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Abstract

our heuristic algorithm can give very accurate solutions.

fragments is high.

Background: Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation in human
DNA. The sequence of SNPs in each of the two copies of a given chromosome in a diploid organism is referred to
as a haplotype. Haplotype information has many applications such as gene disease diagnoses, drug design, etc.
The haplotype assembly problem is defined as follows: Given a set of fragments sequenced from the two copies of
a chromosome of a single individual, and their locations in the chromosome, which can be pre-determined by
aligning the fragments to a reference DNA sequence, the goal here is to reconstruct two haplotypes (h;, h,) from
the input fragments. Existing algorithms do not work well when the error rate of fragments is high. Here we
design an algorithm that can give accurate solutions, even if the error rate of fragments is high.

Results: We first give a dynamic programming algorithm that can give exact solutions to the haplotype assembly
problem. The time complexity of the algorithm is O(n x 2" x 1), where n is the number of SNPs, and ¢ is the

maximum coverage of a SNP site. The algorithm is slow when t is large. To solve the problem when t is large, we
further propose a heuristic algorithm on the basis of the dynamic programming algorithm. Experiments show that

Conclusions: We have tested our algorithm on a set of benchmark datasets. Experiments show that our algorithm
can give very accurate solutions. It outperforms most of the existing programs when the error rate of the input

Background

The recognition of genetic variations is an important
topic in bioinformatics. Single nucleotide polymorphisms
(SNPs) are the most common form of genetic variation
in human DNA. Humans are diploid organisms. There
are two copies of each chromosome (except the sex chro-
mosomes), one from each parent. The sequence of SNPs
in a given chromosome copy is referred to as a haplotype.
Haplotype information is useful in many applications,
such as gene disease diagnoses [1,2], drug design, etc.
Due to their essential importance in many biological ana-
lysis, haplotypes have been attracting great attention in
recent years [3-7]. Since experimental methods for direct
sequencing of haplotypes are both expensive and time
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consuming, computational methods are usually much
more promising.

Currently, computational methods for computing hap-
lotypes often fall into two categories: population haplo-
typing [8-11] and haplotype assembly (also known as
single individual haplotyping) [12-15]. The former tries
to compute haplotypes based on the genotype data from
a sample of individuals in a population. Many software
packages have been published in this field, e.g., PHASE
[10]. An obvious drawback of population haplotyping lies
in its weakness in recognizing rare and novel SNPs [16].
Contrary to population haplotyping, haplotype assembly
is more efficient and has received more attention in
recent years. The input to the haplotype assembly pro-
blem is a set of fragments sequenced from the two copies
of a chromosome of a single individual, and their loca-
tions in the chromosome, which can be pre-determined
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by aligning the fragments to a reference DNA sequence.
The task here is to reconstruct two haplotypes from the
input fragments. In this paper, we focus on the haplotype
assembly problem.

The haplotype assembly problem was first introduced by
Lancia et al. [17]. In [17], the authors proposed three opti-
mization criteria for solving this problem, i.e. minimum
fragment removal (MFR), minimum SNP removal (MSR)
and longest haplotype reconstruction (LHR). Some polyno-
mial time algorithms have been designed to solve some
versions of such optimization problems [18,19]. Lippert et
al. [19] summarized the models in [17] and proposed
some new models. Among these models, the most difficult
and realistic one is minimum error correction (MEC),
where we want to minimize the total number of conflicts
(errors) between the fragments and the constructed haplo-
types (h1y, h5). The haplotype assembly problem with MEC
is NP-hard [5,19] even for gapless fragments.

Levy et al. [20] designed a greedy heuristic algorithm
that concatenates the fragments with minimum conflicts.
The greedy heuristic algorithm is very fast but not very
accurate when the error rate of fragments is high. Later,
Bansal and Bafna [21] developed a software package
HapCUT and the algorithm is based on the idea of build-
ing a graph from the sequenced fragments, in which each
SNP site corresponds to a node in the graph and two
nodes are connected by an edge if there exists a fragment
that covers both SNP sites (which correspond to the two
nodes). It then tries to minimize the MEC cost of the
reconstructed haplotypes by iteratively finding max-cuts in
the associated graph. Bansal et al. [22] designed a Markov
Chain Monte Carlo (MCMC) algorithm, HASH. Both
HASH and HapCUT have better performance than the
greedy heuristic algorithm proposed in [20].

Recently, He et al. [16] gave a dynamic programming
algorithm that can give the optimal solution to the hap-
lotype assembly problem with MEC. The time complex-
ity of the algorithm is O(m x 2% x n), where m is the
number of fragments, # is the number of SNP sites, and
k is the length of the longest fragments. This algorithm
works well for k < 15. However, it becomes impractical
when £k is large.

In this paper, we propose a heuristic algorithm for the
haplotype assembly problem with MEC. It is worth men-
tioning that in HapCUT [21] and the dynamic program-
ming algorithm proposed in [16], the authors assumed
that the two constructed haplotypes are complementary
with each other, i.e. there are only 2 choices at a SNP site
in the reconstructed haplotypes. We drop this assump-
tion in our heuristic algorithm. As a result, there are 4
choices at a SNP site in the reconstructed haplotypes.
We have tested our algorithm on a set of benchmark
datasets and compare it with several state-of-the-art algo-
rithms. Experiments show that our algorithm is highly

Page 2 of 10

accurate. It outperforms most of the existing programs
when the error rate of input fragments is high.

Preliminaries

The input to the haplotype assembly problem is a set of
fragments sequenced from the two copies of a chromo-
some of a single individual. Each fragment covers some
SNP sites. We assume that all the fragments have been
pre-aligned to a reference DNA sequence. As a result, we
can organize the input fragments as an m x n matrix M
(called fragment matrix), where m is the number of frag-
ments and # is the number of SNP sites. Each row of M
corresponds to a fragment that can be represented as a
string on the alphabet ¥. = {4, ¢, g, ¢, -}, where ‘-” indicates
a space when the SNP site is not covered by the fragment
or the SNP value cannot be determined with enough con-
fidence. The start (respectively, end) position of a fragment
is defined as the first (respectively, last) position in the cor-
responding row that is not a *-’. In the middle of a frag-
ment, ‘-’s are allowed due to data missing or paired-end
fragments. Throughout the remainder of this paper, we
will use the two notations, i.e. fragments and rows of M
interchangeably when there is no ambiguity. Moreover, we
will use columns and SNP sites interchangeably when
there is no ambiguity.

It is accepted that there are at most two distinct
nucleotides at a SNP site. We assume that a column
with more than two distinct nucleotides in M must con-
tain errors. In this case, we keep the two distinct
nucleotides that appear the most at this column and
replace the rest of them with a ‘-’. After removing
errors, M can be converted into A/, in which each entry
is encoded by a character from the alphabet
3" ={0,1 —}. Figure 1(a) gives an example of an origi-
nal input matrix M containing errors in some columns,
Figure 1(b) is the matrix after error correction. M’ is
given in Figure 1(c).

We say that row i covers column j in M if M;; is not
a ‘-’ or there are two integers p and g with p < j < ¢g
such that M;, = - and M;, = -. The number of rows
covering column i in M is referred to as the coverage
of column i.

Two rows p and g in M are in conflict if there exists a
column j such that M,,; # M, ;, M, ; = - and M, ; # -.
Obviously, for error-free data, two rows from the same
copy of a chromosome should not conflict with each
other, and two rows which conflict with each other
must come from different copies of a chromosome. The
distance between two rows i and j, denoted by D(i, j), is
defined as the generalized hamming distance as follows:

D(i,j) = Y d(Mig, Mjp) (1)
k=1
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Figure 1 lllustration of the preprocessing on the input fragment matrix. (a) The original fragment matrix M. (b) The matrix obtained from
(a) by removing possible errors. (c) The obtained matrix Af'.

where

1if My # M; M # —and M # —;
0 otherwise.

d(Mije, M) = { 2)

Minimum error correction (MEC) is a commonly used
model for the haplotype assembly problem. For the hap-
lotype assembly problem with MEC, the input is a frag-
ment matrix M, the task is to partition the fragments in
M into two groups and construct two haplotypes (%, /1,),
one from each group, such that the total number of con-
flicts (errors) between the fragments and the constructed
haplotypes (411, /) is minimized.

Methods

In this section, we will describe the algorithms used to
solve the problem. We first design a dynamic program-
ming algorithm that gives an exact solution and runs in
O(n x 2* x t) time, where # is the number of columns in
M, and ¢ is the maximum coverage of a column in M.
The dynamic programming algorithm will be very slow
when ¢ is large. We then design a heuristic algorithm that
first computes an initial pair of haplotypes by using the
dynamic programming algorithm on only a subset of M.
This initial pair of haplotypes can be viewed as an
approximation to the optimal solution. To obtain a better
solution, we further introduce some techniques to refine
the initial solution.

A dynamic programming algorithm

Recall that the goal of the haplotype assembly problem
is to partition the rows of the input fragment matrix M
into two groups, each of which determining a haplotype.
To obtain an optimal partition, a naive approach is to
enumerate all possible partitions on the rows of M,
among which we then choose the one minimizing MEC.
For an instance with m rows, there are 2™ total parti-
tions, and thus the approach does not work in practice.
Here we introduce a dynamic programming algorithm

for the haplotype assembly problem with MEC that runs
in O(n x 2 x t) time, where # is the number of columns
in M, and ¢ is the maximum coverage of a column in M.

Before we give the details of the dynamic program-
ming algorithm, we first define some basic notations
that will be used later:

+R;: the set of rows covering column i in M.

+Py(i): the j-th partition on R;.

+Q,(i): the j-th partition on R; N R;,;.

+P(i)| rinri+1: the partition on R; N R;,; obtained from
Py(i) by restriction on the rows in R; N R;, 1.

+QQ(i): the set of partitions Py(i) such that Pi(i)|rinri+1 =
Q).

+C(Py(i)): the minimum number of corrections to be
made in column i of M when the partition on R; is
indicated by Py(i).

+MEC(i, Py(i)): the optimal cost for the first i col-
umns in M such that column i has a partition P;(i).

In order to compute MEC(i + 1, P{(i + 1)) efficiently,
we define

ME(i, Qj(1)) = minp, (ieqq;(y MEC(, Py (7)) (3)

Let P{i + 1) be the j-th partition on R;,1, Qu(i) = Pj(i +
1)|rinri+1- The recursion formula of the dynamic pro-
gramming algorithm is illustrated as follows:

MEC(i + 1, Pj(i + 1)) = C(Pj(i + 1)) + ME(i, Q(i)). (4)

Based on P;(i + 1), we can get Q(i) in O(¢) time.
Furthermore, we know the majority value (0 or 1) at
column (i + 1) in each group. To compute C(P;(i + 1)),
we can simply count the number of minorities in each
group (at column (i + 1)) separately, and then add them
up. Thus, it takes O(t) time to compute C(P(i + 1)).

The optimal MEC cost for partitioning all the rows of
M is the smallest MEC(n, P;(n)) over all possible P(n),
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where # is the number of columns in M. A standard
backtracking process can be used to obtain the optimal
solution.

Let us look at the time complexity of the dynamic
programming algorithm. To compute each MEC(i + 1,
Pi(i + 1)) in Equation (4), it requires O(f) time to com-
pute C(P;(i + 1)). Thus, it takes O(n x 2° x #) time to
compute all C(P;(i + 1))s for all the # columns in M.
Now, let us look at the way to compute M E(i, Q(i))s.
For each partition P(i) on R;, we can get Qi(i) = P(i)|rinris1
in O(f) time. We then update ME(i, Q(i)) if the current
value of ME(i, Q7)) is greater than MEC(i, P(i)). There
are at most 2° Py(i)s on R;. Thus, it takes O(£ x 29 time to
compute all ME(i, Qi(i))s on R;. Since there are n columns
in M, the total time required for computing all ME(i, Q(:))
sis O(n x 2F x ).

Theorem 1 Given a fragment matrix M, there is an
O(n x 2" x t) time algorithm to compute an optimal
solution for the haplotype assembly problem with MEC,
where n is the number of columns in M, and t is the
maximum coverage of a column in M.

Obtaining an initial solution via randomized sampling
The dynamic programming algorithm works well when ¢
is relatively small. However, it will be very slow when ¢ is
large. To solve the problem when ¢ is large, we look at
each column i at a time, randomly select a fixed number
of rows, say, boundOfCoverage, from the set of rows cover-
ing it and delete the characters in the remaining rows at all
the columns after i - 1. After that, the coverage of each
column in the newly obtained submatrix is at most boun-
dOfCoverage. We then run the dynamic programming
algorithm on the submatrix. The resulting pair of haplo-
types, which is referred to as the initial solution, can be
viewed as an approximation to the optimal solution.

The detailed procedure for obtaining a submatrix from
M via the randomized sampling approach is as follows:

1. Compute the coverage ¢; for each column i in M.
2. For i = 1 to n, perform the following steps.

3. If ¢; < boundOfCoverage, do nothing and goto the
next column. Otherwise, goto step 4.

4. Randomly choose boundOfCoverage rows from the
set of rows covering column i. Let § be the set of rows
covering column i but are not chosen during this
process.

5. For each row y ¢ S, cut 7 from column i such that it
no longer covers any column larger than i (including 7).
Accordingly, we need to reduce c; by 1 for each i <j < k,
where k is the end position of r before being cut.

By employing this randomized sampling strategy, we
can always make sure that the maximum coverage is
bounded by the threshold boundOfCoverage in the
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selected submatrix. How to choose a proper value for
boundOfCoverage? Actually, there is a tradeoff between
the running time and the quality of the initial solution
output by the dynamic programming algorithm. On one
hand, reducing boundOfCoverage can reduce the running
time of the algorithm. However, on the other hand,
increasing boundOfCoverage can maintain more informa-
tion from M. As a result, the initial solution output by
the dynamic programming algorithm has a higher chance
to be close to the optimal solution. In practice, boundOf-
Coverage is generally no larger than 15, which is feasible
in terms of running time and is large enough to sample
sufficient information from M. See Section Experiments
for a detailed discussion on how the size of boundOf-
Coverage affects the initial solution.

Refining the initial solution with all fragments

In the newly obtained submatrix, it is possible that (1)
some columns are not covered by any rows, thus leaving
the haplotype values at these SNP sites undetermined in
the initial solution, (2) the haplotype values at some
SNP sites in the initial solution are wrongly determined
due to the lack of sufficient information sampled from
M during the randomized sampling process. In this sub-
section, we try to refine the initial solution with all
input fragments, aiming to fill haplotype values that are
left undetermined and correct those that are wrongly
determined.

The refining procedure contains several iterations. In
each iteration, we take two haplotypes as its input and out-
put a new pair of haplotypes. Initially, the two haplotypes
in the initial solution are used as the input to the first
iteration. The haplotypes output in an iteration are then
used as the input to the subsequent iteration. In each
iteration, we try to reassign the rows of M into two groups
based on the two input haplotypes. More specifically, for
each row r of M, we first compute the generalized ham-
ming distance between r and the two haplotypes. Then,
we assign r to the group associated with the haplotype
that has the smaller (generalized hamming) distance with
r. After reassigning all rows of M into two groups, we can
compute a haplotype from each of the two groups by
majority rule. At the same time, we can also obtain the
corresponding MEC cost.

The refining procedure stops when, at the end of
some iteration, the obtained haplotypes no longer
change, or when a certain number of iterations have
been finished. The two haplotypes output in the last
iteration are the output of the refining procedure.

Voting procedure

To further reduce the effect of randomness caused by
the randomized sampling process, we try to obtain sev-
eral different submatrices from M by repeating the
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randomized sampling process several times. Accordingly,
we can obtain several initial solutions, one derived from
each submatrix. Furthermore, we can refine these initial
solutions with all fragments. Given a set of solutions,
each of which containing a pair of haplotypes, the goal
here is to compute a single pair of haplotypes by adopt-
ing a voting procedure.

In the voting procedure, the two haplotypes are com-
puted separately. We next see how to compute one of the
two haplotypes. The other case is similar. Let S be the set
of solutions used for voting. First, we find a set of haplo-
types (denoted by S;), one from each solution in S, such
that the haplotypes in S; all correspond to the same copy
of a chromosome. With S;, we can then compute a haplo-
type by majority rule. Simply speaking, at each SNP site,
we count the number of Os and 1s at the given SNP site
over the haplotypes in S;. If we have more Os, the resulting
haplotype takes 0 at the SNP site, otherwise, it takes 1.

How to find S;? First, we need to clarify that the two
haplotypes in each solution in S are unordered. That is,
given a solution H = (hy, h,), we do not know which chro-
mosome copy /4 (or /) corresponds to. So, we should
first find the correspondence between the haplotypes in
different solutions. Let Hy = (h, h}),. .. Hy = (h!, h}) be
the set of solutions in S. Without loss of generality, assume
that the MEC cost associated with H; is the smallest
among all the y solutions. We use H; as our reference and
try to find the correspondence between haplotypes in H;
and other solutions. For each i (1 < i < y), we first com-
pute two generalized hamming distances D(h}, h}) and
D(hi, hb). If D(h!, k) < D(h}, h}), we claim that k' cor-
responds to the same chromosome copy as hi. Otherwise,
h corresponds to the same chromosome copy as hl. As a
result, the set of haplotypes in S that correspond to the
same chromosome copy as h} is the S; we want to find.

Assume that at the beginning of this procedure, we
obtain x solutions by repeating the randomized sampling
process along with the refining procedure x times. It is
worth mentioning that in the voting procedure, we only
use part of the solutions, say, the first y (y < x) solutions
with the highest quality. Given two solutions A and B, we
say that A has higher quality than B if the MEC cost asso-
ciated with A is smaller than that of B. In this case, we
assume that A is much closer to the optimal solution and
contains less noises than B. To reduce the sideeffect of
noises and improve the quality of the solution output by
the voting procedure, it is helpful to use only solutions
with high quality in the voting procedure.

Summarization of the algorithm

Generally speaking, given an input fragment matrix M,
our heuristic algorithm can be summarized as the fol-
lowing four steps.
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Step 1: We first perform a preprocessing on M to
detect possible errors in it. After removing errors from
M, we further convert it into M’ in which each entry is
encoded by a character from the alphabet " = {0, 1, —}.
See Section Preliminaries for more details. M’ is used as
the input to the following steps.

Step 2: We compute an initial solution by running the
dynamic programming algorithm on a subset of M'. The
submatrix is computed by using the randomized sam-
pling approach.

Step 3: Refine the initial solution with all the frag-
ments in M/, instead of the submatrix that is used to
generate the initial solution in Step 2.

Step 4: To further reduce the effect of randomness
caused by the randomized sampling process, we repeat
Step 2 and Step 3 several times. Each repeat ends with a
solution, from which we then compute a single pair of
haplotypes by adopting the voting procedure. The result-
ing pair of haplotypes is the output of our algorithm.

Results

We have tested our algorithm on a set of benchmark
datasets and compare its performance with several other
algorithms. The main purpose here is to evaluate how
accurately our algorithm can reconstruct haplotypes
from input fragments. All the tests have been done on a
Windows-XP (32 bits) desktop PC with 3.16 GHz CPU
and 4GB RAM.

The benchmark we use was created by Geraci in [23].
It was generated by using real human haplotype data
from the HapMap project [4]. There are three para-
meters associated with the benchmark, i.e haplotype
length, error rate and coverage rate, denoted by /, ¢, ¢,
respectively. Each parameter has several different values,
[ =100, 350, and 700, e = 0.0, 0.1, 0.2 and 0.3, ¢ = 3, 5,
8 and 10. Note that unlike the “coverage” defined in
Section Preliminaries, the coverage rate ¢ defined in this
benchmark refers to the number of times each of the
two haplotypes replicates when generating the dataset.
In other words, given an instance in the benchmark, i.e.
a fragment matrix, there are up to 2c¢ rows which take
non ‘-’ value at each column in the matrix. For each
combination of the three parameters, there are 100
instances in the benchmark. As for the details on how
to generate the benchmark, the reader is referred to
[23].

Throughout our experiments, we measure the perfor-
mance of our algorithm by the reconstruction rate, a fre-
quently used criterion in the haplotype assembly
problem. Given a problem instance in the benchmark,
the reconstruction rate is defined as follows:

Riyy -1 min(D' (hy, 1) +D’(h2,f1223,D’(h1,ﬁ2) +D(hah))  (5)
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where H = (h, h,) is the pair of correct haplotypes
that is used to generate the problem instance, and is
thus known a prior, fI = (hy, h,) is the pair of haplo-
types output by the algorithm, # is the length of the
haplotypes, and D’ is the hamming distance between
two haplotypes. More specifically, D’ is defined as fol-
lows:

D' (i, fy) = > d (hilk], k) (©)

k=1

where

0 if hi[k] = Iy[k];
1 otherwise.

¢ i) - | o)

Intuitively speaking, the reconstruction rate measures
the ability of an algorithm to reconstruct the correct
haplotypes.

Recall that in Step 2 of our algorithm, we try to compute
an initial solution by using only a subset of the input
matrix. The initial solution forms the basis for the follow-
ing steps of our algorithm and is closely related to the
parameter boundOfCoverage. Briefly speaking, boundOf-
Coverage is the maximum coverage of a column in the
submatrix selected during this step. For a formal descrip-
tion of boundOfCoverage, we refer you to Section Meth-
ods. In this experiment, we first evaluate how the size of
boundOfCoverage affects the initial solution. As aforemen-
tioned earlier, boundOfCoverage is generally no larger than
15. Here we consider three different sizes of boundOf-
Coverage, i.e. 10, 12 and 15. Given a problem instance, we
can obtain three initial solutions by using the three differ-
ent sizes of boundOfCoverage, respectively. As an example,
we choose the set of benchmark datasets with / = 350 and
e = 0.2. For each combination of the coverage rate ¢ and
boundOfCoverage, there are 100 instances and we com-
pute the average of the reconstruction rates over the 100
instances. The results are listed in Table 1.

From Table 1, we can see that for a fixed coverage
rate ¢, when increasing the size of boundOfCoverage, the
reconstruction rate of the obtained initial solution gets
higher, and the running time increases accordingly.

Table 1 Evaluation of how the size of boundOfCoverage
affects the initial solution.

c=3 c=5 c=8 c=10
10 0.708(<0.1) 0.753(<0.1) 0.764(0.14) 0.774(0.18)
12 0.728(<0.1) 0.785(<0.1) 0.794(0.15) 0.797(0.21)
15 0.776(0.30) 0.837(0.33) 0.841(0.36) 0.857(0.45)

There are 3 different sizes of boundOfCoverage, i.e. 10, 12 and 15, and 4
different coverage rates ¢, i.e. 3, 5, 8 and 10. The number outside each
bracket refers to the average reconstruction rate under the corresponding
parameter setting, while the one enclosed in the bracket refers to the average
running time in seconds.

Page 6 of 10

Since the reconstruction rate in the case where boun-
dOfCoverage = 12 is relatively high, and the running
time is feasible, we will set boundOfCoverage to be 12 in
the following experiments.

Next, to evaluate the performance of our algorithm, we
have tested it on the set of benchmark datasets. The
parameters we use are as follows: boundOfCoverage = 12,
x =100, and y = 11, where x is the number of initial solu-
tions obtained in Step 4, i.e. the number of times we
repeat Step 2 and Step 3, and y is the number of solutions
used for voting in Step 4. The results for / = 100, 350 and
700 are given in the last column in Table 2 Table 3 and
Table 4, respectively. In [23], Geraci compared the recon-
struction rates of seven state-of-the-art algorithms on the
same benchmark datasets. These seven algorithms are
SpeedHap [24], Fast hare [25], 2d-mec [26], HapCUT
[21], MLF [27], SHR-three [28] and DGS, the greedy
heuristic proposed in [20]. For a full review of these
seven algorithms, the reader is referred to [23]. For the
sake of comparison, we list the reconstruction rates
of the seven algorithms, see Columns 3 - 9 in Table 2,
Table 3 and Table 4. Note that the results for the seven
algorithms are directly taken from [23]. Each reconstruc-
tion rate shown in the three tables is the average over
100 instances under the same parameter setting.

Take a close look at the three tables, we can see that (1)
each of the seven algorithms studied in [23] only works
well in some cases, e.g., SpeedHap works well when the
error rate is low (< 0.1), while MLF works well when the
error rate is high (= 0.2); (2) the reconstruction rates of
all the seven algorithms are relatively low when the error
rate of input fragments is high. For example, in the case
where [ = 700, e = 0.3 and ¢ = 10, the best reconstruction
rate of the seven other algorithm is 0.645. Compared
with its competitors, our algorithm can give solutions
with high reconstruction rate. It outperforms its competi-
tors in almost all cases, especially in cases in which the
error rate of fragments is high (= 0.2). We also notice
that when the error rate is 0, our algorithm may intro-
duce some errors in the output solution, e.g., in the case
where [ = 700, ¢ = 3, e = 0.0. However, even in this case,
the reconstruction rate can still reach up to 0.997.

Discussion
In the first step of our algorithm, we perform a prepro-
cessing on the input fragment matrix. This allows us to
detect errors in the input. For example, for the bench-
mark datasets with / = 350 and e = 0.3, Step 1 of our
algorithm can identify about 47%, 55%, 59% and 61% of
the total errors for the cases ¢ = 3, 5, 8 and 10, respec-
tively. Thus, Step 1 has significant importance to the
following steps of our algorithm.

Next, we further investigate how the voting procedure
in Step 4 affects the performance of our algorithm.
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Table 2 Comparisons of the algorithms when / = 100.
e [4 SpeedHap Fast Hare 2d-mec HapCUT MLF SHR-three DGS Ours
0.0 3 0.999 0.999 0.990 1.000 0973 0816 1.000 1.000
5 1.000 0.999 0.997 1.000 0.992 0.861 1.000 1.000
8 1.000 1.000 1.000 1.000 0.997 0912 1.000 1.000
10 1.000 1.000 1.000 1.000 0.998 0.944 1.000 1.000
0.1 3 0.895 0919 0912 0929 0.889 0.696 0.930 0973
5 0.967 0.965 0951 0.920 0.970 0.738 0.985 0.99
8 0.989 0.993 0.983 0.901 0.985 0.758 0.989 0.999
10 0.990 0.998 0.988 0.892 0.995 0.762 0.997 1.000
02 3 0.623 0.715 0.738 0.782 0.725 0615 0.725 0.903
5 0.799 0.797 0.793 0.838 0.836 0.655 0.813 0.963
8 0.852 0.881 0.873 0.864 0.918 0.681 0.878 0.990
10 0.865 0915 0.894 0.871 0.938 0.699 0917 0.99
03 3 0480 0617 0.623 0.602 0618 0.557 0611 0.776
5 0.637 0.639 0.640 0.629 0.653 0.599 0.647 0874
8 0.667 0.661 0.675 0.673 0.697 0.632 0.663 0.950
10 0.676 0.675 0.678 0.709 0.715 0.632 0.688 0972

The columns e and c refer to the error rate and coverage rate, respectively. Columns 3-9 represent the reconstruction rate of the seven algorithms, i.e. SpeedHap,
Fast Hare, 2d-mec, HapCUT, MLF, SHR-three and DGS. For each combination of e and ¢, the best among the seven algorithms is highlighted in bold. The last

column lists the reconstruction rate of our algorithm.

In Step 4, we first obtain x solutions, from which we
then choose the first y (y < x) solutions with the smal-
lest MEC cost. The y solutions are then used in the vot-
ing procedure to compute the final solution of our
algorithm. To demonstrate the effect of the voting pro-
cedure, we compare the final version of our algorithm
with the one without the voting procedure. For the ver-
sion without the voting procedure, we simply outputs
the solution with the smallest MEC cost among all the x
solutions in Step 4. As an example, we have tested both

Table 3 Comparisons of the algorithms when / = 350.

versions on the set of benchmark datasets with [ = 350.
The parameters are as follows: boundOfCoverage = 12,
x = 100 and y = 11. Figure 2(a) (respectively, 2(b))
shows the results for the two versions in the case where
e = 0.2 (respectively, e = 0.3). The results for e = 0.0
and 0.1 are similar as that of e = 0.2, and we omit it
here.

From Figure 2(a), we can see that the two versions of
our algorithm have almost the same reconstruction rate.
However, when e = 0.3, the final version of our algorithm

e C SpeedHap Fast Hare 2d-mec HapCUT MLF SHR-three DGS Ours
0.0 3 0.999 0.990 0.965 1.000 0.864 0.830 0.999 1.000
5 1.000 0.999 0.993 1.000 0.929 0.829 1.000 1.000

8 1.000 1.000 0.998 1.000 0.969 0.895 1.000 1.000

10 1.000 0.999 0.999 1.000 0.981 0.878 1.000 1.000

0.1 3 0.819 0.871 0.837 0.930 0.752 0.682 0926 0.970
5 0.959 0.945 0913 0913 0.858 0.724 0.978 0.993

8 0.984 0.985 0.964 0.896 0933 0.742 0.996 0.999

10 0.984 0.995 0.978 0.888 0.962 0.728 0.998 1.000

02 3 0439 0.684 0675 0.771 0.642 0.591 0.691 0.877
5 0.729 0.746 0.728 0.831 0.728 0.632 0.769 0.953

8 0.825 0.853 0.791 0.862 0.798 0.670 0.842 0.988

10 0.855 0877 0817 0.867 0.831 0.668 0.878 0.994

03 3 0.251 0.590 0.593 0.565 0.581 0.548 0.578 0.725
5 0578 0.602 0.606 0.582 0.606 0.557 0.609 0833

8 0.629 0.626 0623 0621 0.634 0.604 0.628 0922

10 0.638 0.644 0.634 0.664 0.641 0619 0.641 0.951

The columns e and c refer to the error rate and coverage rate, respectively. Columns 3-9 represent the reconstruction rate of the seven algorithms, i.e. SpeedHap,
Fast Hare, 2d-mec, HapCUT, MLF, SHR-three and DGS. For each combination of e and ¢, the best among the seven algorithms is highlighted in bold. The last

column lists the reconstruction rate of our algorithm.



Deng et al. BMC Genomics 2013, 14(Suppl 2):S2 Page 8 of 10
http://www.biomedcentral.com/1471-2164/14/52/S2
Table 4 Comparisons of the algorithms when I = 700.
e C SpeedHap Fast Hare 2d-mec HapCUT MLF SHR-three DGS Ours
0.0 3 0.999 0.988 0.946 1.000 0.787 0.781 0.999 0.997
5 1.000 0.999 0976 1.000 0.854 0.832 1.000 0.999
8 1.000 1.000 0.992 1.000 0919 0.868 1.000 1.000
10 1.000 0.999 0.997 1.000 0.933 0.898 1.000 1.000
0.1 3 0.705 0.829 0.786 0927 0.698 0.668 0.931 0.951
5 0.947 0.949 0.880 0916 0.809 0.716 0.977 0.989
8 0.985 0.986 0.948 0.896 0.863 0.743 0.987 0.997
10 0.986 0.995 0.965 0.889 0.884 0.726 0.997 0.998
0.2 3 0.199 0.652 0.647 0.753 0.624 0.591 0.669 0.837
5 0.681 0.712 0.697 0.825 0.682 0617 0.741 0.927
8 0.801 0.808 0.751 0.856 0.747 0.653 0.818 0.974
10 0.813 0.872 0.778 0.861 0.765 0.675 0.861 0.982
03 3 0.095 0.581 0.583 0.552 0570 0.536 0.573 0676
5 0.523 0.591 0.596 0.555 0.594 0.562 0.595 0.777
8 0.616 0615 0613 0.597 0614 0611 0614 0.876
10 0.627 0616 0.622 0.645 0.625 0.625 0.622 0.909

The columns e and c refer to the error rate and coverage rate, respectively. Columns 3-9 represent the reconstruction rate of the seven algorithms, i.e. SpeedHap,
Fast Hare, 2d-mec, HapCUT, MLF, SHR-three and DGS. For each combination of e and ¢, the best among the seven algorithms is highlighted in bold. The last

column lists the reconstruction rate of our algorithm.

has higher reconstruction rate than the one without the
voting procedure, see Figure 2(b). Thus, the voting proce-
dure is essential for our algorithm.

To see how the size of the parameter x affects the
reconstruction rate of our algorithm, we have tested our
algorithm with three different sizes of «, i.e. 25, 50, 100.
The values of boundOfCoverage and y are fixed to be 12
and 11, respectively. The tests are done on the set of
benchmark datasets with [ = 350. The results for e = 0.2
and 0.3 are shown in Figure 3(a) and 3(b), respectively.
For e = 0.0 and 0.1, the reconstruction rates are almost
the same in all the three cases, and we do not list it here.

As can be seen from Figure 3(a), the reconstruction rate
increases with the increasing of x in the cases where ¢ =
3 and 5. For ¢ = 8 and 10, the cases where x = 50 and 100
have almost the same reconstruction rate which is higher
than that in the case where x = 25. As for Figure 3(b), it
is much more obvious that the reconstruction rate
increases as x gets larger.

Conclusion

In this paper, we propose a heuristic algorithm for the
haplotype assembly problem. Experiments show that our
algorithm is highly accurate. It outperforms most of the
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Figure 2 lllustration of the effect of the voting procedure. The reconstruction rates for the final version of our algorithm and the one
without the voting procedure are depicted by black and gray bar, respectively. The error rate for the benchmark used in (a)(respectively, (b)) is
0.2 (respectively, 0.3).
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Figure 3 Evaluation of how the size of x affects the performance of our algorithm. The reconstruction rates for x = 25, 50 and 100 are
depicted by white, gray and black bar, respectively. The error rate for the benchmark used in (a)(respectively, (b)) is 0.2 (respectively, 0.3).

existing programs when the error rate of input fragments
is high.
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