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Abstract

Background: Computational methods for the prediction of Major Histocompatibility Complex (MHC) class II
binding peptides play an important role in facilitating the understanding of immune recognition and the process
of epitope discovery. To develop an effective computational method, we need to consider two important
characteristics of the problem: (1) the length of binding peptides is highly flexible; and (2) MHC molecules are
extremely polymorphic and for the vast majority of them there are no sufficient training data.

Methods: We develop a novel string kernel MHC2SK (MHC-II String Kernel) method to measure the similarities
among peptides with variable lengths. By considering the distinct features of MHC-II peptide binding prediction
problem, MHC2SK differs significantly from the recently developed kernel based method, GS (Generic String) kernel,
in the way of computing similarities. Furthermore, we extend MHC2SK to MHC2SKpan for pan-specific MHC-II
peptide binding prediction by leveraging the binding data of various MHC molecules.

Results: MHC2SK outperformed GS in allele specific prediction using a benchmark dataset, which demonstrates the
effectiveness of MHC2SK. Furthermore, we evaluated the performance of MHC2SKpan using various benckmark
data sets from several different perspectives: Leave-one-allele-out (LOO), 5-fold cross validation as well as
independent data testing. MHC2SKpan has achieved comparable performance with NetMHCIIpan-2.0 and
outperformed NetMHCIIpan-1.0, TEPITOPEpan and MultiRTA, being statistically significant. MHC2SKpan can be freely
accessed at http://datamining-iip.fudan.edu.cn/service/MHC2SKpan/index.html.

Background
Binding of antigenic peptides to major histocompatibility
complex (MHC) class molecules is a core step in adap-
tive (specific) immune response. There are two major
categories of MHC molecules: class I MHC (MHC-I)
molecules and class II MHC (MHC-II) molecules. In
contrast to MHC-I that mainly recognize peptides from
intracellular antigens, MHC-II molecules are mainly
responsible for binding peptides from extracellular anti-
gens. These binding peptides are then presented on cell
surfaces to the receptors of T helper (Th) cells, by

which the adaptive immune system recognizes the anti-
gen and starts specific responses, such as activating B
cells to excrete antibodies neutralizing the pathogen [1].
Therefore, the accurate prediction of MHC binding pep-
tides is important for understanding the mechanism of
immune recognition and facilitating the process of epi-
tope based vaccine design [2]. With the advantage of
low financial cost and rapid deployment, computational
methods have become increasingly important. They
have already been used to choose very few promising
candidate eptiopes that are further verified by biochem-
ical experiments [3].
Although many computational methods have been

developed to predict MHC class II binding peptides in
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the last few years [4-15], recent experimental results on
benchmark datasets show that the performance of these
methods needs to be improved [16-18]. Two distinct
characteristics make the MHC-II peptide binding pre-
diction problem very difficult. Firstly, the binding groove
of MHC class II molecules is open in two directions.
This results in a large length variation of of binding
peptides (usually 11-20 amino acids) [19]. Several com-
putational methods, such as TEPITOPE [9], SMM-align
[4] and NN-align [5], try to locate the binding core of a
peptide in the modeling process, which is a nonamer sit-
ting in the binding groove of MHC molecules. However,
the identified core may not be accurate and other
important sequence information would be lost. Sec-
ondly, MHC are extremely polymorphic with a few
thousand allele variants. By October 2012, IMGT/HLA
has accumulated more than 1800 HLA (human leuko-
cyte antigen, the name of MHC in Humans) class II
allelic variants [20]. Many earlier computational meth-
ods, such as SMM-align and NN-align, are allele-specific
ones that use the binding data of target MHC molecule
to train a model to predict its binding specificity. How-
ever, vast majority of MHC-II molecules do not have
sufficient binding data to train a reliable prediction
model. In fact, there are less than 35 HLA class II mole-
cules that have several hundred peptides with binding
affinities in IEDB [21]. For addressing this problem,
pan-specific approaches have been recently proposed to
make predictions for any alleles with the known protein
sequence [18]. The basic idea of pan-specific methods is
to identify the relationship among MHC alleles so that
the binding preferences of target MHC molecules can
be captured.
MULTIPRED is the first pan-specific predictor for

HLA-I [22]. It trains a supertype-specific model by
incorporating the binding data in the same supertype,
where a set of MHC molecules have similar peptide
binding preferences [23]. Our pervious work has shown
that incorporating binding data of MHC-I molecules in
the same supertype can alleviate the scarcity of binding
data and improve the prediction accuracy [24]. More-
over, in the last few years, several pan-specific methods
have been developed for predicting the binding specifi-
city of MHC-II molecules based on different principles
[9-15], such as position specific scoring matrices
(PSSMs), artificial neural network (ANN) and kernel
based method. TEPITOPE [9] and TEPITOPEpan [15]
are two PSSMs based methods. TEPTIOPE is a pioneer-
ing MHC-II pan-specific predictor, with the limitation
of covering only 51 out of more than 1000 HLA-DR
alleles. To overcome this limitation, we have developed
TEPITOPEpan that covers all possible HLA-DR alleles.
Its main idea is to extrapolates the preferences of 51
HLA-DR molecules covered by TEPITOPE to all

uncharacterized. Not only NetMHCIIpan-1.0 [10] but
also NetMHCIIpan-2.0 [11] are ANN based methods.
Both versions utilize an ensemble of artificial neural net-
work (ANN) with different network structures and initi-
alization parameters, while the main difference is the
way of determining the binding core. MultiRTA [14] is
based on a regularized thermodynamic model and it
considers all possible binding core configurations.
MHCIIMulti [12] is a kernel based method that makes
use of multi-instance technique for measuring the simi-
larity between peptides. According to several recent
bench-mark studies, overall NetMHCIIpan-2.0 per-
formed the best, whereas TEPITOPE and TEPITOPEpan
were good at identifying binding core, and achieved
good accuracy in recognizing T-cell epitopes as well as
HLA-ligands [15,18].
Compared with feature vector based methods, kernel-

based methods can deal with the flexibility of peptide
lengths more naturally. With carefully designed kernels,
these methods can perform very well without undertak-
ing the complicated tasks of feature extraction and
selection [25]. Most recently, Giguère et al. has devel-
oped a general string (GS) kernel for leaning a peptide-
protein binding affinity [26], and GS kernel has achieved
the good prediction accuracy in several applications,
such as peptide-protein binding prediction on the data
from the PepX database, MHC-II binding prediction
and quantitative structure affinity prediction. The simi-
larity between two peptides defined by GS is actually a
sum of similarity scores by substring comparisons.
Because GS was designed for a general problem of pep-
tide-protein binding prediction, it did not take into con-
sideration some distinct features of MHC-II binding
peptides. Firstly, GS considers very short substrings of
even one or two amino acids in computing similarity.
Moreover, the consideration of long substrings for com-
puting similarity in GS depends on its parameter. How-
ever, a short substring pattern is less significant and
may bring noise, while the long substring pattern should
be favored. Secondly, GS penalizes the similarity of two
substrings if their starting positions in two peptides are
different. However, this kind of penalization is unrea-
sonable for MHC-II binding peptides. For example, it is
common for the binding cores of two peptides starting
at different positions. The similarity between these two
binding cores by GS would be very low due to penaliza-
tion even if they are identical. To overcome these draw-
backs of GS, we propose a new string kernel for MHC-
II, MHC2SK, which emphasizes the long substring of
peptides and considers the variation of peptide lengths.
MHC2SK outperformed GS in the allele-specific pre-

diction task on a benchmark dataset, which demon-
strates the effectiveness of MHC2SK. Furthermore, we
extended MHC2SK to MHC2SKpan for pan-specific
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MHC-II peptide binding prediction by leveraging the
binding data of various MHC molecules. We evaluated
the performance of MHC2SKpan on three benchmark
datasets from several aspects: Leave-one-allele-out
(LOO), 5-fold cross validation as well as independent
data testing. MHC2SKpan achieved comparable perfor-
mance with NetMHCIIpan-2.0 and outperformed TEPI-
TOPEpan, NetMHCIIpan-1.0 and MultiRTA, being
statistically significant.

Materials and methods
Data
We used 4 benchmark data sets: NielsenSet1, Nielsen-
Set2, NielsenSet3 and EpanSet4 to evaluate the perfor-
mance of different MHC-II peptide binding prediction
methods. Specifically, NielsenSet1 was used for compar-
ing the performance of MHC2SK with a kernel based
allele-specific method, GS. The remaining three were
used for comparing the performance of MHC2SKpan
with other four well-known pan-specific predictors, such
as NetMHCIIpan-2.0, NetMHCIIpan-1.0, TEPITOPEpan
and MultiRTA.
NielsenSet1 consists of 4603 peptides covering 14

HLA-DR molecules. It was originally used for develop-
ing the SMM-align method [4]. NielsenSet2 was
obtained from [10], and it is composed of 14607 pep-
tides associated with 14 HLA-DR molecules. NielsenSet3
was taken from [11], and it consists of 33931 peptides
covering 24 HLA-DR molecules. EpanSet4 was from
[15] and was composed of 2412 peptides covering 14
HLA-DR molecules. These 14 molecules are neither in
NielsenSet1, nor in NielsenSet2, with only two of them
appearing in NielsenSet3. This is why the dataset was
originally used for evaluating the performance of differ-
ent pan-specific methods on novel MHC molecules [15].

Method
In this section, we briefly describe several string kernels
related to our work. After presenting the notations, we
first introduce Spectrum RBF string kernel (SRBF),
which is closely related to GS and MHC2SK. After that,
we describe GS and our newly developed MHC2SK ker-
nel. Finally, we extend MHC2SK to MHC2SKpan for
pan-specific MHC-II binding prediction.
Notation
Let Σ be a set of all the alphabets of amino acids, and
for each amino acid a Î Σ we define an encoding func-
tion ϕ : � → R

d. �(a) = (�1(a), �2(a), ..., �d(a)) is a vec-
tor where �i(a) represents one of the d properties of the
amino acid a. In the experiments we utilize the widely
used Blosum62 [27] to define the encoding function �.
In the following subsections we denote s and s’ as two
amino acid chains with length |s| and |s’| respectively.

Similarly, we denote y and y’ as two peptides, yi®i+l-1
is a substring of y of length l with the starting position i
and end position i + l - 1, y’j®j+l-1 is a substring of y’ of
length l with the starting position j and end position j +
l - 1, and x and x’ as two MHC molecules (or its pseu-
dosequence representation).
Spectrum RBF string kernel (SRBF)
The spectrum RBF string kernel was proposed by Tous-
saint et al. [28] for MHC-I peptide binding prediction.
As spectrum RBF string kernel is directly related to GS
and MHC2SK, we review it briefly here. For s and s’
with an equal length under a certain encoding scheme,
such as Blosum62, we can compute their similarity
using RBF kernel

Kϕ

l,σc
(s, s′) = exp

(
−

∑l
i=1 ||ϕ(si) − ϕ(s′i)||2

2σ 2
c

)
(1)

where |s|=|s’|=l and si denote the i-th amino acid in
sequence s. Similar to spectrum kernel [29], the similar-
ity between two peptides y and y’ with different lengths
can be computed by considering the substrings of length
l. According to [28], SRBF can be computed as follows

KSRBF(y, y′, l, σc) �
|y|−l+1∑
i=1

|y′|−l+1∑
j=1

Kϕ

l,σc
(yi→i+l−1, y′j→j+l−1) =

|y|−l+1∑
i=1

|y′|−l+1∑
j=1

exp

(
−

∑l−1
k=0 ||ϕ(yi+k) − ϕ(y′ j+k)||2

2σ 2
c

)
(2)

where yi+k denote the (i + k)-th amino acid in the
sequence y. It’s worth noticing that, for computing the
similarity between y and y’, KS RBF only compares their
substrings with a fixed length (l), which may ignore
some important information about the commonality of
y and y’.
Generic String kernel (GS)
GS was proposed by Giguère et al. as a general kernel
for learning peptide-protein binding [26]. It can be for-
mulated as follows:

KGS(y, y′, L, σp, σc) �
L∑
l=1

|y|−l+1∑
i=1

|y′|−l+1∑
j=1

exp

(
−(i − j)2

2σ 2
p

)
Kϕ

l,σc
(yi→i+l−1, y′j→j+l−1)

=
L∑
l=1

|y|−l+1∑
i=1

|y′|−l+1∑
j=1

exp

(
−(i − j)2

2σ 2
p

)
exp

(
−

∑l−1
k=0 ||ϕ(yi+k) − ϕ(y′j+k)||2

2σ 2
c

) (3)

where L ≥ 1 is the maximum length of substrings
under comparison, and sp is the parameter for penalizing
the similarity of y and y’j® j+l-1 that start from different
positions of i and j, respectively. From this, we can see
that GS is a weighted combination of many SRBFs that
take into account substrings with different lengths. How-
ever, considering the distinct features of MHC-II binding
prediction, the penalization is unreasonable, and an addi-
tional parameter sp also increases the training time sig-
nificantly. In addition, GS considers SRBFs of very short
substrings, only one amino acid (l = 1 in equation (3)).
This kind of short patterns are less significant, and may
bring noise into the similarity computation.
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MHC-II String Kernel (MHC2SK)
Considering the distinct features of MHC-II binding
prediction, we design a novel kernel, MHC2SK, as fol-
lows

KM HC2S K(y, y′, L, σc) �
min(|y|,|y′|)∑

l=L′

|y|−l+1∑
i=1

|y′|−l+1∑
j=1

Kϕ

l,σc
(yi→i+l−1, y′j→j+l−1)

=
min(|y|,|y′|)∑

l=L′

|y|−l+1∑
i=1

|y′|−l+1∑
j=1

exp

(
−

∑l−1
k=0 ||ϕ(yi+k) − ϕ(y′j+k)||2

2σ 2
c

) (4)

There are two main differences between MHC2SK
and GS. Firstly, MHC2SK removes the penalized term

exp
(−(i−j)2

2σ 2
p

)
in the similarity computation. Omitting the

parameter sp also reduces the training cost significantly.
Secondly, MHC2SK emphasizes more on longer sub-
string patterns for computing similarity. L’ is the para-
meter for the minimum length of substring patterns
considered in MHC2SK, while the maximum length is
the largest possible length (min(|y|, |y’|)). In contrast,
the minimum length of substring patterns in GS is 1,
and the maximum length is determined by L. We can
see that MHC2SK is a combination of SRBFs consider-
ing different lengths, thus MHC2SK is also positive
semi-definite.
MHC-II String Kernel for pan-specific prediction
(MHC2SKpan)
For the purpose of training a pan-specific model for any
alleles with the known protein sequence, similar to the
strategy proposed by KISS [30], we define the allele-pep-
tide (x, y) pairwise kernel by obtaining the product
between an allele kernel and a peptide kernel.

K((x, y), (x′, y′)) � Kallele
(
x, x′) · Kpeptide

(
y, y′

)
(5)

For the peptide kernel, we can use MHC2SK kernel.
For the HLA allele representation, we apply the pseudo
sequence proposed by Nielsen et al [10]. The pseudo
sequence is composed of 21 polymorphic amino acid
positions in potential contact with the binding peptide.
Since all the allele pseudo sequences are of equal length,
we use the RBF kernel (equation 1) as the allele kernel.
Then we can extend MHC2SK to MHC2SKpan for pan-
specific prediction as follows:

KMHC2S K pan((x, y), (x′, y′)) � Kallele(x, x′)·Kpeptide(y, y′) = Kϕ

|x|,σa
(x, x′)·KMHC2S K

(
y, y′, L′, σc

)
(6)

where |x| = |x’| is the length of HLA pseudo sequence
(21 in our case).

Results and discussion
Experimental procedure and evaluation metrics
The prediction model was learned by the support vector
regression (SVR) algorithm. We made use of libsvm tool
[31] and its SVR implementation with customized ker-
nels, which were computed by the methods mentioned

in the last section. The libsvm tool can be downloaded
at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Two stan-
dard metrics, the area under ROC curve (AUC) and
Pearson correlation coefficient (PCC), were used to eval-
uate the performance of different prediction methods. In
addition, for comparing performance differences of two
predictors, we use one-tailed per-allele binomial test to
measure its statistical significance.
For the datasets of NielsenSet1, NielsenSet2 and Niel-

senSet3, according to the studies presenting these data
[4,10,11], the peptide with the binding affinity of less
than 500nM was deemed as a binder. For EpanSet4,
binding affinity is not available, and we used the binary
labels in the dataset directly. Similar to several previous
studies [4,10], for computing PCC, the binding value
was obtained by 1 - log(IC50)/log(50, 000), where IC50
is binding affinity measured in nM. We first compared
the performance of GS and MHC2SK using NielsenSet1
by 5-fold cross validation. As SRBF is closely related
to GS and MHC2SK, we also implemented SRBF as a
baseline. We then compared the performance of
MHC2SKpan with several well-known pan-specific
methods, using Leave-One-Allele-Out (LOO) on Niel-
senSet2 and 5-fold cross validation on NielsenSet3.
Finally we examined the performance of MHC2SKpan
and other pan-specific methods on an independent test
set, EpanSet4. These experiments have different focuses.
The main purpose of LOO is to examine the generaliza-
tion ability of pan-specific methods on novel alleles. For
the 5-fold cross validation, the main purpose is to exam-
ine the performance of pan-specific methods using bind-
ing data of both target and other alleles. For the
independent test, the main purpose is to examine the
performance of pan-specific methods on the test data
from different sources. For all the experiments, we used
the grid search to learn the parameters in the three ker-
nels. For GS kernel, we used the following ranges: sp Î
(0, 15], sc Î (0, 5] and L Î [1,20]. For MHC2SK kernel,
we used the following ranges: sc Î (0, 5] and L’ Î [1,9].
Compared with MHC2SK, MHC2SKpan had an addi-
tional parameter sa, which was searched in (0, 15]. For
SRBF kernel, we used the following ranges: sc Î (0, 5]
and l Î [1,9].

Evaluation by NielsenSet1
Table 1 shows the performance comparison of MHC2SK,
GS and SRBF on NielsenSet1 using 5-fold cross valida-
tion. We obtain the 5 fold partition of the data from the
original study [4]. Same as [4], in each round, 4 folds are
used for training the model and tuning the parameters
according to AUC. The best parameters on training data
are used to build the model and make the prediction on
test data. As illustrated in Table 1, MHC2SK achieved
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the best performance in both AUC and PCC. For exam-
ple, MHC2SK achieved the highest average PCC of
0.450, which is followed by SRBF (0.419) and GS (0.411).
Specifically, MHC2SK outperformed GS in 12 and SRBF
in 11 out of all 14 alleles. Both of them are statistically
significant (binomial test, p-value < 0.05). In addition,
MHC2SK obtained the highest average AUC (0.747),
which is followed by GS (0.727) and SRBF (0.718). Speci-
fically, MHC2SK outperformed SRBF in 11 out of all 14
alleles, being statistically significant (binomial test,
p-value < 0.05), and GS in 9 out of all 14 alleles. From the
experimental results, we can clearly see that MHC2SK
performed best among all three kernel based methods.

Evaluation by NielsenSet2
Table 2 presents the result of MHC2SKpan and four
other well-known predictors, MultiRTA, TEPITOPEpan,
NetMHCIIpan-2.0 and NetMHCIIpan-1.0 using Nielsen-
Set2. As TEPITOPEpan did not need any training data,
we ran TEPITOPEpan directly on NielsenSet2 to get its
prediction result [15]. For all other models, the experi-
mental result was achieved by LOO, where we trained
the model on the binding peptides of 13 alleles, and
then made prediction on the one allele left as testing
[10,11]. The results of MultiRTA, NetMCHIIpan-2.0
and NetMHCIIpan-1.0 were from [11,14]. For
MHC2SKpan, we learned the model using the para-
meters that achieved the best average AUC per allele in
the training data, and made prediction on the test allele.
The experimental results show that NetMHCIIpan-2.0
and MHC2SKpan are two best prediction methods with

very close performances. For example, NetMHCIIpan-
2.0 achieved the highest average PCC of 0.606, which is
closely followed by MHC2SKpan (0.605), and then
NetMHCIIpan-1.0 (0.541), MultiRTA (0.531), and TEPI-
TOPEpan (0.404). Specifically, MHC2SKpan outper-
formed NetMHCIIpan-2.0 in 8, NetMHCIIpan-1.0 in 13,
MultiRTA in 12, and TEPITOPEpan in 14 out of all
14 alleles, with last three being statistically significant
(binomial test, p-value < 0.05). Similar experimental
results were obtained in terms of AUC. NetMHCIIpan-
2.0 obtained the largest average AUC of 0.799, which is
closely followed by MHC2SKpan (0.795), and then Mul-
tiRTA (0.773), NetMHCIIpan-1.0 (0.767), and TEPITO-
PEpan (0.710). Specifically, MHC2SKpan outperformed
NetMHCIIpan-2.0 in 6, MultiRTA in 11, NetMHCII-
pan-1.0 in 12, and TEPITOPEpan in 13 out of all 14
alleles. The last three are statistically significant (bino-
mial test, p-value < 0.05). Overall, MHC2SKpan outper-
formed NetMHCIIpan-1.0, MultiRTA and TEPITOPEpan,
being statistically significant, and achieved the comparable
performance with the state-of-the-art predictor, NetMH-
CIIpan-2.0.

Evaluation by NielsenSet3
Table 3 compares the performance of MHC2SKpan with
TEPITOPEpan and NetMHCIIpan-2.0 on NielsenSet3
using 5-fold cross validation. The partition of the data,
and the experimental result of NetMHCIIpan-2.0 are
from the original paper [11]. As NetMHCIIpan-1.0 and
MultiRTA were not trained on NielsenSet3 using 5-fold
cross-validation, we could not report their results in
Table 3. We ran TEPITOPEpan directly on NielsenSet3
to get its prediction result [15]. From this experimental
result using 5-fold cross validation, we can find again
that MHC2SKpan achieved comparable performance
with NetMHCIIpan-2.0. Since TEPITOPEpan could not
take advantage of sufficient training data, it did not
perform very well. For example, NetMHCIIPan-2.0
achieved an average AUC of 0.846, and MHC2SKpan
achieved an AUC of 0.843, which was followed by TEPI-
TOPEpan (0.738). Specifically, MHC2SKpan outper-
formed NetMHCIIpan-2.0 in 11, and TEPITOPEpan in
23 out of 24 alleles. And the last one is statistically sig-
nificant (binomial test, p-value < 0.01).

Evaluation by EpanSet4
Table 4 compares the performance of MHC2SKpan and
other four pan-specific methods on an independent test-
ing set, EpanSet4. Please note that 12 out of all 14
alleles are not in any of NielsenSet1, NielsenSet2 and
NielsenSet3, which means that it is a good benchmark
dataset for examining the performance of pan-specific
models on novel alleles. MHC2SKpan was trained
on NielsenSet3 using LOO, and the result of other

Table 1 Five-fold cross validation performance of
MHC2SK method compared to GS and SRBF methods on
NielsenSet1. For each allele, we display the largest value
in boldface.

AUC PCC

allele count SRBF GS MHC2SK SRBF GS MHC2SK

DRB1*01:01 1203 0.766 0.791 0.804 0.504 0.519 0.559

DRB1*03:01 474 0.755 0.712 0.735 0.475 0.423 0.473

DRB1*04:01 457 0.728 0.761 0.754 0.428 0.490 0.481

DRB1*04:04 168 0.769 0.653 0.757 0.415 0.254 0.411

DRB1*04:05 171 0.683 0.648 0.709 0.409 0.273 0.430

DRB1*07:01 310 0.773 0.745 0.775 0.502 0.464 0.513

DRB1*08:02 174 0.766 0.783 0.782 0.452 0.461 0.485

DRB1*09:01 117 0.623 0.656 0.661 0.290 0.269 0.339

DRB1*11:01 359 0.724 0.737 0.774 0.427 0.463 0.518

DRB1*13:02 179 0.846 0.817 0.848 0.663 0.617 0.662

DRB1*15:01 365 0.798 0.786 0.801 0.582 0.566 0.586

DRB3*01:01 102 0.428 0.660 0.650 -0.082 0.147 0.015

DRB4*01:01 181 0.716 0.743 0.738 0.437 0.447 0.465

DRB5*01:01 343 0.681 0.688 0.675 0.363 0.363 0.365

average 4603 0.718 0.727 0.747 0.419 0.411 0.450
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Table 2 LOO benchmark comparison of MHC2SKpan with four well-known pan-specific methods on NielsenSet2.
MRTA, Tepan, Pan1.0, Pan2.0 and MKpan are the abbreviations for MultiRTA, TEPITOPEpan, MetaMHCIIpan-1.0,
MetaMHCIIpan-2.0 and MHC2SKpan, respectively. For each allele, we display the largest value in boldface.

AUC PCC

allele count MRTA Tepan Pan1.0 Pan2.0 MKpan MRTA Tepan Pan1.0 Pan2.0 MKpan

DRB1*01:01 5166 0.801 0.726 0.778 0.794 0.802 0.619 0.447 0.571 0.627 0.628

DRB1*03:01 1020 0.751 0.663 0.746 0.792 0.778 0.438 0.277 0.465 0.560 0.543

DRB1*04:01 1024 0.763 0.724 0.775 0.802 0.801 0.534 0.423 0.591 0.652 0.657

DRB1*04:04 663 0.835 0.783 0.852 0.869 0.862 0.623 0.504 0.693 0.731 0.714

DRB1*04:05 630 0.808 0.760 0.808 0.823 0.828 0.566 0.456 0.594 0.626 0.631

DRB1*07:01 853 0.817 0.759 0.825 0.886 0.889 0.620 0.499 0.655 0.753 0.761

DRB1*08:02 420 0.786 0.773 0.841 0.869 0.851 0.523 0.452 0.637 0.70 0.679

DRB1*09:01 530 0.674 0.615 0.653 0.684 0.674 0.380 0.259 0.406 0.474 0.471

DRB1*11:01 950 0.819 0.726 0.799 0.875 0.894 0.603 0.450 0.580 0.721 0.761

DRB1*13:02 498 0.698 0.661 0.658 0.648 0.639 0.365 0.326 0.323 0.337 0.341

DRB1*15:01 934 0.729 0.694 0.738 0.769 0.763 0.513 0.437 0.533 0.598 0.597

DRB3*01:01 549 0.813 0.675 0.716 0.733 0.70 0.603 0.332 0.449 0.474 0.423

DRB4*01:01 446 0.746 0.694 0.724 0.762 0.764 0.508 0.370 0.448 0.515 0.529

DRB5*01:01 924 0.788 0.680 0.831 0.879 0.883 0.543 0.421 0.627 0.722 0.737

average 14607 0.773 0.710 0.767 0.799 0.795 0.531 0.404 0.541 0.606 0.605

Table 3 Five-fold cross validation comparison of MHC2SKpan and NetMHCIIpan-2.0 on NielsenSet3. For each allele, we
display the largest value in boldface.

AUC PCC

allele count TEPITOPEpan NetMHCIIpan-2.0 MHC2SKpan TEPITOPEpan NetMHCIIpan-2.0 MHC2SKpan

DRB1*01:01 7685 0.731 0.846 0.845 0.433 0.711 0.702

DRB1*03:01 2505 0.718 0.864 0.853 0.346 0.709 0.672

DRB1*03:02 148 0.603 0.757 0.755 0.227 0.525 0.447

DRB1*04:01 3116 0.765 0.848 0.840 0.438 0.670 0.647

DRB1*04:04 577 0.758 0.818 0.816 0.496 0.630 0.622

DRB1*04:05 1582 0.783 0.858 0.869 0.491 0.698 0.703

DRB1*07:01 1745 0.781 0.864 0.872 0.533 0.740 0.742

DRB1*08:02 1520 0.650 0.780 0.784 0.294 0.526 0.532

DRB1*08:06 118 0.870 0.924 0.912 0.602 0.796 0.749

DRB1*08:13 1370 0.747 0.885 0.896 0.337 0.746 0.760

DRB1*08:19 116 0.714 0.808 0.831 0.537 0.608 0.623

DRB1*09:01 1520 0.683 0.818 0.826 0.340 0.634 0.638

DRB1*11:01 1794 0.797 0.883 0.877 0.514 0.777 0.764

DRB1*12:01 117 0.831 0.892 0.876 0.627 0.764 0.754

DRB1*12:02 117 0.843 0.900 0.898 0.640 0.769 0.762

DRB1*13:02 1580 0.602 0.825 0.811 0.238 0.634 0.591

DRB1*14:02 118 0.724 0.860 0.889 0.445 0.694 0.735

DRB1*14:04 30 0.683 0.737 0.621 0.489 0.613 0.418

DRB1*14:12 116 0.805 0.894 0.904 0.517 0.757 0.742

DRB1*15:01 1769 0.739 0.819 0.834 0.465 0.653 0.669

DRB3*01:01 1501 0.671 0.850 0.832 0.289 0.690 0.636

DRB3*03:01 160 0.771 0.853 0.864 0.403 0.736 0.702

DRB4*01:01 1521 0.685 0.837 0.861 0.351 0.675 0.712

DRB5*01:01 3106 0.764 0.882 0.875 0.445 0.765 0.736

average 33931 0.738 0.846 0.843 0.437 0.688 0.669
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pan-specific methods are from the original paper [15].
From the experimental results we find that MHC2SKpan
performed best among all five pan-specific methods.
MHC2SKpan obtained the largest average AUC (0.734),
which is followed by NetMHCIIpan-2.0 (0.732), TEPITO-
PEpan (0.712), NetMHCIIpan-1.0 (0.701) and MultiRTA
(0.677). MHC2SKpan outperformed both NetMHCIIpan-
2.0 and NetMHCIIpan-1.0 in 9, and MultiRTA in 11
out of all 14 alleles. If we exclude two molecules
(DRB1*12:01 and DRB1*03:02) appearing in NielsenSet3,
we can still see clear advantage of MHC2SKpan over
other pan-specific methods. In this case, MHC2SKpan
obtained the largest average AUC of 0.730, which is fol-
lowed by NetMHCIIpan-2.0 (0.722), TEPITOPEpan
(0.707), NetMHCIIpan-1.0 (0.693) and MultiRTA (0.672).
In this experiment, MHC2SKpan used the same set of

parameters to predict the binding specificities of novel
alleles. The parameters were estimated from training
data NielsenSet3 using LOO, and it might not be a
good configuration for a novel allele. The parameter sa
of MHC2SKpan is actually used to measure the similari-
ties among different MHC molecules. A large sa will
incorporate the binding data of more MHC molecules
into training process, and it may bring some unrelated
MHC molecules. On the other hand, a small sa will
only incorporate the binding data of a small number of
MHC molecules into training process, and it may omit
some related MHC molecules. In an ideal case, a suita-
ble sa should be used for each target MHC molecule.
To examine the effect of sa, we further checked the
performance of MHC2SKpan on the 4 DRB alleles in
EpanSet4: DRB1*12:01, DRB3*02:02, DRB1*13:01 and

DRB1*03:02. The reason for choosing these four alleles
was that (1) they have large number of binding data
(DRB1*12:01, DRB3*02:02 and DRB1*13:01); or (2) they
do not appear in NielsenSet3 (DRB1*03:02 and
DRB1*12:01). Figure 1 shows the change of AUC on
these 4 alleles with respect to the variation of sa. Here
sa ranges from 0.5 to 15 with an interval of 0.5. sa =
6.5 is the learned parameter from NielsenSet3 used to
generate Table 4. We can see that it is actually not a

Table 4 The AUC performance comparison of MHC2SKpan with MutliRTA, TEPITOPEpan, NetMHCIIpan-1.0 and
NetMHCIIpan-2.0 on EpanSet4. For each allele, we display the largest value in boldface. The last row is the average
result by excluding two alleles in NielsenSet3, DRB1*03:02 and DRB1*12:01.

allele count MultiRTA TEPITOPEpan NetMHCIIpan-1.0 NetMHCIIpan-2.0 MHC2SKpan

DRB1*01:02 92 0.749 0.758 0.785 0.746 0.752

DRB1*01:03 52 0.772 0.867 0.756 0.772 0.798

DRB1*03:02 88 0.733 0.823 0.775 0.840 0.761

DRB1*04:03 63 0.611 0.762 0.659 0.678 0.714

DRB1*04:06 92 0.519 0.501 0.557 0.486 0.489

DRB1*11:02 65 0.591 0.738 0.738 0.774 0.766

DRB1*11:03 64 0.585 0.726 0.623 0.791 0.785

DRB1*11:04 73 0.618 0.654 0.639 0.737 0.740

DRB1*12:01 719 0.673 0.659 0.721 0.740 0.753

DRB1*13:01 302 0.567 0.623 0.516 0.494 0.485

DRB1*14:01 43 0.809 0.785 0.761 0.676 0.721

DRB1*15:02 47 0.777 0.742 0.762 0.888 0.899

DRB1*16:01 56 0.789 0.644 0.793 0.814 0.817

DRB3*02:02 656 0.680 0.686 0.732 0.806 0.789

Average 2412 0.677 0.712 0.701 0.732 0.734

Average* 1605 0.672 0.707 0.693 0.722 0.730

Figure 1 The performance of MHC2SKpan under different
setting of sa. The performance of MHC2SKpan on DRB1*03:02,
DRB1*12:01, DRB1*13:01 and DRB3*02:02 in EpanSet4 under
different settings of sa.
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good setting for these alleles, especially for DRB3*02:02.
Specifically, for DRB3*02:02, the best AUC is 0.808 with
sa = 2 which is much higher than its current perfor-
mance (0.789) under default setting. Another interesting
discovery is that, for DRB1*03:02, with a large sa, the
performance is actually improved. This may suggest
more binding data from other alleles is helpful for
DRB1*03:02. All these indicate that the performance of
MHC2SKpan could be further improved if we can cus-
tomize the parameters for the target MHC molecules.

Discussion
Both GS and MHC2SK have their roots in SRBF, which
only considers substrings of a fixed length for computing
similarities. However, by considering the characteristics of
MHC-II peptide binding prediction, MHC2SK explicitly
incorporates two important features into the kernel
design: (1) emphasizing more on long substrings and (2)
the great variation of peptide lengths. In contrast, without
considering these domain knowledge, GS has to tune an
additional parameter sp, which will increase training cost
heavily. It may also lead to unsatisfactory result due to
scarcity and noisy in training data. The experimental
results on NielsenSet1 clearly demonstrate the advantage
of MHC2SK over GS and SRBF. Actually, incorporating
domain knowledge into model design becomes increas-
ingly important for achieving the good prediction accu-
racy in bioinformatics [32].
Furthermore, we extend MHC2SK to MHC2SKpan for

pan-specific MHC binding prediction. The performance
of MHC2Skpan and other four well known pan-specific
methods have been extensively evaluated using three
benchmark datasets by LOO, cross-validation and inde-
pendent testing. MHC2SKpan achieved good perfor-
mance in all these experiments. Specifically, the LOO
result on NielsenSet2 shows that MHC2SKpan outper-
formed NetMHCIIpan-1.0, TEPITOPEpan and Multi-
RTA, being statistically significant. MHC2SKpan achieved
comparable performance with the-state-of-the-art model,
NetMHCIIpan-2.0, in both LOO on NielsenSet2 and
5-fold cross validation on NielsenSet3. Moreover,
MHC2SKpan is the best method in the independent test
on EpanSet4. Experimental results also suggest that
MHC2SKpan can achieve better prediction result if we
customize the parameters for the target MHC molecules.
Additionally, in contrast to NetMHCIIpan-2.0 using
ensemble techniques, MHC2SKpan is an individual
model. The performance of MHC2SKan could be further
improved by various ensemble techniques [33,34].

Conclusion
In this work, we present a state-of-the-art kernel based
method, MHC2SKpan, for pan-specific MHC-II binding
prediction. On the one hand, it can effectively

incorporate the physical and chemical properties of
amino acids for measuring the similarities among the
peptides of different lengths. On the other hand, the
relationship among different MHC molecules can be
directly captured and utilized for pan-specific binding
prediction. Experimental results on various benchmark
datasets from different perspectives demonstrated that
MHC2SKpan achieved comparable performance with the
leading predictor, NetMHCIIpan-2.0, and outperformed
three well known pan-specific methods, NetMHCIIpan-
1.0, TEPITOPEpan and MultiRTA, being statistically
significant. Automatically tuning the parameters in
MHC2SKpan for a novel target MHC to improve its per-
formance would be a very interesting future work.
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