enriched for neuron generation and for interactions with
components of the Notch pathway (Notch, Su-H), which
regulates neurogenesis in the central nervous system and
the imaginal disks. Modules 4 and 6 present inflections
during late pupal and mid-to-late embryonic stages and are
both enriched for interactions with polycomb group (PcG)
components (Pc, ph-d). Module 4 is nevertheless distinct in
that it also shows a pronounced switch during the L2 to L3
larval transition and is highly enriched for terms related to
locomotion and neuron differentiation. On the other hand,
module 6 has additional interactions with genes (trx, mor)
of the PcG-antagonisitic trithorax group (trxG) and is
almost exclusively enriched for GO-terms related to meta-
bolic processes.
The densely connected modules 5 and 7 show profiles

characteristic of maternally loaded transcripts, with larger
peaks at the beginning of embryonic development and less
pronounced ones in the 5-day female. However, module 5
dynamics suggest rapid degradation prior to cellularization
(2-3h post-fertilization) while module 7 isoforms persist
past the maternal-to-zygotic transition (completed ~3h
post-fertilization). In addition, module 7 is mostly
enriched for GO-terms related to imaginal, wing-disc and

Table 1 Identified exon modules display distinct functional profiles

Module Top Enriched Go Terms(pval<1e-3) Interacting
Genes
(pval<1e-3)

Top Regulators Top Targets (non-RBPs)

1 instal larval or pupal morphogenesis, metamorphosis, post-
embryonic morphogenesis

DP, hp, Rbf, slpr,
Myd88

Fib:2, CG6995:19, eIF-4a:6, sm:3,
CG17838

CG17273:3, CSN3:4,
CG9797:2, Abi:4, Akap200:5

2 organ development, instar larval or pupal development,
post-embryonic morphogenesis

fz2, E2f, hop,
hep, dco

Rbp2:3, Patr-1:3, dom:4, pum:3
CG7185:6

Trf2:4, CG3662:4, CG2943:7,
Arf51F:4, CG2947:5

3 regulation of cellular process, organ development,
generation of neurons

Su(H), Notch,
mew, E2f, mys

(2)d:5 gw:52, CG30122:7
CG4119:3 Sxl:15

CG8116:2, CG42551:3,
CG9132:2, Spt6:3, Gprk1:12

4 organ development, locomotion, neuron di_erentiation Pc, mew, hop,
ph-d, w

CG11266:4 su(w[a]):6 Dcp2:4,
Zn72D:4, Psi:3

RhoGAP71E:5, CG4699:10,
prod:2, Abl:6, l(1)G0232:6

5 organ morphogenesis, sensory organ development,
epithelium development

rux, Pvf1, sli, Egfr,
CycB

me31B:3, msi:6, CG11133, spn-E,
xmas-2

CG12424:5, CG16791:13,
tutl:6, LanB2:8, CG3907:3

6 regulation of primary metabolic process, regulation of
biosynthetic process, regulation of gene expression

trx, w, Pc, arm,
mor

CG6995:14 CG1646:10 Psi:5,
brm:5, qkr58E-2:4

CG1244:10, CG42245:5,
Syb:2 slmb:4, CG42614:12

7 imaginal disc development, wing disc morphogenesis,
post-embryonic appendage morphogenesis

wupA, fz2, NiPp1,
Tm2, Prm

CG34362:8, CG13124:10, shot:6,
CG3209:4 CG8547:5

stv:8, CG15105:6,
CG15105:9, CG34398:13,
CG13188:6

8 Rac1, Rac2 Smg6:5, Chd1:2, snRNA:
U5:38ABb, snRNA:U5:14B, snRNA:
U5:23D

gammaCop:6, Nat1:2
Cip4:8, sec24:4, Utx:11

9 sarcomere, myo_bril, tissue development Mhc, Dp, arm, l
(2)gl, Rbf

Sxl:14, AGO1:6, Nop56:2, CG6209,
SF2:3

CG42783:7, lqf:12, Zasp:10,
CG42446:4, CG7188:2

10 Rho1, Pvf1, Taf1,
Egfr, Ras85D

CG13124:7, CG4266:2, CG3558:4 CG15609:7, CG8677:4,
CG2991:5, RhoGEF2:21,
Pen:4

Network anatomical structure morphogenesis, system development,
protein-binding, multicellular organismal development

Sb, Rho1, Pc,
mew, baz

CG30122:7, (2)d:5, pUf68:5,
CG4119:3, gw:52

stv:8, psq:17, CG8116:2, l(1)
G0232:6, trx:17

The table shows the gene enrichment analysis, top interacting genes, putative regulators and targets for the 10 largest identified exon modules. GO analysis and
analysis of genetic and physical interactions was carried out using the FlyMine database [33]. Top regulators and targets are listed in order according to their
composite centrality scores.
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appendage morphogenesis and for interactions with genes
involved in muscle filament generation and contraction
(wupA, Tm-2, Prm).
Modules 8 and 10 are exceptional in that they show

no clear GO-term enrichment despite the fact that
they exhibit simple splicing dynamics. These modules
mostly contain peripheral, loosely connected nodes
suggesting an ancillary role in development. Finally
module 9 shows a distinctive male-specific profile with
a switch immediately prior to metamorphosis. It is
enriched for biological functions related to anatomical
structure development and for components of the sar-
comere and contractile fibers suggesting a role in the
sexually-dimorphic fly musculature ([14], see next
section).

Inference of global and within-module splicing regulators
using centrality measures
Centrality measures are structural attributes of network
nodes that express the importance of their location within
the network topography and/or how they influence net-
work information flow [15]. These measures are typically
used in the analysis of Social Networks but they have also
been applied in studies of biological networks (see e.g
[11,16-19]. Here we employed three different measures of
centrality, namely Closeness [20], Betweenness [20] and
PageRank [21] that capture different structural properties
of the network nodes.
The closeness measure is based on geodesic distance

between a node and all other nodes in the network. A
node that is closeness-central can quickly interact with

Figure 2 The identified network modules exhibit distinct developmental profiles. Y-axis shows the mean absolute scaled PSI for the exon
components of each module. Module number coloring corresponds to the node colors in figure 1. Only profiles for the largest 10 modules are
shown.
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all the others, not only its neighbors [22,15]. Betweenness
measures how often a node participates in the shortest
paths that connect pairs of other nodes in the network.
A node with high betweenness can control the flow of
information, and may also serve as a liaison between
distant regions of the network [22,15]. PageRank is a
measure that quantifies the relative importance of indivi-
dual nodes [21]. Nodes with high PageRank centrality
have high visibility, meaning that they are often traversed,
irrespectively of which path is chosen. As a result, pertur-
bations in PageRank-central nodes can affect and propa-
gate to large parts of the network.
We assigned as a measure of node importance the

average rank of the node using the three aforementioned
centrality criteria. We applied this centrality analysis first
to the complete network in order to highlight core net-
work components with effects that ramify throughout
development (Figure 3, Table 1) and then to the indivi-
dual network modules to identify locally acting regulators

(Table 1). Among the global regulators several are exons
of RBPs known to be involved in developmental regula-
tion (pUf68, gw, Sxl, fl(2)d, msi, SRm160). Of particular
interest are the exons of the known sex differentiation
master regulators Sxl and fl(2)d. Two of these exons, fl(2)
d:5 and Sxl:15, are part of the core network and are also
among the top 5 candidate regulators of their respective
module (module 3, Table 1). fl(2)d:5 is a non-coding
5’UTR exon whose skipping leads to the addition of
124aa in the N-terminus of the protein and the produc-
tion of a functional isoform required for female-specific
Sxl splicing (Figure 4A)[23]. This event is connected to
Sxl:15, a cassette exon upstream of the well-characterized
Sxl male-specific exon. Inclusion of Sxl:15 leads to a
longer protein isoform based on annotation (Figure 4A).
Both fl(2)d:5 and Sxl:15 appear to be male-specific, peak-
ing during mid-to-late pupal stages. The characterized
Sxl male-specific exon, Sxl:14, also appears as the top
regulator of its module (module 9, Table 1) and has a

Figure 3 Core sub-network containing the 20 central-most network nodes. Different colors correspond to node members of distinct
modules. Larger nodes depict putative regulators. Node coloring signifies the originating module (color assignment as in figure 1).
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Figure 4 Examples of key exons in fly development according to their centrality scores. Transcript structure around several identified
critical network exons (left) and their corresponding inclusion and gene expression time-series profiles (right). Exons known to be important for
sex differentiation (A) and exons in genes involved in chromatin remodelling (B). Transcripts are shown in 5’-3’ orientation irrespectively of
strand. Lines denote introns, thick and thin boxes denote coding and non-coding (untranslated) exonic regions respectively.
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male-specific profile. Several studies have shown that
components of the Sxl cascade such as dsx and fru are
involved in multiple aspects of behavioral and somatic
sex-differentiation including motor-neuron-dependent
muscle formation. The functional profiles of modules
3 and 9 linking them to neurogenesis and muscle devel-
opment are consistent with roles in establishment of neu-
romuscular sexual dimorphism during late development.
Interestingly 3 of the 6 non-RBP components of the core

network are exons of the PcG and trxG chromatin remo-
deling complexes (trx:17, psq:17, dom:4 ) and for two of
these cases (trx:17 and psq:17 ) developmental specific
alternative splicing is also supported by RNAseq data. In
psq:17 retention of a short intron results in introduction of
18aa overlapping the first Helix-Turn-Helix domain of the
protein (Figure 4B). In trx:17 exon inclusion results in a
longer 5’UTR which is associated with lower expression
values (Figure 4B) suggesting less efficient transcription
and/or decreased mRNA stability. These results highlight
the interplay between splicing and chromatin regulation as
key for the establishment of differential gene expression
profiles that underly fly development.

Knock-downs of RBPs show significantly enhanced effects
on their predicted targets
In order to confirm that our network captures bona-fide
regulator-target relationships we analyzed the dataset of
fly splicing factor RNAi knockdowns available from mod-
ENCODE. RNAseq data are available from the consortium
for knock-downs of 58 RBPs plus Untreated samples in
drosophila S2 cells. In total 2.6 billion reads (~45 million
reads per condition) were mapped and analyzed. From
these data we derived PSI indices for all exons present in
our developmental network for each RNAi knock-down
(see Methods). Next we filtered out exons that belong to
genes that are not expressed in S2 cells and/or are not
affected by any of the 58 knock-downs suggesting that
these exons are not differentially regulated within the
S2-cell line context. Within the remaining set we com-
pared the effects of each RBP knock-down on the develop-
mental target vs non-target exons according to our
inferred network. We consider as putative developmental
targets of an RBP those exons that are directly connected
to the RBP gene or to one of its fluctuating exons in the
network. Conversely, non-targets are exons of the same
final filtered exon set not directly connected to any net-
work components of the RBP. The effect of each KD to
every exon was summarized as the absolute scaled ΔPSI
value between KD condition and untreated samples. Our
analysis shows that the RBP targets inferred from the
developmental network are consistently (19/20 RBPs) and
in most cases significantly (Wilcoxon rank sum pval<0.1
for 15/20 RBPs, combined pval<1e-20) perturbed at higher
levels compared to their non-target counterparts upon

RBP knock down in the S2 cells (Figure 5). This result
strongly suggests that our network captures true regula-
tory relationships, though we note that we cannot discri-
minate between direct and indirect effects.

Conclusions
In this work we presented a method for the reconstruction
of composite splicing regulatory networks that can recover
simultaneously both modules of co-regulated exons as
well as regulatory relationships between regulator (RBPs)
and target (exons) components. Reconstruction is based
on the estimation of a sparse covariance matrix that
includes both types of components using a regularization
approach that naturally incorporates putative regula-
tory relationships as prior information in the form of
non-uniform regularization parameters. Our analysis on
the characteristics of the derived exon modules suggests
that exon groupings undergoing coordinated splicing reg-
ulation reflect coherent functional groupings implicated in
distinct stages and processes during fly development. This
observation indicates that the obtained exon modules
can be used as proxies for inferring the function of non-
characterized network components. In addition, experi-
mental knock-down of splicing regulators produces larger
effects on their computationally inferred targets as
opposed to non-targets, indicating that this approach is
also valuable as a hypothesis generator for regulatory
relationships.
For this study only two possible values of the regulariza-

tion parameter were used (see Methods) in order to specify
two possible types of network relationships (regulator-
target and everything else). However it is straightforward
to modify this approach to incorporate more elaborate pat-
terns of prior knowledge based for example on enrichment
of RBP binding motifs near the exons or available binding
or functional data for subsets of the regulators. In addition,
the same approach can also be directly applied for deci-
phering and contrasting the configuration and organiza-
tional properties of the splicing regulatory circuitry
involved in different organisms and biological processes
including mammalian tissue-specific splicing or cell differ-
entiation and reprogramming. Finally the computational
framework described here can easily be extended to other
layers of gene expression regulation (e.g alternative promo-
ter selection of polyadenylation, mRNA export and transla-
tion) as it is only limited by the availability of suitable
datasets.

Methods
Pre-processing of tiling array data and array-based PSI
estimation
The publicly available modENCODE tiling array data con-
sist of signal values for 25mer probes covering the entire
fly genome. The tiling array probes have an average center
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base spacing of 38 bp and are designed to be identical to
the plus strand of the genome sequence. Three biological
replicates were hybridized for each experiment. The data
from replicate arrays are quantile-normalized and all
arrays are scaled to median array intensity. Prior to data
analysis unreliable probes are removed based on their var-
iance and mean values. In particular a probe p is removed
if its coefficient of variation cvp= sp/µp >5 or its mean
value µp < −200 or µp >20000.
Gene signals S(G) are calculated as the average of all

probes that cover the gene regions that are constitutively
included in the mature RNA as these are defined based on
Flybase and modENCODE gene models (MB8 and MB9).
Exon signals S(Ei) are calculated as the average of tiling
array probes covering the genomic coordinates of exon i.
Next, exon inclusion indices for each developmental time
point are determined for every exon as the fraction S(Ei)/S
(GEi).
Missing values are assigned to exon inclusion indices

in cases where a reliable estimate cannot be acquired
due to low gene expression or sparse probe coverage.

Exons with >50% of missing values are discarded from
subsequent analysis. Missing values for the remaining
exons are filled in using 10-nearest neighbors imputa-
tion ([24], R function impute available as part of the
bio-conductor project at http://www.bioconductor.org/).
Finally both exon inclusion and gene expression time
series data were scaled and centered.

Pre-processing of RNAseq data and RNAseq-based PSI
estimation
FASTQ files for the RNAseq data for both developmental
time-points and RNAi treatments were downloaded from
the modENCODE ftp repository (ftp://data.modencode.
org/). For every sample the reads were mapped using the
STAR aligner v2.4.0 and a two-pass mapping procedure
[25] with standard ENCODE mapping parameters as
those are detailed in the software manual. Genome
sequence files and annotation were based on the dm3
assembly freeze and the corresponding flybase annotation
[26] available from the UCSC table browser. For PSI cal-
culation only junction spanning reads were used and the

Figure 5 RNAi KDs of RBPs in a heterologous context show increased effects on their predicted targets. Boxplot summarizing the effects
of RBP knock-downs in S2 cells on their target (blue) vs their non-target (beige) developmental network exons. Stars indicate significance of
difference in the effects in the two sets of exons (Wilcoxon rank-sum test, * p-val<0.1, ** p-val<0.01, *** p-val<0.001 ). The number of targets n
for each RBP is shown. The number of non-targets for each RBP is 1092-n. Only RBPs with ≥ 10 targets in the network are shown
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index was calculated as described in [7]. Missing values
were assigned to Exons with less than 10 total inclusion
and skipping junction reads per sample. Finally, missing
value imputation and data scaling and centering was
carried out as described above.

Selection of representative transcription-unit events
Often events that belong to the same transcription unit are
highly correlated and can form dense clusters in the final
network. Typically this type of connections is highly
redundant as it is the product of probes that interrogate
overlapping gene segments, alternative events that are
regulated as units (e.g mutually exclusive exons, jointly
skipped exons) and methodological or biological biases (e.
g incomplete annotation, NMD), in the estimates of gene
expression in the presence of particular events. In order to
minimize such redundancies in our superset of events V
prior to network reconstruction, only one event per highly
correlated same-transcription unit cluster is retained. In
particular let S⊂V be a set of same-transcription unit
events, each with at least one within-set high pairwise cor-
relation (cor(i, j) > 0.6, i, j ∈ S). Then, we select as set
representative the event e∈S with the largest L1-norm of
its top k correlations outside S. That is:

e = argmax
s∈S

∑ k
sup
v∈V−S

|cor(s, v)|

For this work we set k = 10.

Graphical model selection for network reconstruction
using graphical lasso
Undirected graphical models (UGMs) such as Markov
random fields (MRFs) represent real-world networks and
attempt to capture important structural and functional
aspects of the network in the graph structure. The graph
structure encodes conditional independence assumptions
between variables corresponding to nodes of the network.
The problem of recovering the structure of the graph is
known as model selection or covariance estimation. In
particular, let G=(V, E) be an undirected graph on p=|V|
nodes. Given n independent, identically distributed (i.i.d)
samples of X = (X1,..., Xp), we wish to identify the underly-
ing graph structure. Restricting the analysis to Gaussian
MRFs, the model assumes that the observations are gener-
ated from a multivariate Gaussian distribution N (µ, Σ).
Based on the observation that, in the Gaussian setting,
zero components of the inverse covariance matrix Σ−1
correspond to conditional independencies given the other
variables, different approaches have been proposed in
order to estimate Σ−1. Graphical lasso (glasso) [8] provides
an attractive solution to the problem of covariance
estimation for undirected models, when graph sparsity is a
goal. The glasso algorithm has the advantage of being

consistent, i.e. in the presence of infinite samples its para-
meter estimates will be arbitrarily close to the true esti-
mates with probability 1. L1 regularization (lasso) is a
smooth form of subset selection for achieving sparsity. In
the case of glasso the model is constructed by optimizing
the log-likelihood function:

log det� − tr(S�) − r||�||1
where Θ is an estimate for the inverse covariance matrix

Σ−1, S is the empirical covariance matrix of the data, ||Θ||
1 is the L1 norm of Σ−1, and r is a regularization para-
meter. The solution to the glasso optimization is convex
and can be obtained using coordinate descent. As noted in
the original graphical lasso paper [25], it is possible to
modify the glasso objective function in order to accommo-
date different regularization parameters for each variable.
In that case the objective function can be rewritten as:

log det � − tr (S�) − ||� ∗ R||1
where R is a p × p regularization parameter matrix

and * indicates component-wise multiplication. This for-
mulation provides a natural way to incorporate in glasso
prior information on the network structure [27]. In this
application we take advantage of this formulation and
define a bimodal regularization matrix R that biases for
edges between alternative exons and potential splicing
regulators. In particular, our network is a mixture of
two distinct types of variables: Variables of type A corre-
spond to alternative exons that show differential inclu-
sion between at least two developmental stages.
Variables of type B correspond to candidate regulating
elements. These can be either genes or exons of genes
that are known or predicted to be implicated in RNA
processing according to Flybase annotation AND show
differential expression (in the case of genes) or inclusion
(in the case of exons) during development. Connections
between type A and type B variables are assigned a reg-
ularization parameter r1 and all other type of connec-
tions are constrained by a regularization parameter r2 >
r1. Optimal choice of the regularization parameter for
covariance estimation is an open theoretical problem
[28-30]. In general, since the regularization parameter
controls for type I errors in the network, it can be
relaxed as the variance of the variables decreases [29].
For this application we set r1 to 0.75 and r2 to 0.85. We
note however, that the social network analysis results
presented here (identified modules, centrality analysis)
are robust to different choices of values for r1, and r2 as
long as r2 > r1 (data not shown). The glasso process for
network reconstruction was implemented using the
glasso R package by Jerome Friedman, Trevor Hastie
and Rob Tibshirani (http://statweb.stanford.edu/~tibs/
glasso/).
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Modularity-based community detection and measures of
centrality
For a particular network partition p, the network modu-
larity M (p) is defined as:

M(p) =
m∑
k=1

[
lk
L

−
(
dk
2L

)2
]

where m is the number of modules in p, lk is the
number of connections within module k, L is the total
number of network connections and dk is the sum of
the degrees of the nodes in module k. Here, we identi-
fied modules of exons that exhibit similar profiles across
development by maximizing the network’s modularity
using the greedy community detection algorithm [12]
implemented in the fastgreedy.community function of
the igraph package [31], http://igraph.org).
Extensive definitions and algorithmic details for the

computation of Closeness and Betweeness centralities
and the Pagerank index can be found in [32]. All func-
tions for centrality measure calculation are available
through the igraph library ([31], http://igraph.org).
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