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Abstract

Background: Deciphering cis-regulatory networks has become an attractive yet challenging task. This paper
presents a simple method for cis-regulatory network discovery which aims to avoid some of the common
problems of previous approaches.

Results: Using promoter sequences and gene expression profiles as input, rather than clustering the genes by the
expression data, our method utilizes co-expression neighborhood information for each individual gene, thereby
overcoming the disadvantages of current clustering based models which may miss specific information for
individual genes. In addition, rather than using a motif database as an input, it implements a simple motif count
table for each enumerated k-mer for each gene promoter sequence. Thus, it can be used for species where
previous knowledge of cis-regulatory motifs is unknown and has the potential to discover new transcription factor
binding sites. Applications on Saccharomyces cerevisiae and Arabidopsis have shown that our method has a good

discovery models.

prediction accuracy and outperforms a phylogenetic footprinting approach. Furthermore, the top ranked gene-
motif regulatory clusters are evidently functionally co-regulated, and the regulatory relationships between the
motifs and the enriched biological functions can often be confirmed by literature.

Conclusions: Since this method is simple and gene-specific, it can be readily utilized for insufficiently studied
species or flexibly used as an additional step or data source for previous transcription regulatory networks

Background

The advance of experimental technology, including com-
plete genome sequencing, high-throughput expression
profiling [1-3] and binding-site mapping [4-6], has made
the computational approach of studying the cis-regulatory
networks (CRN) more attractive. A widely used model is
to cluster genes based on their expression profile and then
using motif finding algorithms [7-14] or motif enumera-
tors to find the over-represented sequences within each
cluster [15-18]. However, the correlation between gene
clusters and motifs is imprecise because of the complex
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nature of regulation, as not all genes within a cluster share
a common motif and the same motif can be found in gene
promoters in other clusters. Importantly, these clustering
based models are not suitable to model the expression of
each individual gene. To overcome this limitation, [19]
and [20] have proposed a linear regression model to pre-
dict statistically significant motifs. While a fascinating
approach, it assumes that the number of occurrences of
motifs in a promoter is linearly correlated with the gene
expression, where motifs are identified by simply enumer-
ating all k~-mers. From an entirely different angle, [21] pro-
vided an approach that screened genomic sequences
against a database of putative regulatory motifs, evaluating
the contribution of the occurrences of the motif on the
gene expression by comparing the expression profiles of
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genes containing this motif against those that do not. This
method therefore requires knowledge about the putative
motifs of that species, which may not always be available.
Another major direction of motif finding and CRN discov-
ery focuses on comparative genomics, also referred to as
phylogenetic footprinting (PF) [22-34]. It assumes that the
cis-regulation is conserved over evolution; thus, it does not
need gene co-expression data as input to determine the
sets of co-regulated genes. PF is a powerful method and
has gained impressive success for the prediction of con-
served regulatory elements. However, the main drawback
of this method is that it cannot find species-specific regu-
latory elements.

Here, we propose a simple approach for inferring
CRNs that avoids the common limitations mentioned
above. Using genomic promoter sequences and gene
expression data as input, our method utilizes the gene
expression data in a novel way. In contrast to the
approach favored by previous clustering based methods,
which clusters genes by co-expression information and
finds over-represented motifs for each cluster, our
method first builds a gene co-expression network, and
then searches for putative cis-regulatory elements that
are enriched in the neighborhood for each individual
gene on the network. In other words, our method uti-
lizes the gene expression profiles in an individual gene
motivated fashion. In addition, by using a simple enum-
erated k-mer counter to find the motif information
within the promoter sequences, this approach needs lit-
tle knowledge of the species-based putative motifs and
requires few assumptions about the model by which ele-
ments of motif counts affect gene expression. It is a
simple and versatile model for motif discovery and CRN
finding. Thus, we hope it can be easily used for species
with little previous cis-regulatory knowledge or be flex-
ibly used for previous CRNs discovery approaches as an
additional step. An in silico evaluation on Saccharo-
myces cerevisiae and Arabidopsis has been performed.
Compared to a phylogenetic footprinting (PF) based
method on several datasets, our method shows compar-
able or even better prediction accuracy. Furthermore,
the top ranked cis-regulatory clusters uncovered by our
approach for the two species are evidently functionally
co-regulated, and the regulatory relationships between
the motifs and the enriched biological functions can
often be confirmed by literature.

Methods

Cis-regulatory network construction

The input of our method includes a list of promoter
sequences and a gene-gene co-expression network (see
Data sources). The m promoter sequences are viewed as
‘background’ and the n genes of the co-expression net-
work are the target genes whose CRNs we want to study,
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where the n target genes are a subset of the m back-
ground genes. The gene-gene co-expression network is
represented by an adjacency matrix, A = (@), « »,, where
a;; = 1 if there is an edge between gene i and gene j, and
0 otherwise. For convenience, we let a;; = 1 for all i. Here
the number of target genes # is from co-expression net-
works. The reason why we choose # target genes out of
m is that in order to ensure a high-quality co-expression
data, only the genes with the highest variations in the
stress response data set will be chose to build co-expres-
sion network.

We first count the number of occurrences for each
k-mer, where k = 6 in this study, on each of the m pro-
moter sequences. Let C = (c;),, x ; be the k-mer occur-
rence table, where [ = 4% is the total number of
candidate motifs (k-mers). Let D = (d;), « ; be a matrix
derived from C such that each row of D corresponds to
a row in C for the same gene’s promoter, and the order
of the genes in D is equivalent to that in A.

Next, for each gene g present in the co-expression
network, we identify its neighbors in the network, m, =
{ilag; = 1}, and retrieve the corresponding rows from D,
defined as T* = (¢;) = (dy;), where s € 7.

Finally, we compute the significance for the j-th k-mer
being over-represented in the neighborhood of gene g
using either the cumulative hypergeometric test, or stu-
dent’s t-test. With the cumulative hypergeometric test, the
p-value is calculated as

e (517
Pi= D .

where x = |{i|T¢ = (¢;), t; > 0}| is the number of genes
within gene g’s neighborhood (including gene g itself) that
have at least one occurrence of motif j, K = |{i|c; > 0}| is
the number of such genes in the background (whole gen-
ome), and g = |1,| is the number of neighbors for gene g
in the network. Intuitively, the cumulative hypergeometric
p-value is the probability of drawing at least x of a possible
K items in g drawings without replacement from a group
of m objects.

On the other hand, with the student’s t-test, the p-value
is calculated by performing a non-paired two-sample t-test
to compare the average occurrence of motif j in the neigh-
borhood of g against that of the genes not in the neighbor-
hood of g.

From the p-value matrix P = (p;), « 1, a score matrix
S = (sij)n x 1 can be computed by s;; = logo p;;. The
values in S range from 0 to +eo, where a greater number
indicates a more significant regulatory relationship of a
gene-motif pair. To cope with numerical precision lim-
itations, all scores larger than 40 are converted to 40.
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At last, the cis-regulatory network, represented by a
bipartite graph R = (U, V, E, W) can be derived from S,
where U is the set of genes, V is the set of motifs, E is
the set of regulatory relationships, and W is the asso-
ciated edge weights, defined by w;; = s;; for any edge. To
ensure statistical significance and biological relevance, a
cutoff is applied so that (U, V)) € E if and only if s;
>cutoff. In our study, for evaluation purposes, cutoff is
set to 2, corresponding to a p-value threshold at 0.01.
For visualization and biological analysis, cutoff is set to a
much larger value (17 for yeast and 30 for Arabidopsis,
see Results).

Evaluation of the predicted cis-regulatory network

To directly evaluate the predicted cis-regulatory network
is difficult. We evaluated the performance of our algo-
rithm indirectly in two ways.

Co-regulatory network based evaluation

First, following the idea in [34], we evaluate the CRNs
based on co-regulatory networks. To this end, we first
determine the similarity (Pearson correlation coefficient)
between each pair of genes based on their motif scores.
Subsequently, a co-regulatory network, N, is constructed
by connecting genes whose similarity scores are above a
certain threshold. This co-regulatory network is then
compared with some reference networks to determine
the performance of our method. The key idea here is that
if two genes share many regulatory elements, they are
likely to be functionally related, and would share more
edges with a reference network (see Data sources), which
also captures functional relevance of genes. As the refer-
ence network and our predicted network may not have
the same size, we first limit both networks to contain the
same set of genes. We then compared the two networks
using a set of standard metrics, defined as follows.

« True positive (TP) is the number of edges in both
N; and Ny: 7P = | Q; N Q,};

« False positive (FP) is the number of edges in N;
but not Ny: FP = |Q; N Q1)

« True negative (TN) is the number of non-edges in
both N; and Ny: TN = |Q; N Q4

« False negative (FN) is the number of edges in N,
but not Ni: FN = |Q, N Q)

« Precision, also referred to as the positive predictive
value (PPV), is the ratio between TP and number of
edges of N;: PPV = \gl = TPTEJP;

+ Recall, also referred to as sensitivity or true posi-
tive rate (TPR), is the ratio between TP and number

TP P
of edges of Ny: TPR = | | = 1p by

Here N; and N, represent the predicted co-expression
network and the reference co-expression network,
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respectively, Q; represent the set of edges in N;, and Q;
represents the set of edges in the inverse graph of N;.
Model based evaluation

Second, we evaluate the CRN using a completely different
strategy. Our idea is that, if the CRN is correct and com-
plete, we should be able to use it to model gene transcrip-
tional level changes with a high accuracy. Therefore, given
a set of gene expression microarray data, we attempt to
construct a linear regression model for each microarray to
predict the expression levels for each gene using the linear
combination of the gene’s motif scores. Importantly, in
order to perform an unbiased evaluation, the gene expres-
sion microarray data used for evaluating the predicted cis-
regulatory network should be different from the gene
expression data that we have used for constructing the
gene co-expression network or cis-regulatory network (see
Data sources).

Formally, let ¢, be the logarithm base two of the ratio of
mRNA levels between two conditions for gene g, we
model e, by ¢, = ZL Biwig + c. This formulation is iden-
tical to the popular model proposed by [19], except that
they used motif occurrences (i.e., the D matrix), while we
use the motif significance score (i.e., the S score and with
some statistical cutoff). As the number of k-mer motifs
(4096) we have is larger than the number of genes (3000),
we apply a simple feature selection by only including the
top ¢q (g « 3000) motifs that have the highest correlation
between motif significance scores and gene expression
levels, and perform linear regression only using these top
motifs. To measure the accuracy of the model, we calcu-
lated the root mean squared error (RMSE) of the linear
model, as well as the Pearson correlation coefficient (PCC)
between the predicted expression levels and the actual
values. A higher PCC or a lower RMSE indicates a better
prediction accuracy and therefore a biologically more rele-
vant CRN.

Competing methods

We compare our method with two alternative methods.
The first method is based on a naive model where we sim-
ply score each promoter sequence by counting the number
of occurrences of each k-mer (k = 6 as in our main model).
It is expected that such a simple method will su er from
high false positive (i.e., a given k-mer may not be func-
tional) and false negative (e.g., a motif instance may be
missed due to mismatch). Nevertheless, this is the model
used in most methods attempting to model gene tran-
scriptional changes (e.g. [19,20]). The second method was
proposed by [34], where they used phylogenetic footprint-
ing to identify putative cis-regulatory elements in yeast
Saccharomyces cerevisiae by discovering over-represented
motifs in the promoters of their orthologs in 19 Saccharo-
mycetes species. In their method, cis-regulatory elements
are represented by dyads, i.e. pair of trinucleotides sepa-
rated by a spacing comprised between 0 and 20 bp.
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The output of their method is similar to the gene-motif p-
value matrix and we applied the same logarithm transfor-
mation as in our method so that a higher score means a
more significant regulatory relationship.

Data sources
Promoter sequences
Promoter sequences for Saccharomyces cerevisiae (bud-
ding yeast) are downloaded from RSA tools [35]. The pro-
moter sequence for each target gene is defined as 500 base
pairs upstream from its transcription start site (TSS), or
the whole intergenic region between the TSS and the cod-
ing sequence of the upstream gene, whichever is shorter.
Promoter sequences for Arabidopsis thaliana are down-
loaded from TAIR (arabidopsis.org). Promoter sequences
are defined as 1000 base pairs upstream to the first anno-
tated nucleotide of the gene (regardless of UTR or coding),
according to TARI10 assembly.
Microarray data and gene co-expression networks
To construct a gene co-expression network, we used gene
expression microarray data from [36], which contains the
yeast gene expression data in response to a variety of
environmental changes. This data set contains 173 arrays,
and as in most previous studies, we selected the top 3000
genes with the highest variances [36]. After quantile nor-
malizing the expression data, we constructed a co-expres-
sion network using the method described in [37]. Brie v,
we first computed the Pearson correlation coefficient
between the expression profiles of every pair of genes, and
then ranked the correlation coefficients for each gene
separately. Two genes are connected by an edge if the cor-
relation between their expression profiles is ranked above
a certain threshold within both genes’ rankings. The
threshold is determined automatically from an analysis of
the resulting network’s topological properties as described
in [37]. The optimal rank threshold chosen is 120. Pre-
vious studies showed that such rank-based co-expression
network can produce biologically more meaningful func-
tional modules, especially for gene modules that are
weakly co-expressed or conditionally co-expressed [37].
To evaluate the predicted cis-regulatory network for
yeast, we used a separate yeast gene expression microarray

Table 1 Size of the comparison networks
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data from [38], which contains 77 arrays measuring gene
expression under various cell cycle phases.

Gene expression microarray data for Arabidopsis is
obtained from AtGenExpress, which includes more than
1391 microarrays for various growth conditions, develop-
mental stages, and tissues of Arabidopsis [39,40]. The gene
co-expression network is constructed similarly as above.
The optimal rank threshold chosen is 100.

Reference networks

The choice of a proper reference network is crucial. In
this work, we choose to evaluate our predicted CRN for
Saccharomyces cerevisiae using two reference networks
that are constructed also based on the principle of co-
regulation. The first reference network, the annotated
regulon network, is constructed by linking pairs of genes
belonging to the same annotated regulon that have been
proved by low-throughput experiments [41,42]. The sec-
ond reference network, known as the co-binding net-
work, is derived from high-throughput ChIP-chip data
[6], where we link any pair of genes that are shown to be
bound by at least one common TF in the ChIP-chip data
(with p-value < 0.001). The annotated regulon network is
smaller and less complete than the co-binding network,
but probably more accurate. Table 1 shows some basic
statistics of the networks. It is worth noting that the
same networks were used by the competing method [34]
in their paper to evaluate their co-regulatory networks.

Results and discussion
The predicted cis-regulatory network (CRN) of
Saccharomyces cerevisiae
The predicted co-regulatory network has a good accuracy
First, as shown in Figure 1, the model that simply includes
the promoter sequences information (denoted by ‘cis, sim-
ple ct’) has a very poor performance. The precision (PPV)
is almost always lower than 20%. The red solid line shows
the improvement by including both the promoter
sequences and the neighborhood information from the co-
expression networks, indicating that including the gene
neighborhood information is critical for this method.
Compared to [34] using the annotated regulon network,
our precision is higher when the recall is less than 0.04 or

Annotated co-regulation

Chip-chip co-binding

similarity matrix of ref [34] Cis-similarity matrix

network network
Nodes Edges Nodes Edges Nodes Nodes
Original size 612 10,599 2,397 178,202 3,146 3,000
Similarity matrix of ref [34] 446 5816 1,491 77,597 3,146 1,909
Cis-similarity matrix 467 6,554 1,439 73,982 1,909 3,000
Intersect with both 360 3,984 1,006 39,693 1,909 1,909

This table shows the size of the intersections of the networks that are restricted by the nodes (genes names) of the sub-networks. ‘Cis-similarity matrix’

represents our predicted co-regulatory similarity matrix.
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Precision / recall curves on the annotated regulon network
1
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Figure 1 Co-regulatory network based evaluation results. Evaluation result of three models were shown - the reference model developed
by Brohée, et al, 2011 (denoted by 'ref [34]), the naive model with simple k-mer counts (denoted by ‘cis, simple ct’), and our main model with
both sequence information and gene expression neighborhood information from the gene co-expression network (denoted by ‘cis, coexp)).

(@) The comparison on the annotated regulon network. (b) The comparison on the Harbison's ChIP-chip based co-binding network.

Precision / recall curves on the Harbison’s network

ref [34]
— — —cis, simple ct -
cis, coexp

0.8
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greater than 0.2 (Figure 1a). The comparison using the
ChIP-chip co-binding network [6] shows that, when the
recall is less than 0.025, our precision is better (Figure 1b).
The advantage for the top predictions indicates that our
method is better for species-specific predictions. These
results show that the prediction accuracy of our approach
is comparable with the phylogenetic footprinting approach
for co-regulatory network prediction.

Since the predicted co-regulatory networks under com-
parison are intersected with annotated-regulon network or
Chip-chip co-binding network, the evaluation covers only a
small part of the original predicted co-regulatory networks,
so the real prediction accuracy cannot be fully represented
by these evaluated results. Compared to the annotated-reg-
ulon network, the PPV of high-scoring prediction, with the
score cutoff greater than 0.2, is higher than 50%. Thus,
among the 90189 edges of the 3000 by 3000 original pre-
dicted co-regulatory network with cutoff = 0.2, there should
be a large portion of edges that correspond to real co-
regulations.

The predicted cis-regulatory network has a good correlation
with the gene expression profiles

We evaluated the predicted cis-regulatory network by
using it to model the gene expression level changes, and
then finding the accuracy of the predicted expression
level. It is important to note that the reference microar-
ray gene expression dataset [38] used for modeling here
is different from the gene expression dataset [36] used
for constructing the co-expression networks and cis-
regulatory network. From Figure 2, it can be seen that

our main model has the best result based on both the
correlation and the root mean square error (RMSE).
The result from the PF method ('Ref [34]) is signifi-
cantly lower than our main method and only slightly
better than the naive model. This is in sharp contrast to
the evaluation results based on co-regulatory networks,
where both methods significantly outperformed the
naive method. One possible explanation is that while
the PF method can predict well-conserved cis-regulatory
elements with high accuracy, it will miss species-specific
motifs, which are important to accurately model the
gene expression levels. In addition, we attempted to pre-
dict the cell cycle gene expression data using the co-ex-
pression network (which was constructed from the
stress-response data and a starting point of our algo-
rithm) directly with the linear regression model. This
result is shown by the fourth sets of bar in Figure 2. It
shows that although the co-expression network per-
forms the second best, it is still a little weak compared
to our method.

Since our goal is to reveal the regulatory network, in
other word, to find the relationship between the tran-
scription factors and the target genes, the overall good
quality of modeling gene expression data doesn’t tell the
best part of our approach. If we can find examples that
the input gene expression profile cannot modeling the
evaluating gene expression profile well, but our gene-
motif score matrix can, that would show the value of our
method. Thus, we provided the figure in additional file 1.
The x axis shows the 77 gene expression conditions of
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Figure 2 Linear regression evaluation result. It shows the RMSE (a) and the correlation (b) between the prediction values of the linear
models (which are based on the cis-regulatory matrices) and the gene expression profiles. The three cis-regulatory element finding approaches
are the naive model with simple k-mer counts (denoted by ‘cis, simple ct’), our main model with both sequence information and gene
expression neighborhood information (denoted by ‘cis, coexp’), and the reference model developed by Brohée, et al, 2011 (denoted by ref [34]).
The fourth column shows the modeling result for the gene expressions by the original input co-expression network of our method. The legend
on the right of each bar chart indicates the number of top k-mers used to build the linear model and predict the expression level (see
Methods). A lower RMSE or a higher correlation indicates a better prediction accuracy.
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the evaluating gene expression profile. The y axis shows
the correlation between the predicted expression level
and the true expression level. The red curve shows the
results of our approach and the blue curve shows the
results of the original input co-expression network of our
approach. Both of the prediction results are using the top
400 features. From the figure, we can see that for some of
the conditions, our model performs better than the origi-
nal input co-expression profile. In addition, the modeling
factors of our approach are the k-mers which uncover
the potential TF binding sites.

The predicted cis-regulatory network for yeast is
biologically relevant

We have performed a preliminary analysis to evaluate
the biological significance of the predicted cis-regulatory
networks. For efficiency, we only focused on the most
significant portion of the network. Using a cutoff 17 on
the the motif significance score matrix, S (see Methods),
we produced a sparse CRN that contains several rela-
tively large and dense clusters. Figure 3 and 4 shows the
overall network topology and the six selected clusters,
respectively.

Then, we analyzed the functions of genes in the dis-
covered cis-regulatory clusters using the DAVID Func-
tional Annotation Clustering tool. Table 2 shows the
discovered cis-regulatory elements and annotated func-
tional clusters for the six cis-regulatory modules shown
in Figure 4. The significance of the functional annota-
tions is measured by the Fisher’s exact test for the
enrichment level of the function within the cluster

relative to the genome-wide genes with this function
[43]. As shown, all six clusters are significantly
enriched with some functional terms. More impor-
tantly, literature search confirmed that the cis-regula-
tory elements identified in each module matched the
binding sites of transcription factors that are known to
regulate the corresponding biological process. For
example, the consensus motif regulating the subnet-
work in Figure 4a, GATGAGC, resembles the well-
known PAC motif (GATGAG), which has been shown
recently to be the binding sites of two transcription
factors Pbfl and Pbf2 and regulates ribosome biogen-
esis [44]. The module in Figure 4b contains multiple
cis-regulatory elements that appear to be sub-
sequences of the Rapl-binding motif, CACCCRWACA
[45], which is known to be present in most yeast ribo-
somal protein genes [46]. The cis-regulatory elements
in Figure 4c include the known binding sites for Mbpl
(ACGCGT) and Swi4 (CGCGAA), two key regulators
of yeast cell cycle [46]. The GATAAG motif in Figure
4d matches the binding sites of several GATA-family
TFs, including Gatl, Gln3, Dal80, and Gzf3, all of
which are known to be involved in nitrogen metabo-
lism [46]. Figure 4e contains the well-known stress-
response element (STRE, AAGGGG) bound by Msn2
and Msn4 proteins [45]. Finally, the GCACCC motif
shown in Figure 4f matches perfectly with the binding
sites of Aftl, which is known to be involved in iron uti-
lization and homeostasis [46]. Therefore, the discov-
ered cis-regulatory modules are functionally relevant.
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Figure 3 A predicted Saccharomyces cerevisiae cis-regulatory network. It is a whole cis-regulatory network of Saccharomyces cerevisiae
predicted by this paper. Starting from the gene vs. motif significance score matrix, S, we use a score cutoff of 17 to produce the cis-requlatory
network, R. The green diamonds represent 6-mer motifs and the blue ellipses represent genes. The color and width of the edges show the
significance score. The color ranges from light gray to red (while the width ranges from 1 to 7), representing the significance score range from
17 to 126, respectively. The major clusters shown in this figure may have important biological meaning (see Figure 2 and Table 2).
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Figure 4 Six representative predicted clusters of Saccharomyces cerevisiae. The green diamonds represent 6-mer motifs and the blue
ellipses represent genes. The graph visual style is changed from Fig. 3 in order to show the gene names clear. The functional clusters
discovered by the DAVID Functional Annotation Clustering tool within the six cluster are shown by Table 2.
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Table 2 Discovered cis-regulatory clusters for Saccharomyces cerevisiae
d-clust d-count related 6-mers Functional Cluster Name f-count P-val
Fig. 4a 182 AAAATT, AAATTT, AATTTT, ATGAGC, CGATGA, nucleolus 120 2.90E-129
CTCATC, GAGATG, GATGAG, GCGATG, TGAAAA,
TGAGAT, TGAGCT, AAGGGG, AGGGGC, AGGGGG
ribosome biogenesis 90 2.30E-108
NncRNA processing 111 1.70E-94
90S preribosome 45 4.50E-47
nuclear lumen 127 1.20E-97
Fig. 4b 85 TACACC, CCGTAC, CCATAC, cytosolic ribosome 82 9.70E-131
ATCCGT, ACCCAT, ACATCC
ribosome 79 2.90E-128
structural constituent of ribosome 82 6.40E-111
cytosolic small ribosomal subunit 36 1.30E-51
Fig. 4c 36 AACGCG, ACGCGA, ACGCGT, chromosome 16 6.00E-11
CGCGAA, CGCGTC, CGCGTT,
GACGCG, TCGCGT
cell cycle 23 9.00E-13
mitotic sister chromatid cohesion 9 9.40E-12
DNA metabolic process 19 6.60E-11
Fig.4d 13 GATAAG amide catabolic process 6 6.20E-13
purine metabolism 5 340E-11
Fig. 4e 30 AAGGGG, AGGGGC, AGGGGG, response to temperature stimulus 21 6.30E-25
response to abiotic stimulus 21 8.10E-21
vacuolar protein catabolic process 14 4.20E-16
Fig. 4f 7 GCACCC, GGGTGC iron transport 5 3.10E-09
iron ion transport 5 2.60E-08
siderophore transport 4 8.70E-08

'd-clust’ is the identifier for the discovered clusters; ‘d-count’ is the number of genes in the discovered cluster; ‘f-count’ is the number of genes in the functional
clusters, which was discovered by previous well-organized experiments; ‘P-value’ is measured by Fisher's exact test p-value, which measures the enrichment level
of the functions within the discovered cis-regulatory cluster relative to the genome.

The predicted cis-regulatory network of Arabidopsis

Similar to the process of evaluating the predicted cis-
regulatory network for Saccharomyces cerevisiae, using
an S cutoff of 30, we determine the cis-regulatory net-
work for Arabidopsis (Figure 5). For the six most inter-
esting clusters (Figure 6), we present the discovered
annotated functional clusters in Table 3 from the
DAVID Functional Annotation Clustering tool. The Ara-
bidopsis is much more poorly annotated compared to
yeast, and much less is known about the cis-regulatory
networks in Arabidopsis. Nevertheless, the cis-regulatory
modules identified by our method still shows significant
functional coherence. For example, several motifs in Fig-
ure 6b match to the core subsequence (CACGTG) of
the well-known abscisic acid responsive element (ABRE)
[47]. The CATGCA motif in Figure 6c¢ is part of the
RY-repeat element that is specifically required during
seed development [47]. The motif GGCCCA in Figure
6d matches the UP1ATMSD motif that is over-repre-
sented in a list of up-regulated genes after main stem
decapitation in Arabidopsis, many of which are pre-
dicted to function in protein synthesis [48]. Finally,

genes in Figure 6e are involved in cell cycle and are
regulated by the CAACGG motif, which contains the
myb core motif found in the promoter of Arabidopsis
cell cycle regulating cyclin B1:1 gene [47].

Conclusions

The method provided by this paper combined gene
expression profiles and promoter sequences in a novel
way. By including the neighborhood information from
the gene expression profiles rather than clustering the
genes, it does not neglect the information of each indivi-
dual gene in the expression profiles. The accuracy of the
predicted co-regulatory network was high when com-
pared to the annotated regulon network, the ChIP-chip
co-binding network, and outperformed a phylogenetic
footprinting based method [34]. Additionally, by using
the motif enumerator, it is more flexible for discovering
cis-regulatory elements in various species, or for improv-
ing current CRN discovering methods. Compared to cur-
rent methods using phylogenetic footprinting, this
method is better for discovering species specific co-
regulations.
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Figure 5 A predicted Arabidopsis cis-regulatory network. It is the graphical representation of the predicted cis-regulatory network, R, for
Arabidopsis, with cutoff 30 on the score matrix, S. The color and the width of the edges indicate the significance score.
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Figure 6 Six representative predicted clusters of Arabidopsis. Refer to Table 3 for the discovered functional clusters within the six predicted
cis-regulatory clusters.
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d-clust d-count related 6-mers Functional Cluster Name f-count P-val
Fig. 6a 95 AATCGC, ATCGCC, CCGACG, CCGATT, CCTICTC, CGATTT, cysteine-type peptidase activity 8 460E-11
CGCCGA, CTCCGA, CTCTCC, GACTGT, GCCGAC, TCCGAT,
TCGCCG, TCTCCG
Fig. 6b 50 ACACGT, ACGTGT, CACGTG, CGTGTC response to water deprivation 1 1.50E-11
response to abscisic acid stimulus 12 7.90E-11
PP2C SIG 8 9.80E-11
Protein phosphatase 2C 8 1.20E-10
Fig. 6c 61 CATGCA nutrient reservoir activity 12 1.80E-18
Seed storage protein 7 6.50E-16
Fig. 6d 66 GGCCCA cytosolic ribosome 64 1.90E-103
cytosolic part 61 3.10E-99
ribosomal protein 65 3.00E-121
structural constituent of ribosome 65 8.10E-104
Fig. 6e 47 CAACGG cell cycle 11 7.60E-13
cell division 10 2.00E-12
Fig.6f 17 GCACGT plant-type cell wall organization 8 9.80E-14
Extensin-like region 6 7.00E-13
structural constituent of cell wall 6 440E-11

‘d-clust’ is the identifier for the discovered clusters; ‘d-count’ is the number of genes in the discovered cluster; ‘f-count’ is the number of genes in the functional
clusters, which was discovered by previous well-organized experiments; ‘P-value’ is measured by Fisher's exact test p-value, which measures the enrichment level
of the functions within the discovered cis-regulatory cluster relative to the genome.

The future work of this paper includes two directions.
First, more advanced motif models could be used for
improving the accuracy of regulatory network discovery.
Currently, we just use the simplest approach in each step
to show that the co-expression network-based approach
can improve the specificity of cis-regulatory networks.
For the 6-mer model, it may have more false positives
compared with longer k-mer models. Later, we would
like to try some state of the art approaches to identify
cis-regulatory element. Second, better methods can be
designed to identify genes that are not necessarily direct
neighbors of a target gene, but are likely involved in simi-
lar biological processes. Finally, more tests could be done
by applying this method on other species.

Additional material

Additional file 1: The comparison of prediction accuracy for gene
expression between methods.
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CRN: cis-regulatory network; PF: phylogenetic footprinting; PCC: Pearson
correlation coefficient: RMSE: root mean squared error; TSS: transcription start
site.
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