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Abstract

extracting the regions assembled with high confidence.

https://sites.google.com/site/hmatsu1226/software/mixsih.

Background: Haplotype information is useful for various genetic analyses, including genome-wide association
studies. Determining haplotypes experimentally is difficult and there are several computational approaches that
infer haplotypes from genomic data. Among such approaches, single individual haplotyping or haplotype
assembly, which infers two haplotypes of an individual from aligned sequence fragments, has been attracting
considerable attention. To avoid incorrect results in downstream analyses, it is important not only to assemble
haplotypes as long as possible but also to provide means to extract highly reliable haplotype regions. Although
there are several efficient algorithms for solving haplotype assembly, there are no efficient method that allow for

Results: We develop a probabilistic model, called MixSIH, for solving the haplotype assembly problem. The model
has two mixture components representing two haplotypes. Based on the optimized model, a quality score is
defined, which we call the ‘minimum connectivity’ (MC) score, for each segment in the haplotype assembly.
Because existing accuracy measures for haplotype assembly are designed to compare the efficiency between the
algorithms and are not suitable for evaluating the quality of the set of partially assembled haplotype segments, we
develop an accuracy measure based on the pairwise consistency and evaluate the accuracy on the simulation and
real data. By using the MC scores, our algorithm can extract highly accurate haplotype segments. We also show
evidence that an existing experimental dataset contains chimeric read fragments derived from different haplotypes,
which significantly degrade the quality of assembled haplotypes.

Conclusions: We develop a novel method for solving the haplotype assembly problem. We also define the quality
score which is based on our model and indicates the accuracy of the haplotypes segments. In our evaluation,
MixSIH has successfully extracted reliable haplotype segments. The C++ source code of MixSIH is available at

Introduction

Human somatic cells are diploid and contain two homo-
logous copies of chromosomes, each of which is derived
from either paternal or maternal chromosomes. The two
chromosomes differ at a number of loci and the most
abundant type of variation is single nucleotide poly-
morphism (SNP). Most current research does not deter-
mine the chromosomal origin of the variations and uses
only genotype information for the analyses. However,
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haplotype information is valuable for genome-wide asso-
ciation studies (GWAS) [1] and for analyzing genetic
structures such as linkage disequilibrium, recombination
patterns [2], and correlations between variations and
diseases [3].

Let us consider a simple example to demonstrate the
importance of haplotype information. Suppose that in a
gene coding region, there are two SNP loci, each of
which has an independent deleterious mutation in either
one of the two homologous chromosomes. If both of the
two deleterious mutations are located on the same chro-
mosome, the other chromosome can produce normal
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proteins. On the other hand, if each chromosome con-
tains either one of the two deleterious mutations, the
cells cannot produce normal proteins. It is not possible
to distinguish these two cases with only genotype
information.

There is a group of algorithms for haplotype inference
that statistically construct a set of haplotypes from popula-
tion genotypes [4-8] Review see [9]. These algorithms have
been developed in response to technological advances
such as SNP arrays that efficiently measure personal geno-
types at a genomic scale. The algorithms infer haplotype
blocks based on the assumption that the variety of combi-
nations of alleles is very limited. Therefore, these algo-
rithms fail to identify correct haplotypes in regions with
low linkage disequilibrium (LD) where there are frequent
recombination events. These algorithms also cannot iden-
tify spontaneous mutations. These difficulties are partially
resolved by using genotypes of pedigrees. However, family
data are not always available, and furthermore, they cannot
determine the haplotypes of the loci at which all the family
members have the same genotype.

Another group of algorithms is single individual haplo-
typing (SIH) or haplotype assembly. These algorithms
infer the two haplotypes of an individual from sequenced
DNA fragments [10-17]. These algorithms take as input
the read fragments that are aligned to the reference gen-
ome, and output the two assembled haplotypes (Figure 1).
The algorithms utilize the fact that each read fragment is
derived from either one of two chromosomes, though the
observed data are a mixture of fragment data from both
the chromosomes. If a read fragment spans two or more
heterozygous loci, the haplotype can be determined for
these sites from the co-occurrence of alleles in the frag-
ment. Two read fragments are determined to originate
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from the same chromosome if they overlap at a region
that has at least one heterozygous locus, and they have the
same alleles at these loci. In this case, we obtain a larger
haplotype-resolved region by merging the two fragments.
The SIH problem is complicated because the fragment
data contain many inconsistent fragments caused by
sequencing or mapping error.

SIH algorithms did not attract much attention until
recently, since the read fragments of next-generation
sequencing experiments are not long enough to span mul-
tiple heterozygous loci, which exist at only one in one
kilo-base on average [18], and the Sanger sequencing that
produces long read fragments is too expensive to be con-
ducted at a genomic scale. However, this situation is chan-
ging rapidly with the advent of real-time single-molecule
sequencing technologies, which are able to sequence DNA
fragments as long as 50 kilo-bases [19], and with the devel-
opment of a novel experimental technique called ‘fosmid
pool-based next-generation sequencing’ [13,20,21], which
randomly assigns a bar-code to each read cluster that is
derived from the same region in the same chromosome.
Because of these advances in experimental techniques,
SIH has emerged as one of the most promising approaches
for analyzing the haplotype structures of diploid
organisms.

The haplotype information which contains errors is
likely to lead to wrong results in downstream analyses.
For example, in detecting the recombination events from
the parent-offspring haplotypes [22], the haplotyping
errors are regarded as recombination events by mistake.
Another example is that haplotyping errors considerably
decrease the detection power of amplified haplotypes in
cancer [23] and fetus haplotypes [24]. To use haplotype
information in downstream analyses while avoiding such
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Figure 1 An illustration of SIH. An illustration of single individual haplotyping (SIH). The input data for SIH are the SNP fragments (B) which are
extracted from the heterozygous alleles in aligned DNA fragments (A). SIH algorithms (C) reconstruct the original haplotypes (D) from the SNP
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harmful influence of haplotyping errors, it is important
not only to assemble haplotypes as long as possible but
also to provide means to extract highly reliable haplotype
regions. In the statistical haplotype phasing, reliable hap-
lotype regions are determined by selecting the blocks of
limited haplotype diversity and level of LD [25-27].
Although there are many algorithms for SIH, none of
these algorithms can provide confidence scores to extract
reliable haplotype regions.

The algorithms for SIH are classified into two strate-
gies; most of the previous algorithms use deterministic
strategies [10-13,15,17] but a few take a probabilistic
modeling approach [14,16]. The deterministic algorithms
usually include solving the MAX-CUT problem of graph
theory [28] in their computational procedures in order to
partition the set of the input fragments into two groups
representing the two haplotypes. Because these algo-
rithms are designed to optimize only a certain global
score function that measures the number of inconsistent
fragments and do not model the fragments and haplo-
types themselves, it is difficult to produce confidence
scores for each region of the assembled haplotypes.

On the other hand, the probabilistic approaches of Kim
[14] and Li [16] assume that each observed fragment is
sampled from one of the two unobserved haplotypes.
Unlike the deterministic approaches, probabilistic models
allow the computation of various expected values and
confidence values from the Bayesian posterior distribu-
tions. For example, Kim [14] and Li [16] defined a confi-
dence value for the haplotype reconstruction of each
segment of SNP loci. Unfortunately, those researchers
chose a model structure for which the exact computation
of the likelihood is extremely computationally intensive.
Because the complexity of this summation is exponential
in the number of SNP sites, only the posterior probabil-
ities of the haplotypes for neighboring loci are consid-
ered. The complete haplotypes are reconstructed by
connecting plausible haplotypes of neighboring pairs
according to their posterior probabilities. Hence, their
approach cannot take into account the full information
of fragments that span three or more SNP loci. Their
confidence scores for haplotype segments include a sum-
mation over all the possible haplotypes, and it is not pos-
sible to compute their confidence scores for all the
possible segments in the assembled haplotypes.

In this paper, we develop a novel probabilistic STH
model that is very different from the probabilistic models
of Kim [14] and Li [16]. Our model takes a ‘mixture
model” approach: each fragment is emitted completely
independently of the other fragments. In contrast, Kim
[14] and Li [16] took a ‘hidden variables” approach: all the
fragments are correlated through hidden haplotype vari-
ables (see the Additional file 1 for further explanation).
This difference allows us to compute the likelihood with a
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computational time proportional to the total length of the
input fragments. We use the variational Bayes expectation
maximization (VBEM) algorithm [29] to compute the
approximate posterior distribution of the haplotypes. By
using the optimized distribution, we compute the ‘mini-
mum connectivity’ (MC) score for each segment in the
reconstructed haplotypes; this measures whether the seg-
ment is free from switch errors. We show that we can
extract accurately assembled regions by selecting regions
with high MC scores. We also analyze a recent dataset
from fosmid pool-based next-generation sequencing and
find evidence that the processed dataset contains chimeric
fragments derived from the erroneous merging of read
clusters in different haplotypes, which degrades the quality
of assembled haplotypes significantly.

Methods
Algorithms and implementation
Notation
Throughout the paper, we denote the number of ele-
ments of any set A by |A|, and the direct product set
u by A®”. Let X = {1, 2, ..., M} be the set of
n
SNP loci, and H = {0, 1} be the two haplotypes. It is
convenient to introduce a phase vector ® = ¢ ... ppr.
The pair ¢; = (¢;0, ¢j1) is referred to as phase, and
represents the two alleles of haplotype 0 and 1 at site j,
respectively. Because the haplotype assembly problem is
trivial for homozygous sites, and because it is usually
much easier to determine the genotype than to deter-
mine the haplotypes, it is often convenient to restrict
the SNP loci X to heterozygous sites. Furthermore, if
sequence-specific sequencing errors are not considered,
it is convenient to use a simple binary representation of
alleles; we randomly assign O to one of the two alleles at
each heterozygous site j, and 1 to the other allele. In this
case, the set of alleles is denoted by X = {0, 1}, and the set
of possible phases is denoted by A = {(0, 1), (1, 0)}. We
assume this binary representation throughout the paper.
Let F = {f]]i =1, ..., N} be the set of input frag-
ments which are supposed to be aligned to the refer-
ence genome, and each fragment f; takes value f;; € X
at locus j € X if a nucleotide is aligned and equal to
one of two alleles, and f;; = & if fragment f; is una-
ligned, gapped, ambiguous, or a base different from the
two alleles, at site j. For any subset X’ € X, we say frag-
ment f; spans the sites X’ if f;; = @ for all j e X°. We
refer to the subset of X spanned by fragment f as X( f).
We say fragment f; covers site j if there exists a pair of
spanning two different (possible non consecutive) SNP
sites ji, jo € X(f;) such that j; < j < j,. The set of frag-
ments that cover site j is denoted by F°(j). Further, we
refer to the set of all the possible haplotypes for sites
X(f3) as A(f;) = ABXUIL
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The SIH problem takes a set of aligned SNP frag-
ments F as input and outputs a hidden phase vector @
(Figure 1). Because the SIH problem does not associate
the inferred haplotypes Hwith the real paternal and
maternal chromosomes, the switched configuration
@ =9¢1--0om ¢ = (@5 ¢i) with 0 =1 and T = 0, must
be regarded as a completely equivalent prediction.
Therefore, SIH has no meaning if there is only one het-
erozygous site, and it is only meaningful if one consid-
ers co-occurrences of alleles on the same haplotype for
two or more heterozygous sites.

Mixture model
We model the probabilistic distribution of the observed
fragments F by

N
P(FIO)= 3 [T 30 Pl o) (),

HeH®N i=1 oeA(f;)

p(@M) = TT rP(e™),
jeX(fi)

where © represents a set of parameters defined later,
o ¢ A(f;) represents a partial haplotype reconstruction
over the sites X(f;) spanned by fragment f;, H = h; . . .
hy where h; € H represents the haplotype origin of frag-
ment f;, p™(h) is the mixture probability of haplotype
h; € H, and pfb (v) is the probability that phase v e A is
instantiated at site j. We define the probability of emit-
ting fragment f; from haplotype /; given a fixed phase
vector @ as follows.

P(filhi, @) = [T r°(filel)
jeX(fi)

where,

. , (1—a)foro=0'
p(a|0)={a foro #o’

is the probability that we observe 6 € X when the true
allele is 0" € ¥ and o represents the sequence error rate
which we assume is independent of fragments and
positions.

We take « as a fixed constant because it is better esti-
mated from other resources rather than from only the
bases at the SNP sites. For example, we may estimate o
by using the all the read sequences or by using informa-
tion from other dedicated studies about sequencing and
mapping errors. In the following, we use o = 0.1 unless
otherwise mentioned and the dependency of the « is
described in Additional file 1. We further assume the
mixture probabilities are equal, p”"(0) = p”*(1) = 0.5, as
they often converge to around 0.5. Therefore, the
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parameter set ® that needs to be optimized consists
only of the set of phase probabilities: ® = {0;,} = {p}b (v)).

Let Zijy be the indicator function that is one if fragment
f; is derived from haplotype /4, X(f) includes j, and the hap-
lotypes have phase v at site j, and that is zero otherwise.
ZLinjy is uniquely determined if the haplotype origins H =
{hli = 1,..., N} and phase vectors ¥ = {d)(i)|i =1,...,N}
of fragments F are specified. Then the marginalized likeli-
hood P (F|@®) is given by

P(F|®) = Y "P(F, H, ¥|0),
HW¥
log(P(F, H, ¥|®)) = Nlog(0.5)+

N
Z Z Z ZIihjv[Mihjv +log6;,],

i=1 heH jeX(f;) veA
Winjv = 10g(p* (fijlvn))-

We explain the difference between our model and the

models of Kim [14] and Li [16] in Additional file 1.

The minimum connectivity score

As described above, the two haplotypes H in the SIH
problem have no particular identity and it is not possible
to predict which of them converges to the actual paternal
or maternal chromosome. In relation to this, the likeli-
hood function P (F, H, ¥|®) has a symmetry between the
switched configurations: P(F,H, ¥|®) = P(F, H, ¥|®),
where H={hli=1,...,N) and ¥ = {&®D|i=1,...,N}
represent the configuration that all the haplotype origins
of the fragments are exchanged, and © = {0;,}, 6, = 0;; are
the switched phase probabilities. Therefore, the marginal
likelihood P(F|®) =} "4y P(F, H,¥|®) is symmetric for
the two parameter sets: P(F|®) = P(F|®).

Suppose that the probabilistic model is optimized for
two segments of SNP sites between which there are no
connecting fragments, then the association of the haplo-
types {0, 1} to the true paternal and maternal chromo-
somes are selected at random for each segment. Even if
there are several connecting fragments, the associations
in each segment are determined almost randomly if the
number of connecting fragments is not sufficient or
there are many conflicting fragments. Such sites often
cause switch errors. We define the connectivity at site jj
as a log ratio of the marginal log likelihoods:

P(F|©) P(F(jo)|©)
P(F|®/)) =log <P(Ff(j0)|®/)>

Where O = {6;,} with 0, = 6y for j <j, and 8;, = 0;y for
j = jo. The second equality follows from the symmetry
of P (F|®) described above, and shows that only the
fragments covering site j, are necessary to compute the
connectivity of site jo. The connectivity measures the
resilience of the assembly result against swapping the

connectivity(jo) = log (
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two haplotypes 0 and 1 in the right partj = j,, . . .,
M of the sites. We refer to this change of parameters
® — O’ as twisting the parameters at site j.

For each pair of sites (ji, j2) (j1 < j»), we define the
minimum connectivity (MC) score as

MC(ji1, j2) = min connectivity(j).
J1<J=)2

We extract confidently assembled regions by selecting
the pairs (j;, j) with high MC values. From the above
definition, it is obvious that if the MC value is higher
than a given threshold for some pair (jj, j»), then all the
pairs inside range [j;, j»] have MC values higher than
the threshold. In this sense, MC(j;, j,) can be consid-
ered as defined on the range [j;, jo].
Variational bayesian inference
We use the VBEM algorithm to optimize the parameters
O [29]. We approximate the Bayesian posterior distribu-
tion P (H, ¥, O©|F) with factorized variational functions
QH, ¥, ©) = Q"™ (H, ¥) -Q®(®) such that the Kullback-
Leibler divergence KLpwe(Q(H, ¥, ©)||P (H, ¥, ©|F))
between the two distributions is minimized. The solu-
tion to this optimization problem has the form

N
QM (H, v) = Z:“’ exp (Z Z Z ZL;,]'., lOg(,Bihju)) ,

i=1 heH jeX(f;) veA

M
Q°(©) = [ [ Dir(8)1)),
j=1

where Z'Y is a normalization constant, Binjy and 4,
represent the hyperparameters that specify the posterior
distributions, and Dir(6;|A;) is the Dirichlet probability
distribution of |A| parameters. Because Q"™(H, ¥) and
Q®(®) are connected through the dependencies among
the hyperparameters, they cannot be found simulta-
neously. Therefore, we optimize B, and 4;, by an itera-
tive method.

In our model, the parameters often converge to sub-
optimal solutions, because switch errors existing in the
sub-optimal configurations are not removed by gradual
parameter changes. Therefore, we apply a heuristic pro-
cedure that re-runs the VBEM several times with
twisted parameter configurations after every conver-
gence:

1. Do VBEM and calculate the connectivities for all
the sites.

2. Do another VBEM with a parameter set A that is
twisted at a site with low connectivity.

3. Repeat until convergence.

Here, the twist of hyperparameters A = {4} is defined
similarly to that of parameters ® = {6,,}. We describe
the details of this procedure in Additional file 1.
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Inferring haplotypes
We set P;b (v) to the posterior mean estimate of ;, with
respect to the converged posterior distribution:

Aju
Zv/ )‘jV’

We select the phase v at site j for which this p]g’ (v) is
the highest. We limit the predicted haplotype segments
to the regions with high MC values.

Possible extensions of the model

In this paper, we consider only the binary representation
of heterozygous sites. We also constrain the error rate
to be constant throughout the sequence. However, some
of these constraints are easily removed. We can include
homozygous sites and four nucleotide alleles by expand-
ing the phase set A. For example, the phase set of a
multi-allelic variant is represented like A = {(A,C),(A,G),
(C,A),(C,G),(G,A),(G,C)}. We can even include small
structural variations if they can be represented by addi-
tional allele symbols and the phase set of a structural
variant is represented such as A; = {(A,-),(-,A)} for indel
and A, = {("AC","ACAC”"),("ACAC”,"AC”")} for short tan-
dem repeats. With these extensions, the accuracy of
genotype calling of multi-allelic variants from sequen-
cing data might be improved by considering haplotypes
simultaneously [30] and the accuracy and the recall of
the haplotype region might be improved because all var-
iant sites add information to infer the derivation of the
fragments. Furthermore, we can make the error prob-
ability matrix p°(c|o’) dependent on the alleles of each
fragment, which may be useful for incorporating the
quality scores of sequenced reads.

ﬁm=fm%%@p

Datasets and data processing
Dataset generation
Simulation data were created through a strategy similar
to the one reported by Geraci [31]. We first generated
M binary heterozygous phase vectors and then we gen-
erated SNP fragments by replicating each haplotype ¢
times and randomly dividing them into subsequences of
length between [; and /,. We then randomly flipped the
binary values of the fragments from 0(1) to 1(0) with
probability e. In the following, we use M = 1000, ¢ = 5,
l; = 3,1, =7 and e = 0.1 unless otherwise mentioned.
For the real data, we used the dataset of Duitama’s
work [13], who conducted fosmid pool-based next-gen-
eration sequencing for HapMap trio child NA12878
from the CEU population. NA12878 had about 1.65 x
10° heterozygous sites on autosomal chromosome and
the haplotypes of about 1.36x10° sites were determined
by a trio-based statistical phasing method [18]. In the
fosmid pool-based next-generation sequencing, the
diploid genomic DNA was fragmented into pieces of
length about 40 kilo-bases, and partitioned into 32 pools
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with low concentration, so that the fragments were long
enough to span several heterozygous sites and each pool
rarely contained homologous chromosomal regions of
different haplotypes. Each pool was sequenced separately
using a next-generation sequencer and the read data
were mapped onto the reference genome. Since a read
cluster in which the reads were close to each other and
had the same pool origin were supposed to originate
from the same DNA fragment, the alleles observed in
the same cluster were merged into a SNP fragment.
Duitama [13] converted the fragment data to a binary
representation by collecting only the alleles of the het-
erozygous sites determined by the 1000 genomes pro-
ject. The coverage of the data was about 3.03. We used
the trio-based data and the sequencing data in binary
format for our experiment.

The normalized linkage disequilibrium D’ for the CEU
population was downloaded from the HapMap Project [2].

We compared our MixSIH software with ReFHap [13],
FastHare [17], DGS [15], which were implemented by
Duitama [13], and HapCUT [11]. We selected these algo-
rithms because they have been shown to be superior to
other algorithms [13].

For the comparison of the runtimes, we generated
simulation data with M = 100, 200, 500, 1000. We
repeated the measurement 10 times for each M and the
average runtimes are reported here. The computations
were performed on a cluster of Linux machines equipped
with dual Xeon X5550 processors and 24 GB RAM.

Accuracy measures

As described in the introduction, our algorithm is focus-
ing on extracting the reliable haplotype regions. To
examine whether we have succeeded in extracting the
reliable haplotype regions, an accuracy measure which
evaluates the quality of the piecewise haplotype regions
is needed. However, existing accuracy measures are
designed to compare the efficiency between the algo-
rithms and are not suitable for evaluating the quality of
the piecewise haplotype regions.

Let @ be the true haplotypes, and ® be inferred haplo-
types. Because the inferred haplotypes ® are sets of par-
tially assembled haplotype segments ® = (O, @5, ...,
@) where each of @, is independently predicted, the
accuracy measures have to be applicable for such
predictions.

Many previous papers used the Hamming distance to
measure the quality of assembled haplotypes [31]:

1 -
R((Do) =1—- M min [D(q)OI (1)([)), D(q>0, (D([)):I ,

M
D(®, @)=Y I(gn=¢p)

j=1 heH
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where @, represents a fully assembled haplotype pre-
diction and I(a = b) represents the indicator function
which assumes 1 if a = b and 0 otherwise. A simple
modification of the above formula to the partially
assembled haplotype segments might be

B
1 . _
R(®)=1- > min [D(d>;,, o), D(®,, cpl‘f))].
b=1

However, this definition is inconvenient because the
minimization is applied for each segment and this accu-
racy measure can always be improved just by breaking a
segment into smaller pieces at random positions.

The switch error rate [13] is another measure used for
comparing SIH algorithms. A switch error is defined by
the inconsistency between ® and @ at neighboring het-

erozygous sites: (¢j, @j1) = (goj(t), _j(f)l) or (@J,(t), ](f)l ).
The switch error rate is defined by the total number of
switch errors divided by the total number of neighboring
pairs of heterozygous sites in all the segments. Although
the switch error rate is useful for comparing different
algorithms, it does not reflect the global influence of
switch errors. Figure 2(B) shows the example of the case
that the switch error rate is not suitable to evaluate the
quality of the segments. A single switch error in the mid-
dle of a reconstructed haplotype segment has a greater
influence on downstream analyses such as detecting
amplified haplotypes [23] than a switch error located at
an end of the segment (top and middle of Figure 2(B)).
Two contiguous switch errors, which are likely to be
caused by sequencing error or genotyping error, do not
disrupt the consistency between front and back parts of
the haplotype segments. However, such two contiguous
switch error disrupt twice in terms of switch error rate
(bottom of Figure 2(B)).

Here, we propose another simple accuracy measure
based on the pairwise consistency of the prediction with
the true haplotypes. This pairwise consistency score is
inspired by the D’-measure of linkage disequilibrium
where the statistical correlations among population gen-
omes are measured for pair sites. Similarly to the switch
error, a pair of heterozygous sites j and j’ (j < ') is defined

as consistent if (¢j, ¢y) = (go].(t), q)}t)) or (gb-(t)

, q")]st) ), and
inconsistent otherwise. A pair (j, ') in a haplotype seg-
ment is consistent if there is no switch error in range [},
j] and inconsistent if there is one switch error in the seg-
ment. If there are uncontrolled number of switch errors
in range [j, /'], the probabilities that pair (j, /) is consistent
or inconsistent are both 0.5, which is equivalent to select-
ing a random phase at each site (Figure 2(A)). For each
haplotype segment, we count the consistent and inconsis-
tent pairs. The total numbers of consistent and inconsis-

tent pairs over all the haplotype segments are denoted by
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Figure 2 An illustration of pair consistency. Consistency of pair sites. A. a. We assume that the two true haplotypes are the sequences of all 0
and all 1. b. Inferred haplotypes contain switch errors indicated by the arrows: (i) a consistent pair, (i) an inconsistent pair, and (iii) if there are an
uncontrolled number of switch errors between a pair, the probabilities of being consistent or inconsistent are both 0.5. B. The example of the
case that switch error rate is not suitable to evaluate the quality of the segment. The consistency of a reconstructed haplotype which has single
switch error in the middle (top) is high than a reconstructed haplotype which has single switch error located at an end of the segment, but
switch error rate cannot distinguish these situations. Two contiguous switch errors, which are caused by sequencing error or genotyping error
and do not disrupt the consistency between front and back parts, are regarded as twice of a single switch error in switch error rate (bottom).

11111011111

CP and IP, respectively. We define precision by CP/(CP +
IP). This is used as the measure of accuracy in the later
sections. Unlike the switch error rate, this precision
accounts for the global influence of switch errors because
a switch error in the middle of a haplotype segment leads
to a much smaller CP than switch errors at an end of the
segment.

We define the total prediction space as follows. We con-
sider a graph whose nodes are the set of all the heterozy-
gous sites. We connect two nodes by an edge if there is a
fragment spanning both the sites. We collect all the con-
nected components with at least two nodes and consider
each of the corresponding clusters of heterozygous sites as
an independent segment. The total number of pairs is the
sum of the numbers of all the pair sites over the segments.
Although it is rare, there are cases in which some seg-
ments consist of noncontiguous heterozygous sites. For
example, segment sets such as {(1, 4, 5), (2, 3)} and {(1, 3),
(2, 4, 5); may occur for the consecutive heterozygous sites
(1, 2, 3, 4, 5). We define recall as the ratio of the predicted
pairs divided by the total number of pairs. Because the
previous algorithms provide no score to limit the predic-
tion to highly confident regions, recall is always nearly
equal to one for these algorithms. On the other hand, our
algorithm is able to make predictions with high precision
at the expense of reduced recall.

A more detailed discussions of other accuracy mea-
sures is given in Additional file 1.

Potential chimeric fragments

The processed sequence data derived from fosmid pool-
based next-generation sequencing might contain chi-
meric fragments if a pool contains DNA fragments
derived from the same region of different chromosomes
and reads with different chromosomal origins are merged

into a single SNP fragment. By using the trio-based hap-
lotypes, we compute the ‘chimerity’ of each SNP frag-
ment f by measuring the change of its likelihood after
breaking it into two pieces:

chimerity(f) = — 10g( maxpex Po(f1h) ) ,

maxjex ) herPo (f <jIh)Po(f>;lh)

Po(fIh) = (1 — ao) "XV ="0),

where u(f, h) is the number of sites at which the frag-
ment f matches with the true haplotype 4, f.; and f.;
represent the left and right parts of fragment f divided
at site j, and oy = 0.028 is the empirical sequence error
rate computed by comparing the true haplotypes and all
the SNP fragments. We removed potential chimeric
fragments with chimerity higher than a given threshold.
We recomputed the accuracies for this removed dataset
and compared them with those for the original dataset.

Results and discussion

Comparison of pairwise accuracies

We examined whether MixSIH can extract the accurate
haplotypes regions by using MC. Figure 3 shows the
accuracies derived from counting the consistent pairs.
The x-axis is the number of predicted pairs (CP+IP) and
the y-axis is the precision (CP/(CP+IP)). We have also
shown the accuracy for the prediction without the haplo-
type assembly where the phase of each pair is determined
by majority voting of spanning fragments. Figure 3A
shows that the precisions of all the algorithms are around
0.5-0.6 at recall ~ 1.0, indicating that there are many
switch errors in the predictions and the quality of
assembled haplotypes are not much different from pick-
ing phases randomly. By increasing the MC threshold,
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the precision of MixSIH improves rapidly and becomes
close to one around MC = 4 at recall 0.07. The recall of
unassembled haplotypes is about 0.005 with precision
0.93, which is 20 times smaller than the recall 0.1 of Mix-
SIH at the same precision. For the real dataset, the preci-
sion of the algorithms is around 0.85 at recall ~ 1.0,
which is much higher than the precision for the simula-
tion dataset. This is because there are many small frag-
ment clusters for which the correct haplotypes are easily
predicted. The accuracy of MixSIH can still be improved
with precision up to 0.95 at the expense of deleting about
3/5 of weakly supported pairs from the prediction. How-
ever, it does not reach the precision of unassembled hap-
lotype prediction. We discuss this issue in the next
subsection.

Effects of potential chimeric fragments

Inspecting the switch errors in the prediction for the
real dataset, we found that there are potential chimeric
fragments that have a considerable effect on the pairwise
accuracies. A chimeric fragment is defined as a fragment

whose left and right parts match different chromosomes
very well. Such fragments can occur in fosmid pool-
based next-generation sequencing data. We show the
chimerity distribution in Additional file 1. We computed
the accuracy of MixSIH for a fragment dataset in which
the fragments with chimerity higher than a given thresh-
old are removed. We experimented with several chimer-
ity thresholds and we found that the accuracy improves
with decreasing chimerity thresholds and saturated at
about chimerity threshold 10, which corresponded to
the case that only 1.65% (4,482/271,184) of the frag-
ments were removed. We show the accuracies for differ-
ent chimerity thresholds in Additional file 1. We also
show that the fragments whose chimerity is over 10 are
indeed chimeric in Additional file 1. Figure 4 shows the
precision curves for the dataset of removed fragments.
The accuracies are considerably higher for this dataset,
and the precision now reaches that of the unassembled
prediction at recall 0.5 with MC threshold 6.0. We also
show the effects of chimeric fragments on simulation
data in Additional file 1.
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These results suggest that more careful data proces-
sing to avoid spurious chimeric fragments is necessary
to obtain high-quality haplotype assembly.

Incorporation of the trio-based data

Although the trio-based statistical phasing method can
determine most of the phases of the sites, there still
exist SNP sites whose phases cannot be determined by
this method. SIH is capable of determining the phases
which are not determined by the trio-based data, and
we can obtain more complete haplotypes data by com-
bining both of the SIH-based data and the trio-based
data. To examine how many phases of the sites can be
determined anew by combining both of the SIH-based
data and the trio-based data, we devise a method that
combines both information to determine the phases (see

the Additional file 1). By using this method, about 82%
(237,950/291,466) of the phases of the sites which are
undetermined by trio-based data could be determined
anew and totally about 97% (1,601,381/1,654,897) of the
phases could be determined by both the methods. This
result suggests that almost all of the phases of the sites
can be determined by using both of the SIH-based data
and the trio-based data.

Spatial distribution of MC values

Figure 5A shows an example of the spatial distribution
of the MC values for the real dataset. The regions that
are densely covered tend to have large MC values. On
the other hand, the MC values are low in chromosomal
regions with sparse heterozygous sites because few frag-
ments span two or more sites. Figure 5B shows the
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Figure 5 Spatial distribution of MC and LD. A. A colored density plot of the MC values and the number of fragments. The x-axis represents
the co-ordinates of heterozygous sites. The actual locations of the sites in genome coordinates are shown by thin black diagonal lines and the
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densities represent the number of fragments spanning the pair sites. B. A colored density plot of the precisions (upper) and the absolute

density plot of MC values which are converted to the
corresponding precisions using the graph of Figure 5B,
and the absolute normalized linkage disequilibrium |D’|.
SIH can accurately infer the haplotypes in many regions
with low linkage disequilibrium, but there are also
regions with reduced precision and high |D’| values.
This suggests that the accuracy of predictions might be
improved by using both pieces of information.

Dependency of MC values on the fragment parameters

Figure 6 shows the dependency of MC values on the
quality of the input dataset. In these figures, the mini-
mal MC threshold that achieves precision > 0.95 (y-
axis) is plotted for different fragment length ranges [/},
l,] (three panels), coverages c (three lines), and error
rates e (x-axis). They show that the MC threshold must
be increased to obtain high-quality assembly for low-
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coverage, highly erroneous data, while it has a minor
dependence on the typical fragment length. However,
the overall scale of the MC threshold changes relatively
moderately and it is bounded above at MC = 6 for the
tested cases. We also calculated the dependency of MC
values on the input dataset which include chimeric frag-
ments and the results were almost the same (see the
Additional file 1). Hence we set the default MC thresh-
old to 6.0 in our software.

Optimality of inferred parameters

We use a heuristic method for parameter optimization to
avoid sub-optimal solutions. To test whether the opti-
mized parameters actually reach the global optimum, we
compared the log likelihood of the optimized parameters
with the approximate maximal log likelihood obtained by
optimizing the parameters with an initial condition in
which the optimal solution falls into the set of true hap-
lotypes; we add one to the Dirichlet parameters for the

true phase probability: that is, A;, = )Lﬁ? )y 1ifv= go].(t)and

Ay = )\](f ) otherwise, where )Lj(f) is hyperparameters of the
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Dirichlet distribution and <pl.(l) is the true phase at site j.

Figure 7 shows the changes of the log likelihood for each
twist operation. It also shows the connectivity values at
the sites where the parameters A are twisted. The log
likelihood increases monotonically and reaches the
approximate maximal likelihood after 50 twist iterations.
The connectivity values also increase monotonically in
most cases. The figure implies that the parameters con-
verge to the global optimum upon repeating the twist
operation.

Comparison of running times

Figure 8 shows the runtimes of the test programs. Ban-
sal released the faster version of HapCUT recently, so
we calculated the runtimes of both latest and previous
version of HapCUT. Our method applies the VBEM
algorithm repeatedly and hence is rather slow. It is com-
parative to HapCUT (previous versoin) and about 10-fold
slower than both ReFHap and HapCUT (latest versoin),
and from 50-fold to 500-fold slower than both FastHare
and DGS. Considering that NA12878 has about 1.23 x
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Figure 8 Running times. The running times of the tested algorithms. The x-axis is the number of sites. The y-axis is the running time in
seconds. Both are displayed on a logarithmic scale.
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10° heterozygous sites on chromosome 1, it is roughly
estimated that MixSIH takes about 15 days to finish
haplotyping for the data whose connected component
includes all heterozygous sites, and MixSIH is still man-
ageable for such chromosome-wide data.

Conclusions

With advances in sequencing technologies and experi-
mental techniques, single individual haplotyping (SIH)
has become increasingly appealing for haplotype deter-
mination in recent years. In this paper, we have devel-
oped a probabilistic model for SIH (MixSIH) and
defined the minimal connectivity (MC) score that can
be used for extracting accurately assembled haplotype
segments. We have introduced a new accuracy measure,
based on the pairwise consistency of the inferred haplo-
types, which is intuitive and easy to calculate but never-
theless avoids some of the problems of existing accuracy
measures. By using the MC scores our algorithm can
extract highly accurate haplotype segments. We have
also found evidence that there are a small number of
chimeric fragments in an existing dataset from fosmid
pool-based next-generation sequencing, and these frag-
ments considerably reduce the quality of the assembled
haplotypes. Therefore, a better data processing method
is necessary to avoid creating chimeric fragments.

Our program uses only read fragment data derived
from an individual. However, it is expected that more
powerful analyses could be made by combining SIH
algorithms with statistical haplotype phasing methods
that use population genotype data. An interesting possi-
bility would be to construct a unified probabilistic
model that infers the haplotypes on the basis of both
kinds of data.

Additional material

Additional file 1: This file includes the explanation of our model,
detail of the parameter optimization and some additional analyses.
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