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Abstract

Background: The linear noise approximation (LNA) is commonly used to predict how noise is regulated and
exploited at the cellular level. These predictions are exact for reaction networks composed exclusively of first order
reactions or for networks involving bimolecular reactions and large numbers of molecules. It is however well
known that gene regulation involves bimolecular interactions with molecule numbers as small as a single copy of
a particular gene. It is therefore questionable how reliable are the LNA predictions for these systems.

Results: We implement in the software package intrinsic Noise Analyzer (iNA), a system size expansion based
method which calculates the mean concentrations and the variances of the fluctuations to an order of accuracy
higher than the LNA. We then use iNA to explore the parametric dependence of the Fano factors and of the
coefficients of variation of the mRNA and protein fluctuations in models of genetic networks involving nonlinear
protein degradation, post-transcriptional, post-translational and negative feedback regulation. We find that the LNA
can significantly underestimate the amplitude and period of noise-induced oscillations in genetic oscillators. We
also identify cases where the LNA predicts that noise levels can be optimized by tuning a bimolecular rate
constant whereas our method shows that no such regulation is possible. All our results are confirmed by stochastic
simulations.

Conclusion: The software iNA allows the investigation of parameter regimes where the LNA fares well and where
it does not. We have shown that the parametric dependence of the coefficients of variation and Fano factors for
common gene regulatory networks is better described by including terms of higher order than LNA in the system
size expansion. This analysis is considerably faster than stochastic simulations due to the extensive ensemble
averaging needed to obtain statistically meaningful results. Hence iNA is well suited for performing
computationally efficient and quantitative studies of intrinsic noise in gene regulatory networks.

Background
It is generally accepted that the relative size of molecu-
lar fluctuations scales as the inverse square root of the
mean molecule numbers [1]. Since the key players of
gene regulatory networks are present in amounts as
small as one molecule it follows that gene expression is
inherently noisy [2,3]. This molecular noise manifests
itself in the copy number variations of transcripts and
their proteins among genetically identical cells [4]. The
main measures that have been used to quantify these

cell-to-cell variations both experimentally and through
modeling are the coefficient of variation (CV) and the
Fano factor [5-9].
Exact analytical results for these quantities have been

derived only for very simple gene regulatory systems
[10-12] and hence they are more commonly obtained by
means of Monte Carlo simulations using the stochastic
simulation algorithm (SSA) [13,14]. Despite being for-
mally exact with the Chemical Master Equation (CME),
in practice, this approach turns out to be computation-
ally expensive mainly due to the considerable amount of
sampling required to compute reliable statistical
averages. The situation is exacerbated when networks
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are to be studied over a wide range of parameters. The
main analytical tool to address this issue has since been
the linear noise approximation (LNA) of the Chemical
Master Equation (CME) [15-17] which allows one to
approximate the dynamics of the latter by a set of linear
stochastic differential equations from which all moments
can be computed in closed form. In this approximation,
the mean concentrations of the CME are approximated
by the solution of the deterministic rate equations (REs)
and the probability distribution of the fluctuations is
approximated by a Gaussian. Thereby the LNA can give
insight into the parametric dependence of the noise
whenever the REs admit a unique steady state solution.
However unlike the CME, this approximation is valid
only in the limit of large molecule numbers and hence
the accuracy of its predictions is questionable for intra-
cellular biochemical reaction networks [18,19]. A hand-
ful of theoretical studies access the accuracy of the REs
and the LNA predictions by computing finite molecule
number corrections to both approximations [20-22], a
task which can be carried out analytically only for some
simple systems. Hence, to-date, it is unclear how impor-
tant these corrections are for many gene regulatory net-
works of interest.
We recently developed intrinsic Noise Analyzer (iNA)

[23], the first software package enabling a fluctuation
analysis for a broad class of biochemical networks of
interest via the LNA and the Effective Mesoscopic Rate
Equation (EMRE) approximations of the CME. The lat-
ter approximation gives accurate mean concentrations
for systems characterized by intermediate to large mole-
cule numbers and is hence more accurate than the con-
ventional REs.
In this article we develop and efficiently implement in

iNA, the Inverse Omega Square (IOS) method which
gives the variances and covariances of fluctuations about
the means calculated by the EMRE method. From these
we can calculate the CVs and Fano factors of mRNA
and protein fluctuations to an accuracy higher than pos-
sible with the LNA. Hence the software iNA provides a
means of probing the validity of the LNA for any bio-
chemical network under study. We use the EMRE and
IOS methods to study the parametric dependence of the
CV and Fano factors of mRNA and protein fluctuations
in two examples of stochastic gene regulation involving
nonlinear protein degradation, post-transcriptional,
post-translational and negative feedback regulation. We
show that these results agree with stochastic simulations
but in many instances disagree with the LNA results. In
particular the LNA predicts that the noise levels can be
optimized by tuning a bimolecular rate constant whereas
no such regulation is predicted by EMRE/IOS and simu-
lations. It is also found that the LNA significantly under-
estimates the amplitude and period of noise-induced

oscillations in genetic oscillators. Using detailed bench-
marks we demonstrate that the present methodology is
typically computationally more efficient than stochastic
simulations using the SSA.

Results
In this section we describe the results of the novel IOS
method implemented in iNA. Its predictions are com-
pared to the RE and LNA approximations of the CME
and with exact stochastic simulations using the SSA for
two examples of gene regulation. Finally we discuss its
computational efficiency. The three methods (LNA,
EMRE, IOS) are obtained from the system size expan-
sion of the CME [15] which is applicable to monostable
chemical systems. Technical details of the various
approximation methods are provided in the section
Methods.

Investigating the parametric dependence of the size of
molecular fluctuations
Biochemical reactions occur in random order and at
random time. The stochastic description of biochemical
reaction kinetics considers N distinct chemical species
confined in a volume Ω reacting via R chemical reac-
tions of the form

(1)

where j varies from 1 to R. The mesoscopic state of
the system is given by the vector of molecular popula-
tions and can be characterized by
the probability to find the system in a particular
configuration . The latter is however very difficult to
obtain from analysis and hence intrinsic noise may be
more easily characterized in terms of CVs and Fano fac-
tors which are defined in the following. We show how
these quantifies are calculated using the LNA and higher
order approximations implemented in the software iNA.
The CV of the number of molecules of species Xi is

defined by

(2)

where Var(ni) denotes the variance and E(ni) the expec-
tation value of the number of molecules of species Xi.
The CV quantifies the relative spread about the mean or
put in different terms, it measures the inverse signal-to-
noise ratio. Because of the latter fact it is often referred
to as the “size” of the noise. A different but commonly
used noise measure is the Fano factor defined by

(3)
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The Fano factor allows one to compare the spread of
probability distributions relative to a Poissonian with the
same mean. Notice that both quantifiers are determined
solely by knowledge of the means and variances which
can be obtained as a power series in the inverse com-
partment volume Ω by van Kampen’s system size
expansion of the master equation [15]. This expansion
is carried out at constant concentration and hence the
large volume limit is equivalent to the limit of large
molecule numbers. As shown in the section Methods,
the expansion’s leading order term (Ω0) for the mean
concentrations is given by the REs and the next to lead-
ing order term (Ω-1) by the EMREs. Similarly the var-
iances about these concentrations are given to leading
order (Ω-1) by the LNA and the next to leading order
term (Ω-2) by what we here refer to as the IOS approxi-
mation. It then follows that the CV has the expansion

(4)

and a similar expansion holds for the Fano factor

(5)

The above expressions fully characterize the para-
metric dependence of the size of the fluctuations in
terms of the compartment volume Ω, the set of reaction
rate constants and the set of initial
conditions whose explicit dependence has been omitted
here. Note that the leading order contributions in the

infinite volume limit, and , are given

by the LNA’s result for the CV and Fano factor which
can be shown to scale as Ω-1/2 and Ω0, respectively. The
factors and determine the relative corrections
to the LNA result and can be obtained from the EMRE
and IOS approximations as has been carried out expli-
citly in the Methods section. It can be argued that the
size of these correction terms is proportional to the
bimolecular reaction rate constants since the LNA is
exact up to second moments for networks composed
solely of unimolecular reactions since the propensities
are linear functions of the concentrations (see section
Methods). Summarizing, this analysis suggests novel
correction terms to the CVs and Fano factors that are
of order Ω-3/2 and Ω-1, respectively, and hence of higher
accuracy than the LNA.
Complementary to the LNA and IOS analysis the noise

coefficients can be obtained by stochastic simulations
using the SSA. Although this method is formally exact
we note that noise estimators may be strongly biased for
small to intermediate sample sizes [24]. The large amount
of ensemble averaging required makes it computationally
expensive to obtain these estimates from stochastic

simulations. A commonly used method to accelerate the
statistical averaging procedure involves replacing the
ensemble average by a time average which is allowed
under steady state conditions and the assumption of
ergodicity of sample paths [25]. In particular, using the
SSA one time-averages over a sufficiently long time series
to estimate the noise coefficients. The present version of
iNA facilitates this procedure by computing the station-
ary moments via a time-averaged SSA. A convenient on-
the-fly dialog allows one to remove transients from simu-
lated trajectories and to monitor the convergence of
mean, variance, CV or Fano factor statistics. In Figure 1
we present a screenshot of this dialog.

Applications
While gene expression is a complex process the most
commonly used model is naturally the simplest. The
model describes the transcription of mRNA and the
translation of proteins from mRNA and the subsequent
degradation by the effective first order reactions:

(6)

The model has been used to quantify variability in the
proteome of E. coli [3,5,10], yeast [26] and mammalian
cells [27] as well as having being subject to a number of
theoretical studies [6,11]. The LNA’s predictions of the
first two moments of this model are exact since it is
composed of only unimolecular reactions.
Given the complexity of the intracellular biochemistry,

it is clear that this simple model cannot fully account
for regulation which occurs at transcriptional, post-tran-
scriptional, translational and post-translational stages.
These processes typically involve bimolecular reactions
with regulatory molecules such as transcription factors,
functional RNAs or enzymes. While it is obvious that
the CVs and Fano factors of more realistic models will
differ from those predicted by the “standard” linear
model (6), it is however not immediately clear whether
these noise measures are qualitatively different than
those obtained from the LNA.
In this section we demonstrate the use of the software

iNA, which makes use of the approximation methods
described in the previous section, to predict the noise
characteristics of two gene regulatory networks invol-
ving post-transcriptional regulation by non-coding RNA
and negative autoregulation via post-translational modi-
fication. Specifically we focus on how well these charac-
teristics are described by the LNA both quantitatively
and qualitatively and point out the LNA’s limitations
using correction terms of the IOS analysis and stochas-
tic simulations provided by iNA.
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sRNA mediated post-transcriptional regulation
A large number of functional RNAs called small RNAs
(sRNAs) have been found in bacteria which are not
actively translated. This non-coding form of RNA is
believed to coordinate pathways in response to external
stimuli such as stress [28,29]. To investigate the robustness
of critical pathways it is therefore important to understand
the impact of intrinsic noise on their regulation.
Here we extend the mechanism of gene expression

with nonlinear degradation studied in [30] to include the
regulation of gene expression by sRNA in response to
stress. A generic model of non-catalytic sRNA-mRNA
interaction is

(7a)

(7b)

Note that reactions (7a) are as considered in Ref. [30].
In (7b) we describe the transcription and degradation of
sRNA with respective rates k0a and kdS. The parameter
a is given by the ratio of sRNA to mRNA transcription
and can be used to describe the coordination of the
stress response due to tight regulation of sRNA tran-
scription. When sRNA is expressed it binds with its
mRNA target at a rate kR and quickly degrades there-
after. Similar models have been studied in Refs. [31,32].
Understanding how pathways are regulated in the pre-

sence of noise requires to study their response over a
wide range of parameter values. Such a task is typically
computationally expensive when carried out by stochas-
tic simulations. We used iNA to investigate the impact
of stress on our gene regulatory network both using the
system size expansion and the SSA method. To our
knowledge the effect of sRNA regulation on protein
noise with a nonlinear degradation mechanism has not
been studied before. Using parameter set (i) in Table 1
with iNA, we obtained the mean concentrations and
standard deviations estimated from the REs and the
LNA, respectively; these are shown in Figure 2 (a). Simi-
larly the EMRE concentrations and IOS standard

Figure 1 SSA parameter scan dialog with online statistics. iNA allows the acquisition of time-averaged statistics from the SSA within a user-
friendly dialog. This type of analysis is applicable under stationary conditions and provides mean, variance, CVs and Fano factor statistics over a
wide range of parameters.
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deviations for the same parameters are shown in (b). As
stress levels are increased the characteristic threshold
response is observed, i.e., as the expression level of
sRNA rises it down-regulates the target mRNA concen-
trations [29]. Note that for a <1 the protein is expressed
while it is turned off for a >1 while at the crossover
point (a = 1) the levels of sRNA and mRNA are equal.
Depending on the relative abundance of sRNAs and
mRNAs in unstressed cells protein expression may be
activated or silenced. A comparison of Figure 2 (a) and
(b) shows that the predictions of the RE/LNA and of
the EMRE/IOS agree well over large ranges of a. The
two differ for small a, i.e., for small stress, (see Figure 2
(c)) where REs predict the mRNA levels to be higher
than the protein ones while the EMRE method predicts

Table 1 Gene expression model with sRNA regulation

paramater set(i) set (ii)

k0[G] 0.024min-1µM 0.0024min-1µM

kdM 0.2min-1 0.2min-1

ks 1.5min-1 1.5min-1

k-1, k2 2min-1 2min-1

k1 400(µM min)-1 4000(µM min)-1

kdS 0.2min-1 0.2min-1

kR 100(µM min)-1 1000(µM min)-1

Kinetic parameters used for the gene expression model with sRNA regulation,
scheme (7), as discussed in the main text. The volume is fixed to 10-15l with
total enzyme concentration of 0.1µM for parameter set (i) and 0.01µM for
parameter set (ii) corresponding to 60 and 6 enzyme molecules, respectively.
Note that [G] denotes the constant gene concentration.

Figure 2 Threshold responses of mRNA and protein concentrations under sRNA regulation. We compare the mean concentrations
predicted by the LNA method as a function of the parameter a shown in (a) with those predicted by the more accurate EMREs shown in (b).
The average expression levels predicted by both methods are in good agreement except for small a (c) which is verified by stochastic
simulations using the SSA (d).
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the opposite. This phenomenon has been called discre-
teness-induced inversion [19] and has been discussed
for the unregulated case in [30]. The effect is validated
by stochastic simulations in Figure 2 (d). It is interesting
that this inversion disappears for minute concentrations
of sRNA corresponding to less than a single transcript
and hence shows that the REs are surprisingly accurate
over a wide range of stress levels.
Next we study the dependence of the CVs and Fano

factors of coding and non-coding transcripts on the
stress level. The mean and variances shown in Figure 2
can be used to compute both of these quantities. Here
the Fano factor is of particular interest since in the
absence of sRNA control, the molecule number of
mRNA is exactly Poissonian distributed with Fano factor
one [11]. Hence the Fano factor can be used to study
the impact of regulation on the noise. In Figure 3 (a) it
is shown that the Fano factor of transcripts is increased
shortly before and after the crossover point for mRNA
and sRNA, respectively. This highlights an increase of
the mRNA noise levels by sRNA regulation in compari-
son to the situation where the same average mRNA
concentration is obtained by regulating its transcription
rate. Interestingly we find that the LNA prediction for
the Fano factors of transcripts near their peak values are
larger than those from the IOS. This over-estimation by
the LNA is confirmed by stochastic simulations shown
in Figure 3 (b). Note that while the Fano factors of the
transcripts have a peak for intermediate stress levels the
dependence of the associated CVs is monotonous (Addi-
tional file 1).

In order to investigate the impact of stress on protein
noise levels we analyzed the CVs of protein noise as
predicted by the LNA and the IOS theory. The result is
shown in Figure 4 (a). We find a minimum of the noise
coefficient for intermediate levels of stress in the acti-
vated regime. Comparing the result to stochastic simula-
tion also shown in Figure 4 (a) we see that both
approximations yield the same qualitative result but the
IOS coefficient is slightly more accurate in predicting
the position and value of the minimum. Note that here
the protein level corresponds to a copy number of about
60 molecules.
Genome-wide studies in E. coli revealed that some

proteins can be expressed in much lower copy numbers
than 60 [3]. We next make use of parameter set (ii) in
Table 1 to probe the validity of the LNA under low
copy number conditions. The results for the CV are
shown in Figure 4 (b). In the absence of sRNA control
the protein levels correspond to approximately 6 protein
molecules. We observe that for such low copy numbers
the LNA is in severe qualitative disagreement with the
IOS. In particular, the LNA predicts that there exists a
stress level for which the size of the noise is minimized
while, in contrast, the IOS predicts the noise level to
increase monotonically with stress. The latter is also
reproduced by simulations using the SSA in Figure 4 (b)
which hence signals the breakdown of the LNA under
low copy number conditions.
Gene expression with negative autoregulation
Autoregulation represents a common mechanism by
which cells regulate their expression levels. Specifically

Figure 3 Stress level dependence of Fano factors for coding and non-coding transcripts. In (a) we compare the Fano factors (F) of
transcripts predicted by the LNA as a function of the parameter a with those predicted by the IOS method. Comparing (a) with the results of
the SSA shown in (b) we see that both methods, LNA and IOS, are in qualitative agreement with the stochastic simulations. However, the IOS
method matches more closely the maximum Fano factors obtained from stochastic simulations.
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in E. coli about 35% - 43% of transcription factors are
autoregulated [33,34] while in S. cerevisiae these account
for about 10% [35]. We consider the common model of
transcription and translation

(8)

where G, M and P refer to gene, mRNA and protein
species, respectively. The first order degradation reac-
tions here may also account for dilution due to cell
growth. Next we add a negative feedback loop via a
reversible phosphorylation mechanism and consequent
transcriptional repression. Protein phosphorylation is
common to post-translational regulation mechanisms
[36-39] as for instance the negative feedback loop of the
Drosophila circadian rhythm [40]. In fact, the majority
of phosphorylated proteins in yeast are transcription fac-
tors [41]. The modification is modeled explicitly via a
protein kinase K and a phosphatase R as follows

(9)

where P* denotes the phosphorylated form of protein
which can bind to the DNA and thereby inhibits its
own expression.

(10)

Note that unlike the previous case of post-transcrip-
tional regulation, here the promoter can be in one of
three states G, GP* and depending on the number
of bound protein molecules. The degradation as in the
preceding example is assumed to occur via two pro-
teases E and D

(11)

A similar model has been analyzed using the LNA and
the EMREs implemented in a previous version of iNA in
Ref. [23]. With the present version of iNA the more
accurate IOS analysis is available and is used here to
investigate the reliability of the LNA estimates of the
CVs. This presents a major benchmark for the LNA
since the analysis includes fluctuations of a single
promoter.
We start by exploring the dependence of mRNA and

protein CVs by varying the transcription rate k0 of the
promoter. Using the LNA for the parameter set given in
Table 2 we calculated the CV as a function of the

Figure 4 Protein noise is minimized at intermediate stress levels. Protein CV is shown for moderate (a) and low protein copy numbers (b)
as a function of the stress level a. In (a) we compare the LNA estimates with those of the IOS method for moderate copy numbers using
parameter set (i) in Table 1. Both methods predict that the CV reaches a minimum below the crossover point where the protein expression is
activated. The prediction is qualitatively confirmed by the SSA. Notice that the IOS method predicts larger values for the minimum CV and larger
values of a at which it is attained; this is also observed using the SSA. In (b) we compare the CV of protein concentration obtained using the
LNA and IOS methods for low copy numbers using parameter set (ii) in Table 1. The LNA shows the same dependence as in (a) with increased
noise levels. In contrast, the IOS method predicts a monotonic increase in the noise levels as the stress level is increased. The predictions of the
IOS method are qualitatively confirmed by stochastic simulations.
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average fraction of repressed promoter states. The latter
is given by the sum of the average occupation of the
protein bound promoter states GP* and and hence
represents a measure of the feedback strength. We
observe that both mRNA and the unphosphorylated
protein CVs are minimized for small values of the feed-
back strength as shown in Figure 5 (a). These predic-
tions are in excellent agreement with the results of the
SSA. Next we investigate the parametric dependence of
the fluctuations for larger values of the feedback
strength varied through the rate constant k3 of the pro-
tein-DNA association rather than the transcription rate.

In Figure 5 (b) we show that the LNA predicts that the
mRNA CV has a non-monotonic dependence on the
average fraction of repressed promoter states. In con-
trast to the LNA, the IOS analysis predicts the CV to be
a monotonically increasing function of the feedback
strength showing no maximum. We have verified this
dependence by stochastic simulations also shown in
Figure 5 (b). In contrast to the mRNA CV, the same ana-
lysis carried out for the CVs of proteins yields qualitative
agreement between LNA and SSA (Additional file 2).
This result suggests that the corrections to the LNA

are susceptible to the fluctuations in the promoter
states. In order to test this hypothesis we investigated
the oscillatory dynamics (that is often associated with
the presence of a negative feedback loop) as a function
of the gene copy number. In rapidly growing E. coli, for
instance, the copy number of chromosomal genes
located near the origin of DNA replication can be
increased by 4-fold over genes located near the terminus
[42]. Moreover genes located on plasmids can be pre-
sent in higher copy numbers than those integrated in
the genome. For synthetic circuits the plasmid copy
number can also be controlled experimentally [43,44].
Variation of the copy number typically yields elevated

protein concentrations if dosages are not compensated.
For simplicity, here we scaled the transcription rate k0
by the number of genes which yields the same steady
state expression levels for the deterministic REs inde-
pendent of the gene copy number. Figure 6 (a) shows
the oscillatory protein expression of a single gene

Table 2 Genetic expression model with negative
autoregulation

parameter Value parameter value

k0 50 (nM) ks 50h-1

kdM 5h-1 kdp 0.5h-1

k1 0.5 · (nMh)-1 k-1 1h-1

k2 0.5 · (nMh)-1 k-2 k-1
k3 0.5 k-3 450h-1

k4 50 · k3 k-4 k-3
k5 0.25 · (nMh)-1 k-5 0.5h-1

k6 5 · (nMh)-1 k-6 5h-1

10h-1 0.5h-1

450 · (nM)-1

Kinetic parameters for the model of autoregulated gene model for a volume
of 7.5 × 10-13l. Note that here the parameter is the inverse concentration of
a single molecule. The total enzyme concentration of E, K, R is given by 0.5nM
while the concentration of D is 5nM.

Figure 5 CV of mRNA and protein fluctuations in gene autoregulation. In (a) CVs of mRNA and protein levels are shown as function of the
average repressed promoter fraction by variation of the transcription rate k0. The result obtained using the LNA indicates that the CVs of mRNA
and unphosphorylated protein are minimized when the repressed promoter fraction is small (10 - 15%) which is in good agreement with
stochastic simulations. In (b) we compare the mRNA CV obtained using the LNA with the IOS as function of the average occupation of
repressed promoters varied through the protein-DNA association rate k3 which is a measure of feedback strength. While the LNA predicts the CV
to have a maximum for moderately repressed promoters the IOS analysis shows a monotonically increasing dependence on the feedback
strength with significantly smaller noise levels. The latter is confirmed by stochastic simulations.
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obtained from a SSA realization in a reduced volume of
5 × 10-14l which roughly corresponds to that of yeast
[45]. In Figure 6 (b) the same is shown for the expres-
sion of 10 genes. Notice that in contrast to the case of a
single gene, the trajectories lack apparent periodicities.
Hence we conclude that these oscillations are induced
by limited gene copies. The signature of a noise-induced
oscillation is a peak in the power spectrum of a system
for which the deterministic REs show no sustained oscil-
lations. In Additional file 3 we have verified that this is
indeed the case. We next obtained the average power
spectrum of the noise-induced oscillations from a large
number of SSA realizations and compared it to the
power spectrum that can be calculated from the LNA
[46]. Figure 6 (c) and (d) show the power spectra of

protein expression of a single gene and of 10 genes,
respectively. We note that in both cases the LNA quali-
tatively captures the presence of noise-induced oscilla-
tions since the LNA spectra exhibit a peak at a non-
zero frequency. However for the case shown in Figure 6
(c) both the oscillation amplitude (the square root of
the peak power) and period are underestimated by
about 50% percent using the LNA. In actuality, the
dampening of single cell oscillations has been observed
in synthetic circuits with varying plasmid copy number
with similar shifts in their periods [47].

Implementation
iNA is a GUI-based software which at heart is based on
the SBML description of stoichiometric reaction

Figure 6 Amplification of noise-induced oscillation by gene copy number control. Highly periodic expression of mRNAs and proteins from
a single promoter with negative feedback is shown in (a). In contrast the expression of 10 genes (b) using the same parameters attenuates the
oscillations without apparent periodicities. The average power spectrum of the protein oscillations as obtained from the SSA and the LNA is
shown for a single (c) and ten promoters (d). Note that while in (c) the LNA underestimates the amplitude of the oscillations it also fails to
accurately predict their period. The power spectrum in (d) reveals the weak oscillatory behavior of the time traces in (b) in good agreement with
the SSA. The parameters used are given in Table 2 except for a volume of 50 × 10-15l with and
where NG is the gene copy number.
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networks. With the current release we introduce model
manipulation capabilities which are tailored to fit the
needs of stochastic modeling, as well as a just-in-time
compilation engine that increases the overall execution
speed of the analysis.

Model editor capabilities
The software is based on the wide-spread SBML file for-
mat [48]. Although in common use, SBML has the
shortcoming that it is barely human readable. The pre-
sent version of iNA supports the compatible format
SBML shorthand (SBML-sh) which represents the essen-
tial SBML model structure in an easy to read and write
description language [49]. Therefore SBML-sh comple-
ments the existing SBML functionality by allowing
import and export of both formats together with an
online SBML-sh editor, see Additional file 4 (c).
Apart from this iNA’s GUI also incorporates basic

model editing capabilities. Additional file 4 (a) shows
the list of reactions which allows to add or edit reac-
tions within a dialog shown in Additional file 4 (b).
Within this dialog the propensity of the reaction is
either constructed automatically from the statistical for-
mulation of the law of mass action [23,50,51] or to be
specified by the user.

Performance
The system size expansion of the CME yields a high
dimensional system of coupled ODEs of order N2 equa-
tions for the LNA and N3 equations for the IOS analy-
sis. Parameter scans as well as numerical integration of
large systems are particularly challenging because of the
large number of function evaluations needed to obtain
accurate results. iNA’s initial release addressed this issue
by providing a bytecode interpreter for efficient expres-
sion evaluation [23]. The present version improves on
this using a just-in-time (JIT) compiler provided by the
LLVM infrastructure [30,52]. This technique provides
the means of platform specific code generation for the
system size expansion ODEs at runtime mimicking the
performance of statically compiled code.
In order to access the performance of the present

implementation we consider the model of negative auto-
regulation studied in the section Applications which
involves 14 species and 20 reactions. After conservation
analysis the model reduces to only 9 species which
yields a total number of 273 simultaneous equations for
the IOS method and it is hence well suited for direct
benchmarking purposes. This is particularly challenging
in terms of ODE integration since the mean couples to
higher statistical moments and causes the full system of
273 coupled equations to exhibit damped oscillations
(see Additional file 3). The results of the benchmarks
are summarized in Table 3 highlighting the performance

of the present version of iNA. The improvements of
iNA’s system size expansion using the LSODA algo-
rithm [53] over the previous Rosenbrock method reduce
the execution time by up to a factor of 10 using the JIT
compiler. In comparison the overall execution of the
SSA requires about half an hour and hence is computa-
tionally extremely expensive because of the considerable
number of trajectories to be averaged in order to obtain
accurate statistics.
The analysis using the system size expansion is parti-

cularly advantageous when it is performed under steady
state conditions because it can be readily obtained for
large sets of parameters as we have shown in the section
Applications. In this case the problem reduces to finding
the solution of the 9 nonlinear deterministic REs and
solving the remaining 264 linear equations (obtained
from the system size expansion) from which the noise
statistics are obtained. In Table 4 we summarize the
detailed computation times for the REs, LNA and IOS
analysis that have been employed to calculate the pro-
tein CVs (see Additional file 2 and Figure 5 (b)) showing
the protein CVs. All analyses were performed in less
than a second albeit the LNA is typically much quicker
than the more accurate IOS method. For comparison
we also show the average execution time per sample of
the SSA using a finite sampling rate. We remark that

Table 3 Performance of iNA’s time course analysis

method IOS, LSODA IOS, Rosenbrock SSA, single (ens.)

BCI 18.2s (18.5s) 59.5s (59.8s) 0.04s (0.5h)

JIT 0.9s (3.6s) 13.0s (35.8s) 0.03s (0.4h)

Execution times of iNA’s timecourse analysis for IOS and SSA for the gene
oscillatory network reproducing Additional file 3 (a) and (b), respectively. The
table compares the IOS method using the ODE integrator LSODA and
Rosenbrock in combination with a bytecode interpreter or iNA’s JIT feature.
The value in the brackets denotes the overall time including bytecode
assembly or JIT compilation. The SSA value denotes the average time for a
single run while the values in the brackets denote the extrapolated value for
an ensemble of 50, 000 independent realizations needed to generate
Additional file 3 (b). Benchmarks were performed on Ubuntu (64bit), Dell
OptiPlex 9010 SF, Core i7-3770 @ 3.4GHz using a single core.

Table 4 Performance of iNA’s steady state parameter
scan

method REs LNA IOS SSA per sample (overall)

GiNaC 0.61s 1.48s 39.93s –

BCI 0.19s 0.19s 0.39s 11ms (16h)

JIT 0.17s 0.17s 0.28s 7ms (10h)

Execution times of iNA’s parameter scan for the gene autoregulation network
reproducing Additional file 2 (a) and (b), respectively. The table compares the
REs, LNA, IOS and SSA method using the bytecode interpreter or iNA’s JIT
feature. For comparison we also show the execution time using the computer
algebra system GiNaC which is limited by its arbitrary precision arithmetic.
The SSA value denotes the average time per sample per parameter while the
values in the brackets denote the extrapolated value for a sample size of 50,
000 and 100 sets of parameter values as has been used in Additional file 2.
Benchmarks were performed on Ubuntu (64bit), Dell OptiPlex 9010 SF, Core
i7-3770 @ 3.4GHz using a single core.
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the performance of the system size expansion methods
could be increased by about 30% for the IOS and 40%
for the SSA using iNA’s integrated JIT compilation fea-
ture. We emphasize that the computation of the IOS
analysis requires the same time as computing only
40 SSA samples. In particular to reproduce Additional
file 2 and Figure 5 (b) a thousand-fold of this sample
size was needed. The advantage of the IOS method as a
complementary method to traditional means of stochas-
tic simulation is therefore readily obvious.

Methods
We consider a reaction network confined in a volume Ω
composed of N distinct chemical species reacting via R
chemical reactions of the form

(12)

Here j is the reaction index running from 1 to R, Xi

denotes chemical species i, kj is the reaction rate con-
stant of the jth reaction and sij and rij are the stoichio-
metric coefficients. Let ni be the number of molecules
of the ith species. Under well-mixed conditions, the time
evolution of the mesoscopic state can
be obtained either by Monte Carlo simulations using
the SSA [14] or directly by determining the probability

of finding the system in a particular mesoscopic
state using the CME

(13)

where is the probability per unit time and unit
volume for the jth reaction to occur [14] and

is the stoichiometry of species i in the jth

reaction. Note that both approaches are equivalent [51].

Rate equations and the Linear Noise Approximation
The CME determines the probability of observing any
combination of molecule numbers at any point in time.
Hence for closed systems the state space grows expo-
nentially with the number of species while for open sys-
tems it is generally infinite. It is this complexity which
prevents one to obtain exact analytical solutions of the
CME except in particular cases [11,12]. The most com-
mon approximation method is the LNA which has been
derived by van Kampen through the system size expan-
sion of the Master equation. In brief, the method sepa-
rates the instantaneous concentration vector into a
macroscopic part, , and the fluctuations about it:

(14)

The macroscopic part is obtained as the solution of
the conventional REs

(15)

The implicit assumption made by ansatz (14) is that in
the infinite volume limit the instantaneous concentra-
tions equal the solution of the REs. It can then be
shown that the macroscopic rate function of the jth

reaction is obtained from the relation
[30]. Since the limit is taken

at constant concentration, this implies the large mole-
cule number limit as well.
The method now proceeds by using the ansatz (14)

together with Eq. (13) in order to obtain an equation
for . The result is an expansion of the CME in powers
of the inverse square root of the volume which can be
truncated. The first term in the expansion (Ω1/2) yields
the REs. The next term (Ω0) is given by a linear Fokker-
Planck equation called the linear noise approximation of
CME. This approximation is in wide-spread use mainly
because of the simplicity of the result: the LNA solution
is given by a Gaussian distribution describing the fluc-
tuations around the macroscopic concentrations pre-
dicted by the REs. Specifically, to the order of
approximation this implies that the macroscopic equa-
tions determine the average concentrations. The covar-
iance of fluctuations sij = 〈εiεj〉 then satisfies the
following matrix equation [16]

(16)

where is the Jacobian of the
macroscopic equations (15) and is
the diffusion matrix. Using Eq. (14) we can write expres-
sions for the CVs and Fano factor of the ith species
using the definitions (2) and (3) in the main text

(17)

which are of order Ω-1/2 and Ω0, respectively.
It is well known that the means and variances of con-

centrations predicted by the LNA are exact only for
reaction networks involving at most unimolecular reac-
tions. For bimolecular reactions the LNA can be inaccu-
rate if some species are present only in low molecule
numbers. This is because for unimolecular reactions the
hierarchy of moment equations obtained from the CME
is closed, i.e., the nth moment depends only the (n - 1)th

moment and all lower order moments [54]. The equa-
tions for the first moment are given by the REs since
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the propensities are linear functions of the concentra-
tions. The equations for the second moments are a sys-
tem of linear equations for the variances and
covariances which depends parametrically on the solu-
tion of the REs and are equivalent to the LNA result.
For bimolecular reactions this is not the case since the
hierarchy of moment equations obtained from the CME
is not closed, i.e., the equations for the means involve
the covariances and similarly the equations for the cov-
ariances involve higher moments. A systematic approxi-
mation of these equations can be achieved using the
system size expansion which yields the REs and the
LNA in the limit of large volumes [22]. The latter repre-
sent a closed system of equations for the first two
moments.

Finite molecule number corrections
Finite molecule number corrections to the LNA can be
obtained by considering higher order terms in the sytem
size expansion. The latter implies that the moments
〈εkεl...εm〉 have an expansion of the form [21,55]:

(18)

For each term in the above expression an closed form
equation can be derived [21,22]. In particular to leading
order, the mean concentrations and the covariances are
given by [εi]0 = 0 and [εiεj]0 = sij which is the LNA result.
Note that for deterministic initial conditions [εiεj]1 = 0 as
shown in [21] and hence the next to leading order cor-
rections to these quantifies are given by [εi]1 and [εiεj]2
which are generally non-zero if bimolecular reactions are
considered. In order to relate the above moments back
to the moments of the concentration variables we use
Eqs. (14) and (18) to find expressions for the mean con-
centrations and covariance of fluctuations

(19a)

(19b)

Again, the leading order (Ω0) contribution to the
mean concentrations, Eq. (19a), is given by the macro-
scopic REs while the leading order contribution given by
the Ω-1 term in Eq. (19b) corresponds to the LNA esti-
mate for the variance and the covariance. Including
terms to order Ω-1 in Eq. (19a) gives the EMRE estimate
of the mean concentrations which corrects the solution
of the REs [20]. Finally, considering also the Ω-2 term in
Eq. (19b) gives the IOS (Inverse Omega Squared) esti-
mate of the variance and the covariance. From the form

of this higher order contribution it is clear that the var-
iance estimate is centered around the EMRE concentra-
tions and is of higher accuracy than the LNA method.
It now follows using definitions (2) and (3) in the

main text that the CV and Fano factor have the follow-
ing expansions in powers of the inverse volume

(20)

Again, the leading order contributions are determined
by the LNA result, Eq. (17). Note that the factors multi-
plying Ω-1 in Eq. (20) yield the relative corrections to
the LNA measures and are denoted by ci and fi in the
main text. Note also that each of these factors contains
a contribution stemming from a change in the variance
of concentration fluctuations and another one reflecting
the change in the mean of the concentrations. The
equations determining the coefficients [εi]1 and [εiεi]2
needed to compute Eqs. (20) have been derived in Refs.
[21] and [22]. As shown therein, the quantities depend
only on and the vector of reaction rate constants

. Hence the CVs and Fano factors
depend parametrically on the reaction rate constants
through the solution of the REs together with their
initial conditions.
In Additional file 5 we have verified the correctness of

iNA’s implementation of the IOS for the example of a
simple enzyme catalyzed reaction against an analytical
result obtained in Ref. [22], Eq. (74) therein. We remark
that using the IOS it is also possible to deduce the
mean concentrations accurately to order Ω -2 [21]
which is superior to the EMRE and hence can be used
as an error estimate of the method. However the var-
iance about these concentrations is of Ω-3 as can be
seen from Eq. (19b) and hence requires to consider
higher orders in the system size expansion.

Discussion
In this article we have analyzed the parametric depen-
dence of intrinsic noise in gene regulatory networks by
means of average concentrations and variances as well as
noise measures such as the CV and the Fano factor. The
leading order contributions to the average concentrations
and variances of the fluctuations as obtained from the
system size expansion are given by the deterministic REs
and the LNA respectively. The next to leading order con-
tribution are given by novel terms which we have
referred to as the EMRE and the IOS approximations
respectively. The relative size of these corrections to the
LNA are proportional to the inverse compartment
volume and to the size of the bimolecular reaction rate
constants. Hence, as we have demonstrated, these higher
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order terms can be significant for networks involving low
copy number of molecules and nonlinear reaction
kinetics as is common in gene regulation.
In the case of sRNA regulation we have found that for

highly expressed proteins the size of the noise can attain
a minimum at intermediate stress levels. This result is
in line with the LNA’s prediction and may perhaps be
advantageous as a mechanism of noise minimization in
gene expression. The LNA result predicts that such
optimization is indeed possible even for low protein
expression levels yet the EMRE/IOS analysis and sto-
chastic simulations show that this is not the case, i.e.,
the CV in the protein fluctuations increases monotoni-
cally with the stress levels.
For the case of gene autoregulation we observed that

the LNA reliably describes the CV of mRNA and pro-
tein fluctuations when the transcription rate, a first
order rate constant, is varied but gives very different
results from simulations and the EMRE/IOS analysis
when the protein-DNA association constant is varied (a
bimolecular rate constant measuring the strength of the
feedback loop). In particular in the latter case the LNA
predicts a maximum in the CV is achieved as one
increases the strength of the negative feedback loop
whereas the EMRE/IOS analysis shows that the CV
increases monotonically. We also found that the LNA
can give considerably misleading results for the ampli-
tude and period of noise-induced oscillations in the
expression of a single gene while it becomes increasingly
more accurate as the gene copy number is increased.
Hence in summary we have shown by means of these

examples that the LNA’s predictions regarding the regu-
lation of noise by genetic regulatory networks can be
quite different than those obtained by stochastic simula-
tions using the SSA. In contrast the results from the
EMRE/IOS methods agree well with those obtained
from the SSA for the examples studied here. This is sur-
prising since transcriptional feedback involves transi-
tions between internal states of a gene represented by
only one or two copies in a cell. We note that the meth-
ods presented can become inaccurate when the noise
contribution of the feedback loop dominates. However,
our methods enjoy the advantage that they can be com-
puted in a fraction of the time needed to calculate the
SSA. Hence the EMRE/IOS analysis tools implemented
in iNA 0.4 present a quick means to accurately study
the stochastic properties of biochemical reaction net-
works of intermediate or large size involving many
bimolecular reactions.

Availability
Project name: intrinsic Noise Analyzer
Version: 0.4.2

Project home page: http://code.google.com/p/intrin-
sic-noise-analyzer
Operating systems: platform independent, binaries

available for Mac OSX, Linux and Windows
Programming language: C++
License: GNU GPL v2

Additional material

Additional file 1: Coefficients of variation of coding and non-coding
transcripts as a function of stress levels. CV of coding and non-
coding transcripts in sRNA regulated gene expression as a function of
the stress level a. In (a) we see that the mRNA CV increases while the CV
of sRNA decreases as the stress level increases. Notice that the IOS
theory “linearizes” the LNA predictions around the crossover point. The
predictions are well confirmed by stochastic simulations shown in (b).

Additional file 2: Coefficients of variation of proteins in
autoregulated gene expression as a function of feedback strength.
Protein CV of the autoregulated gene expression model is shown as a
function of average fraction of repressed promoter states which are a
measure of the feedback strength. Unlike the CV of mRNAs, under low
copy number conditions the CV of unphosphorylated (a) and
phosphorylated proteins (b) predicted by the LNA is in qualitative
agreement with the IOS analysis. Notice that the IOS results more closely
match those predicted by the SSA.

Additional file 3: Amplification of damped oscillations in a single
gene negative feedback loop. Transient oscillations in the average
mRNA and protein levels from negative feedback with a single gene
copy number per cell. (a) compares the mean concentrations of the REs
and EMREs. The latter predicts an amplification of the damped
oscillations which is not captured by the REs. The result is in good
agreement with the SSA shown in (b). The parameters used are given in
Table 2 except for a volume of 50 × 10-15l, and k0 =
3 × 103(nM)-1.

Additional file 4: Improved model editing capabilities in iNA 0.4.
iNA’s GUI is equipped with a user friendly model editor. In (a) shows the
list of reaction definition along with their propensities. The reaction
editor shown in (b) facilitates the creation and editing of reactions
through their chemical equation. The propensities are generated
automatically using the law of mass action or can be specified explicitly.
(c) In addition to the standard SBML format, iNA also supports the
convenient SBML shorthand format which allows the specification of the
essential model structure using a simple markup language.

Additional file 5: Verification of iNA’s implementation. We have
verified the soundness of our implementation by comparison with the
analytical result using the IOS derived in Ref. [22]. The graph shows the
ratio of the IOS and LNA variance (given by the contributions up to
orders Ω-1 and Ω-2 of Eq. (19b), respectively) obtained from the system
size expansion (SSE) against the fraction δ of free enzyme per total
enzyme concentration at steady state. This is also compared to the SSA
where the ratio of SSA and LNA variance has been used.
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