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Abstract

Background: Identifying the genetic variants that contribute to disease susceptibilities is important both for
developing methodologies and for studying complex diseases in molecular biology. It has been demonstrated that
the spectrum of minor allelic frequencies (MAFs) of risk genetic variants ranges from common to rare. Although
association studies are shifting to incorporate rare variants (RVs) affecting complex traits, existing approaches do
not show a high degree of success, and more efforts should be considered.

Results: In this article, we focus on detecting associations between multiple rare variants and traits. Similar to
RareCover, a widely used approach, we assume that variants located close to each other tend to have similar
impacts on traits. Therefore, we introduce elevated regions and background regions, where the elevated regions
are considered to have a higher chance of harboring causal variants. We propose a hidden Markov random field
(HMRF) model to select a set of rare variants that potentially underlie the phenotype, and then, a statistical test is
applied. Thus, the association analysis can be achieved without pre-selection by experts. In our model, each variant
has two hidden states that represent the causal/non-causal status and the region status. In addition, two Bayesian
processes are used to compare and estimate the genotype, phenotype and model parameters. We compare our
approach to the three current methods using different types of datasets, and though these are simulation
experiments, our approach has higher statistical power than the other methods. The software package, RareProb

and the simulation datasets are available at: http://www.engr.uconn.edu/~jiw09003.

Introduction

In most existing genetic variant association studies,
“common trait, common variants”, which asserts that
common genetic variants contribute to most of traits
(disease susceptibilities), serves as the central assump-
tion. Researchers have successfully identified some sig-
nificant associations between common single nucleotide
polymorphisms (SNPs) and disease traits [1]. However,
despite the enormous efforts expended on association
studies of complex traits, common genetic variants only
show a moderate influence on different phenotypes in
many reported disease associations and consequently
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have limited diagnostic value [2,3]. While the identifica-
tion of common variants creates a dilemma, known as
“common trait, rare variants”, an alternative hypothesis,
which asserts that multiple rare variants with moderate
to high penetrances may collectively influence disease
susceptibilities, has been suggested in some literatures
[3-5]. Rare variants are defined as those whose minor
allele frequencies (MAF) are less than or equal to 0.01
(< 107). Although some rare variants associated with
Mendelian diseases have been identified, more often, the
allelic population attributable risk (PAR), which describes
a small reduction in the incidence that would be
observed in unexposed samples compared to the actual
exposure pattern, is low. The odds ratio (OR), a measure
of the strength of association or non-independence
between two binary data values, is also low. Moreover,
based on the “common trait, rare variants” hypothesis, in
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many cases, a set of rare variants, instead of just one var-
iant, should be identified to fully explain the genetic
influence. Both the single-variant test [6] and the multi-
ple-variant test [7] have been applied to rare variant asso-
ciation studies. However, due to the reasons outlined
above, neither of them shows satisfactory power in
obtaining associations. Although more and more atten-
tion is being focused upon rare variants, there has only
been limited success thus far [8-10].

Alternatively, the collapsing strategy, also called the
“burden-based test”, is another approach for rare variants
association studies. Most of the collapse-based approaches
build on the “recessive-set” genetic model, in which the
predisposing haplotype contains mutation(s) in at least
one variant [11]. Multiple rare variants in the same locus
are collapsed, based on different standards, then statistical
tests are applied. The locus here is defined as a selected
region that consists of a group of candidate rare variants
[9,12-14]. However, it is argued that existing collapse-
based approaches assume all rare variants implicitly influ-
encing the phenotype in the same direction and with the
same magnitude [10,15]. Researchers have observed that
any given rare variant could have no effect, could be cau-
sal, or could be protective for the endpoints (traits) [15].
For example, some low-frequency variants in African
Americans PCSK9 can have a substantial effect on serum
Low-Density Lipoprotein Cholesterol (LDL-C) by increas-
ing the risk of or protecting against myocardial infarction
[16-18].

Collapse-based approaches have low statistical powers
when “causal”, “neutral” and “protective” variants are
combined [13,15,19]. To overcome this weakness, some
approaches [9,14] assume that the rare variants are well
selected by experts, while weighting of each variant is
another widely used strategy [9,11,14]. In a recent study,
Bhatia and others [19] suggest the development of a
“model-free” approach, RareCover, that only collapses a
subset of potentially causal variants from all of the given
variants. Here, the “model” refers to the genetic associa-
tion model that consists of the pre-selection candidate
variants.

Motivated by RareCover, in this article, we focus on rare
variant association analysis without any pre-selection of
candidate variants. We propose a probabilistic approach,
RareProb, to make selections using a Markov random field
(MRF) model and identify multiple causal rare variants
that influence a dichotomous phenotype using statistical
tests. Our approach considers both the causal and the pro-
tective variants, which distinguishes it from the previous
study RareCover, and it is therefore a robust predictor of
the direction and the magnitude of the genetic effects.
Moreover, inspired by the weight-sum approaches
[9,11,14], we also weight each variant; however, we not
only consider the likelihood of a variant being causal but
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also compute the pair-wise likelihood of candidate variants
being collapsed together. Note that although it is difficult
to observe, relatively low interactions (e.g., linkage disequi-
librium) are expected between rare variants [4,11,13,20].
Furthermore, in regression-based association methods,
genetic similarities are often used to reduce the dimen-
sions of the regression models. Therefore, we introduced
two kinds of genetic regions, the elevated region and the
background region, in our model analysis; the elevated
region has a higher probability of harboring a causal var-
iant. This assumption that the causal variants are often
located close to each other is often used, e.g. slide win-
dows in RareCover [19]. However, the regions are more
flexible than a preset slide window, as in RareCover.

We adopt the “dominant” and “recessive set” genetic
model, which are also used in [9-11,14,15,19]. In the
dominant and recessive-set model, the predisposing gen-
otype harbors the mutation(s) in at least one variant on
any of the two haplotypes. Therefore, for one genotype,
there are two possible allelic values at each variant: one
denotes that both haplotypes carry a wide-type allele,
while the other denotes that at least one haplotype carries
a mutant. In our method, each variant has two hidden
states, causal/non-causal status and elevated/background
region status. The MRF includes the hidden states, emis-
sion probabilities and transition probabilities. The emis-
sion probabilities bridge the hidden states and the
genotypes, while the transition probabilities link the two
hidden states. Following the pseudo-likelihood estimation
method [21], we infer the model parameters and all of
the hidden states. The simulation experiments show that
our approach outperforms RareCover, RWAS [14] and
LRT [9] on different parametric settings. In particular,
RareProb obtains better results on large-scale data.

Methods
Notions and model overview
Suppose we are given M rare variants (allelic sites) on a
set of N genotypes. Let s; denote the allelic value of the
site s on the genotype i (1 <i < N, 1 < s < M), where s;
= 0 means both haplotypes of i have the wild type allele,
while s; = 1 means at least one haplotype has a mutant
allele. Each genotype carries a dichotomous phenotype.
Let vector P denotes the phenotypes, where P; = 1
represents that i is affected by the phenotype trait
(being a case), while P; = 0 represents that i is a control.
The core of our approach is a Markov random field
(MRF) model. We first introduce four key components
of modeling this MRF:

+ The observed data of this MRF consist of all of the
genotypes and phenotypes.

» There are two unknown states for each site: one is
the causal or non-causal status and the other is the
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region location status. Here, we define them as the
hidden states of this Markov random field. Let a
latent vector R represent the region status, where
R, = 1 denotes that the site s is located in an ele-
vated region, while R; = 0 denotes the s is located in
a background region. Additionally, let a latent vector
X represent the causal/non-causal status, where X =
1 if the site s is causal (contributes to the pheno-
type); otherwise, X; = 0. Probabilistic functions are
designed to present the probabilities of each hidden
state. The RareProb framework is able to incorporate
prior information, obtained by different software
tools, e.g. Align-GVGD [22] and SIFT [23], etc, by
updating initial X vector and R vector.

+ A neighborhood system is required in the MRF
model to describe the interactions among hidden
states. Details of the hidden states and neighborhood
system are shown in the section “Estimation of the
transition probabilities in HMRF”.

+ There are two kinds of probabilities in the MRF
model: emission probabilities and transition probabil-
ities. Emission probabilities bridge the relationships
among genotypes, phenotypes and hidden states.
Moreover, hidden states X and R are not independent
of each other, as the relationships between the hidden
states are described by the transition probabilities.
The conditional probability P(X; = 1|R; = 1) denotes
the probability that the site s is a causal site when it is
located in an elevated region, while P(X; = O|R, = 1)
denotes the probability that the site s is non-causal
when it is located in an elevated region. Similarly,
another two conditional probabilities, P(X; = 1|R, =
0) and P(X; = O|R, = 0), present the probabilities of
being causal or non-causal if the site is located in a
background region. Details of the emission probabil-
ities are shown in the section “Estimation of the emis-
sion probabilities in HMRF”, and the transition
probabilities are shown in the section “Estimation of
the transition probabilities in HMRF”.

The central thesis of our approach is that causal rare
variants, which should be collapsed together, are treated as
one random vector variable with certain dimensions.
Then, the probability of this bunch of causal rare variants
becomes the probability of one variable being associated
with the phenotype. Based on the Markov-Gibbs equiva-
lence [21], the probability of this random variable can be
decomposed into the sum of clique potentials. The first-
order clique potentials describe the probability of one var-
iant being causal, while the second-order clique potentials
measure the pair-wise genetic similarities, which share the
idea of the kernel machine in regression frameworks
[10,24,25]. The neighborhood system in the MRF model
consists of clique potentials. In our approach, we select
that the neighborhood system only contains the first-order
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and the second-order clique potentials because there is
scanty evidence supporting the biological or medical sce-
nario of high-order potentials. For each variable, the
MAFs and model parameters can be estimated by maxi-
mizing the likelihoods of the genotypes. Then, the prob-
ability of the variable and the variable itself can be
updated by MAFs and model parameters. Two or three
iterations can be applied if needed for the convergence of
the MRF. Thus, our approach selects a subset of candidate
causal variants by updating the variables and avoids the
weakness of the same magnitude effect assumption
because the neighborhood system is able to describe both
the “causal” and “protective” variants.

Estimation of the hidden states in HMRF

Neighborhood system

Assume there are N/2 cases and N/2 controls among all
of the genotypes (if the number of cases is not equal to
the number of controls, then all of the results still can be
used by applying noncentrality parameters). At a certain
variant s, let 0, denote the MAF for the cases, and let the
number of genotypes in cases that carry at least one
mutant allele be ¢{. Let p; denote the MAF for the con-
trols, and let the number of genotypes in controls that
carry at least one mutant allele be ¢; . Then, we can draw
two binomial distributions for the cases and the controls

[9,14]: ¢ ~Bin(56;) and ¢ ~ Bin (%, ps), where

+ N N_g+ _ ToC N_C*

fei16s) = CR 65 (1—6)27% and flelps) = Cyps (1—ps)2 7%,
2 2

Thus, for a site s, the statistic of the difference between 0

and p is
2 (0} - ,65)

Zs =
\/[%]\/<95+/A)s> (2_és _/35>

where 0 =

CS CS
N/2 N/2
is the estimation of p;. Similar to the linear kernel func-
tion, which calculates genetic similarities [10], we mea-
sure the likelihood between pairwise rare variants, which
denotes how likely two variants would be collapsed
together. For two variants s and s’, we define wy as the
likelihood of collapsing as follows:

is the estimation of ; and o, =

2zzy

2
o

W = 22 +z

The o function has the following properties: (1) When
both s and s’ are causal variants, due to the PAR, w;-
locates in the interval (0, 1]. (2) If one variant is “causal”
but the other is “protective”, the likelihood takes on a
negative value. (3) The likelihood encourages the col-
lapse of the variants with similar PAR. Those rare var-
iants whose MAFs increase rapidly in some cases, as we
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mentioned before, could be identified by single-site tests
or pair-wise tests, which are often not considered in col-
lapsing models [8]. Let w.,. be the weight of two neigh-
bors. The closer the statistics z; and z,- are, the larger
the likelihood will be. And thus, the neighborhood sys-
tem is built up.

Hidden states

Rare variant s is either located in an elevated region or
in a background region. Thus, we define the probability
(Bayesian classifier) of s as

P(Xs1Xn(s)) o exp ()’P(XS|RS)XS +7 Z w5y p(Xs IRy )XS’)

s'en(s)

where 7 (s) denotes the neighbors of s. yand 1 are two
MRF parameters. y represents how strongly the status of
X, affects the probability of X;, while n represents how
strongly the neighbors of s affect the probability of X;.
Here, we limit n >0, which encourages the pair-wise
weights and prevents them from counteracting the nega-
tive weights. Thus, the joint probability of the latent vector
Xﬁsﬂ&@)aa@(yzyﬂ&mg+nzﬂﬂg%yﬂKﬂhﬁ,Whﬂe
@ = (% n). As the variants in different subsets (different
collapsing groups) are conditional independent, this joint
probability covers all of the probabilities of the random
variables (collapsing groups). Similarly, the probability of s
located in an elevated region can be represented by

p(R5|R”(S)) ocexp | TR+v Z ws,s Ry

s'en(s)

and the joint probability of latent vector R can be
represented by p(R; r) x exp (‘L’ Zﬁ” R+vy) wS,S/RS/),

where @ = (7, v)-r and v are two MRF parameters. We
also limit v >0, which encourages the pair-wise weights
and prevents them from counteracting the negative
weights.

Estimation of the emission probabilities in HMRF

We now estimate the emission probabilities to relate X and
R with the observed data. As linkage disequilibrium is rarely
observed between rare variants [8], the vector consists of
the allelic values from one variant that is conditionally inde-
pendent from the others, when a particular X is given.
Thus, the joint conditional probability of all of the geno-

types is

M
p(Y1X) = exp (Z p(Ys|Xs)>

s=1

If Xy = 1, due to the PAR, 6, = p;. We place a prior
distribution on 6; and a prior on p; [26]:
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ap—1 Bpi—1 ap—1 Bpi—1
S 1 - Fs ” S 1 - Fs s
os” (1= ps) 2(p) =" (1= p)
B(ep,s Bp.) B(ep,s Bp.)
where o(-) and B(-) are hyper-parameters in the prior
distributions [26-28]. Then, the marginal distribution

of ¢ is

77(,05) = and

¢ T(ag, Bs) Tlag +c;)T (Y —ct+PBa,)

+ =C
M) =N @ )P (B) T (o + B+ )

The marginal distribution of c; is similar. The prob-
ability of the observed genotypes on s is equal to the

m (c;)

sum of hor Thus we have:
N

2

T (a5, Bs) Tleo, +cT(Y —ct + o)
T (e, )T (Bs,) T (o, + Bo, + )

(e, Bp) Tlep +c)T(5 = +85)

P(FK = 1) = “TapIT(B)  Tlan+ i+ ¥)

On the other hand, if X; = 0, then there is no PAR
between 6, and p; that infers 8; = p,. Here, we simply
use pg to denote the MAF of s for both the cases and
controls. Thus, we have

C(as, Bs) T(as+¢)T'(N — ¢+ Bs)
I ()l (Bs) ['(os + Bs +N)
where ¢, =cf +c;. We have now obtained all the

three emission probabilities of this HMRF: p (Y]X), P
(Yslxs = 0) and P (Yles = 1)

P(Ys|X; = 0) =

Estimation of the transition probabilities in HMRF

The transition probabilities link the hidden states X and
R. Let cx be the counts of the causal variants on all of
the elevated regions, and let c¢ be the number of variants
in those regions. Let cy be the counts of the causal var-

iants on all of the background regions, and cp be the
number of variants in those regions. Then, we draw two

binomial distributions: ¢ ~ Bin(cg, £);cy ~ Bin(cp, ¢)
where (=P (X =1|R=1)and (=P (X = 1|R = 0). We
also place the prior distributions on ¢ and ¢ as follows:

cx ~ Bin(cg, &);f(cxl§) = Cz};(éc}(l _ é)crc}

and

¢ ~ Bin(cs, £)if(cx1¢) = Ca g (1 — )@

where =P (X =1R=1)and {=P (X = 1|R = 0).
We also place the prior distributions on ¢ and ¢, as
follows:

U N A Gl Y
Boe ) T Bla o)

where a(-) and B(-) are also hyper-parameters.

n(§) =
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Thus, we have the conditional probability of X given R:

T(ag, Be) T(og + )T (ce — ¢ + Be)
I (ee)T(B) T (o + Be + ce)

T(ae, Be) Tlow +cx)T (e —cx + Be)

PR = “Plao)T(B) Tl +Be +n)

and the posterior distribution of & given ¢y is

é;ozg+c;(—1 (1 _ %—)ﬁs’rM*C}*l

7 (§lex) = Bae +cx, Be + M —cx)

Similarly, the posterior distribution of { given cy is

§QC+C;71(1 _ ;—)ﬂ;*’M—C;—l

0 b v e e M=)

Thus far, we have obtained all of the three transition
probabilities of this HMRF: p (X|R), 7(£|cx) and
w(¢lcy).

Estimation the model parameters

Based on the Gibbs-Markov Equivalence [21], a pseudo-
likelihood estimation cycle can be applied to this hidden
MREF to estimate the model parameters and update the
hidden states. We use the pseudo-likelihood estimation
because p (X; @) and p (R; ®@p) are difficult to compute
directly. The algorithm involves the following four steps:

+ Step 1: Estimate oy and B, with § and p by maxi-
mizing the likelihood L(Y/X). Update §; by maxi-
mizing the posterior distribution:

X gy"+6;71(1 _ 95)/3,.,5+N76;71
w(6slcl) =

B (ap, + ¢t Bo, + N —ct)
Similarly, Update p;.
« Step 2: Estimate o5 B and o5 B, with £ and ¢ by
maximizing the transition probability L(X/ﬁ)
Update ¢ and ¢ by maximizing the transition prob-
abilities 7 (£]cy) and 7 (&|cy), respectively.
+ Step 3: Estimate ® and ®; with $ and &j by
maximizing the pseudo-likelihood functions:

M
L () = e (Zps (%) q>)

S
and L (f?, CI>R> .
« Step 4: Update ¥ and R by
r (X5|Y/ XS/S) O(f <Ys X é/ /3) ps <X5 |5(n(s); Ci))
and P (R,IX, R ).

There are several ways to exit from this iteration. We
measure the Euclidean distance between the current and
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the updated X . If the distance is less than a preset
threshold, our approach will stop the iteration. After the
convergence of HMRF, we obtain the estimations of X
and R, as well as the MAFs for every variant. The col-
lapsed rare variants can be tested based on the existing
statistics, e.g. in [9,10,14].

Experiments and results

In this section, we apply our approach on a real dataset
from [30] and also compare it with three other
approaches using different types of simulated datasets.
The three comparison approaches are RareCover, which
is based on [19], RWAS from [14] and LRT from [9].
Additionally, it seems that RareCover is not released
online, so as in many previous works, we re-implement
this algorithm and the related statistics by ourselves.

Simulation frameworks

As the simulation settings in different papers [9,14,19]
are quite different, we adopt all of them and generate
three types of simulated datasets. In the first one, each
dataset has a fixed number of causal variants, while in
the second dataset, the number of causal variants is
determined by allelic population attributable risk (PAR).
The last simulation method first generates elevated
regions and background regions and then plants causal
variants in each region. We describe the three simulation
methods in the following sections.

Fix number of causal variants

First, we generate the datasets with fixed numbers of cau-
sal variants, following previous approaches [14] and [9].
Each variant is generated independently because they
believe that rare variants do not show significant linkage
disequilibrium [9,14]. For each variant, the probability dis-
tribution of the MAF of site s on controls, p;, satisfies the
Wright's distribution under purifying selection [4],

f(ps) (06 (,05)5571(1 — ps)ﬁNflecfpig

where o is the selection coefficient, s is the probability
that the normal allelic site mutates to the causal variant,
and By is the probability that a causal variant repairs to a
normal variant. We take o = 12.0, Bs = 0.001 and By =
0.00033, which are the same settings used by [9,11,14].

Then, the relative risk of s is: RR = (1_56) o T 1, where J is

the marginal PAR. The marginal PAR is equal to the
group PAR (A) divided by the number of causal variants,
while the relative risk of M variants is 1 [14]. Afterwards,
the MAF of s for the cases is calculated according to

O = (R;fflx)f; .1~ In each dataset, we simulate N = 2000 gen-

otypes with half cases and half controls. The mutations on
the cases and the controls are sampled independently
according to 6, and p;, respectively.
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Causal variants depends on PAR

The second way generates a set, C, that contains all of
the causal variants. Instead of a fixed number, the total
number of causal variants depends on PAR [19], which
is limited by A (the group PAR):

0.P
Azl—H(l— ;T>
D

seC

where Pr represents the penetrance of the group of cau-
sal variants and Pp, is the disease prevalence in the popula-
tion. Different settings are applied in the experiments.

We use the algorithm proposed in [19] to obtain the
MATF of each causal variant. The algorithm samples the
MATF of a causal variant s, 6,, from the Wright’s distribu-
tion with o = 30.0, 85 = 0.2 and S5 = 0.002 [4,19], and
then appends s to C. Next, the algorithm checks whether

H eC (l — 9;,?) > 1— A is true. If the inequality does
S

not hold, the algorithm terminates and outputs C. Thus,
we obtain all of the causal variants and their MAFs. If the
inequality holds, then the algorithm continuously sam-
ples the MAF of the next causal variant. The mutations
on genotypes are sampled according to 0;.

For those non-causal variants, we use Fu’s model [29]
of allelic distributions on a coalescent, which is the
same used in [19]. We adopt ps = 7. The mutations on
genotypes are sampled according to p,. The phenotype
of each individual (genotype) is computed by the pene-
trance of the subset, Pr. Thereafter, we sample 1000 of
the cases and 1000 of the controls.

Causal variants depends on regions

There are many ways to generate a dataset with regions.
The simplest way is to preset the elevated regions and
the background regions and to plant causal variants
based on certain probabilities. An alternate way creates
the regions by a Markov chain. For each site, there are
two groups of states. The E state denotes that the variant
is located in an elevated region, while the B state denotes
that the variant is located in a background region. Both
states E and B can transfer to a causal state C or a non-
causal state . If the Markov chain travels to the C
state, it plants a mutant on the genotype with probability
p. If the variant is considered to be causal, it may con-
tinuously transfer to the state A, which means that the
genotype carries a mutant that may affect the phenotype
with penetrance Pr. Otherwise it arrives in the state A4,
and the Markov chain plants a mutant or a wild-type
allele on the genotype afterwards.

To generate enough genotypes, we perform the follow-
ing steps for each variant: if the process drops into C, we
take 50,000 iterations to yield a mutant, where p is
sampled from the Wright’s distribution with ¢ = 30.0,
Bs = 0.2 and By = 0.002. If it drops into A or A, we design

Page 6 of 9

an iteration to C until it reaches 50,000 iterations. The
transition probability from C to A is equal to p x Pr. After
we have enough genotypes, we sample 1000 cases and
1000 controls from them.

Comparisons on power
Similar to the measurements in [9,14], the power of an
approach is measured by the number of significant data-
sets, among many datasets, using a significance thresh-
old of 2.5 x 10° based on the Bonferroni correction
assuming 20000 genes, genome-wide. We test at most
1000 datasets for each comparison experiment.
Power versus different proportions of causal variants
We compare the powers under different sizes of total
variants. In the first group of experiments, we include
50 causal variants and vary the total number of variants
from 100 to 5000. Thus, the proportions of causal var-
iants decrease from 50% to 1%. In the second group of
experiments, we hold the group PAR as 5% and vary the
total number of variants as before. The results are com-
pared in Table 1. From the results, our approach clearly
shows more powerful and more robust at dealing with
large-scale data. We also test our approach on different
settings of the group PARs. Those results can be found
in Table S1 in the Additional file 1.

The Type I error rate is another important measure-
ment for estimating an approach. To compute the Type
I error rate, we apply the same technique as [19]. Type I

Table 1 The power comparisons at different proportions
of causal variants

Total Causal RareProb RareCover RWAS LRT
100 50 100% 100% 100% 100%
200 50 100% 100% 99.6% 99.9%
400 50 100% 100% 85.3% 88.6%
600 50 100% 94.6% 54.1% 58.8%
800 50 100% 0.0% 33.0% 36.5%
1000 50 100% 0.0% 20.7% 22.0%
2000 50 100% 0.0% 2.0% 2.0%
3000 50 100% 0.0% 0.8% 0.0%
4000 50 100% 0.0% 0.4% 0.0%
5000 50 100% 0.0% 0.3% 0.0%
200 1% 51.0% 0.0% 0.0% 0.0%
400 3* 77.0% 0.0% 0.0% 0.0%
600 2% 63.6% 0.0% 0.0% 0.0%
800 3* 57.1% 0.0% 0.0% 0.0%
1000 3* 59.0% 0.0% 0.0% 0.0%
2000 1% 34.0% 0.0% 0.0% 0.0%
3000 2% 41.2% 0.0% 0.0% 0.0%
4000 3* 40.0% 0.0% 0.0% 0.0%
5000 2% 29.8% 0.0% 0.0% 0.0%

The upper section of this table shows the results with a fixed number of
causal variants. The column “Causal” shows the number of causal variants, and
“*" indicates that the value is an average value.”
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error rate is defined as the probability of a non-causal
variant being selected in the potential causal set. We
compare our approach only with RareCover because
RWAS or LRT does not select any potential causal var-
iants. The results on different configurations can be
found in supplementary documents. Based on the
results, our approach always holds reasonable Type I
error rates. Although on some configurations RareProb
has a little higher Type I error rates, e.g. 1%-10% higher
when gourp PAR is 5%, than RareCover, the absolute
values are still satisfied. Moreover, when the group PAR
decreases, RareProb always performs lower Type I error
rates than RareCover. These results can be found in
Table S2 in the Additional file 2. Considering both statisti-
cal power and Type I error rate, the advantage of RareProb
cannot be neglected: it is able to identify most of the cau-
sal variants with an acceptable Type I error rate. In the
other words, if an approach rarely identifies correct var-
iants, a low Type I error rate becomes meaningless.

Power versus different configurations of regions

We compare the powers on different configurations of
elevated regions and background regions and test the
performance of our approach in identifying the regions.
At each total variant number, we preset the number of
regions between 2 and 8, with half elevated regions and
half background regions. In these datasets, the probability
of a rare variant being causal is 0.1 if the variant is
located in an elevated region; otherwise, the probability is
0.001 if variant is located in a background region. In the
last group of experiments, the regions are generated by
the Markov chain, where the transition probability of
remaining in the same regions (keeps in elevated region
or background region) is 0.8, while the transition prob-
ability of transitioning between different regions (jumps
from an elevated region to a background region, or
jumps from a background region to an elevated region) is
0.2. The emission probabilities are the same as before.
We test the powers and record the percentages of correct
identifications on the regions. The results are listed in
Table 2. The results show that our approach successfully
estimates the regions, while RareCover suffers difficulty
on identifying neither candidate causal variants nor
region information. We also test our approach on total
variants being 3000, 4000 and 5000. These results can be
found in Table S3 in the Additional file 3.

RareProb on real mutation screening data

Finally, we apply our approach to a real mutation screen-
ing dataset. This dataset has been previously published
by [30]. Authors screen for a susceptibility gene, ATM,
which is thought to associate with ataxia telangiectasia.
ATM is also an intermediate-risk susceptibility gene for
breast cancer [9,14]. The dataset (ATM_CCMSdata_-
Dec2011_v1) we have consists of 121 rare variants in a
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Table 2 The power comparisons for different
configurations of regions

Total Causal Regions Length RareProb Correct R
1000 36* 1 50 100% 96%
37* 2 50 100% 98%
36* 3 50 100% 97%
35*% 4 50 100% 98%
2000 73% 1 100 100% 97%
73% 2 100 100% 97%
70% 3 100 100% 98%
71* 4 100 100% 96%
Total Causal Regions Length RareCover Correct R
1000 36* 1 50 0.0% 1.9%
37* 2 50 0.0% 1.4%
36* 3 50 0.0% 1.7%
35*% 4 50 0.0% 1.6%
2000 73% 1 100 0.0% 0.7%
73* 2 100 0.0% 0.8%
70% 3 100 0.0% 1.3%
71%* 4 100 0.0% 0.8%

The column “Causal” represents the total number of causal variants, “Region”
denotes the total number of elevated regions, “Length” indicates the total
number of variants locating in elevated regions. The column “Correct R”
shows the percentage of correct identification of regions.

set of 2506 cases and 2235 controls, which is called
“bona fide case-control studies” [9,14].

We apply RareProb to this dataset without any prior
information. RareProb identifies variant #c.4424A >G as a
causal variant and reports a significant association with a
p-value of 8.8817 x 107, As a comparison, authors in [30]
reports that they did identify a significant association with
the help of the prior information, but that they did not
find a significant association only according to the results
of CMC. Sul and others [14] applied RWAS and reports a
non-significant association with p-value of 0.3946 without
prior information and a non-significant association with p-
value of 0.0078 and 0.0881 when prior information of var-
iants is obtained by Align-GVGD [22] and SIFT [23],
respectively. Sul and others [9] also applied LRT and
reports that a non-significant association with p-value of
0.3934 was found without prior information, but a signifi-
cant association with p-value of 0.0058 and 0.08384 were
found introducing Align-GVGD scores and SIFT scores,
respectively. Our approach successfully identifies an asso-
ciation and clearly points out the candidate causal variant,
without prior information, while either RWAS or LRT can-
not achieve this.

Conclusion

In this article, we propose a probabilistic method, Rare-
Prob, to identify multiple rare variants that contribute to
dichotomous disease susceptibility. Our approach is
inspired by RareCover. Both approaches select a subset of
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potentially causal variants from the given variants, which
means our approach does not rely on the pre-selection of
candidate rare variants. Furthermore, as opposed to simply
merging the variants in RareCover, our approach gains
power by considering the directions and the magnitudes
of the genetic effects. Both the causal and the protective
variants can be described by pair-wise measurements,
respectively. This method gets rid of the weakness of los-
ing statistical power when “causal”, “neutral” and “protec-
tive” variants are combined. Note that the pair-wise
weight is not the linkage disequilibrium (LD). LD is quite
difficult to observe, although it is expected among rare
variants. The pair-wise measurements indicate the likeli-
hood of two variants being collapsed, which is similar to
the kernel functions in regression-based frameworks. This
weight is then used to build up the neighborhood system
of the hidden Markov random field model.

The Markov random field model treats all of the variants
as one vector and estimates their causal/non-causal status
by globally maximizing the likelihood of genotypes instead
of by local optimization. Our approach gains more power
than existing group-wise collapsing approaches; RareProb
filters out those variants with non-causal status. At the
same time, unlike the previous selection-based approaches,
RareProb controls the false positive rate by partitioning
elevated regions and background regions, instead of by
presetting any sliding windows. Regions are much more
flexible than preset sliding windows. While existing
approaches can only handle hundreds of variants, there is
no doubt that the total number of variants will increase
rapidly with the development of new technologies, e.g.
applications of next generation sequencing. The simula-
tion experiments show that our approach obtains signifi-
cantly more power, especially when the total number of
given rare variants is large. We also apply our approach to
a real mutation screening dataset and a significant associa-
tion is found. Our approach is able to handle thousands of
variants. Moreover, our approach is easy to extend to an
“additive” genetic model and multiple phenotypes by
updating the Dirichlet prior distribution.

Additional material

Additional file 1: Table S1. The power comparisons at different levels
of PAR and different numbers of causal variants.

Additional file 2: Table S2. The power comparisons for different
configurations of causal variants depended on PARs.

Additional file 3: Table S3. The power comparisons for different
configurations of regions.
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