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Abstract

Background: Helminths are important socio-economic organisms, responsible for causing major parasitic infections
in humans, other animals and plants. These infections impose a significant public health and economic burden
globally. Exceptionally, some helminth organisms like Caenorhabditis elegans are free-living in nature and serve as
model organisms for studying parasitic infections. Excretory/secretory proteins play an important role in parasitic
helminth infections which make these proteins attractive targets for therapeutic use. In the case of helminths, large
volume of expressed sequence tags (ESTs) has been generated to understand parasitism at molecular level and for
predicting excretory/secretory proteins for developing novel strategies to tackle parasitic infections. However,
mostly predicted ES proteins are not available for further analysis and there is no repository available for such
predicted ES proteins. Furthermore, predictions have, in the main, focussed on classical secretory pathways while it
is well established that helminth parasites also utilise non-classical secretory pathways.

Results: We developed a free Helminth Secretome Database (HSD), which serves as a repository for ES proteins
predicted using classical and non-classical secretory pathways, from EST data for 78 helminth species (64
nematodes, 7 trematodes and 7 cestodes) ranging from parasitic to free-living organisms. Approximately 0.9 million
ESTs compiled from the largest EST database, dbEST were cleaned, assembled and analysed by different
computational tools in our bioinformatics pipeline and predicted ES proteins were submitted to HSD.

Conclusion: We report the large-scale prediction and analysis of classically and non-classically secreted ES proteins
from diverse helminth organisms. All the Unigenes (contigs and singletons) and excretory/secretory protein
datasets generated from this analysis are freely available. A BLAST server is available at http://estexplorer.biolinfo.
org/hsd, for checking the sequence similarity of new protein sequences against predicted helminth ES proteins.

Background

According to the World Health Organization, over two
billion people are suffering from human helmintasis and
many more are at risk worldwide, especially in developing
nations [1]. Helmintasis also results in the economic loss
of billions of dollars due to damage of crops and livestock
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every year [2,3]. Besides their role in causing diseases, hel-
minths also provide some protection against autoimmune
diseases [4]. Free-living helminths such as Caenorhabditis
elegans (the most studied helminth till date) serve as mod-
els to understand parasitism [5]. In the case of parasitic
organisms, excretory/secretory (ES) proteins play an
important role during the parasitic infection as these pro-
teins are responsible for the regulation of the host’s
immune system for parasite survival inside the host. Such
important roles played by ES proteins make these proteins
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attractive targets for the development of therapeutic
strategies [6].

With rapid advances in sequencing technologies,
sequencing data has been generated on large scale espe-
cially in the area of genomics and transcriptomics.
Although short reads generated using 454 Roche pyrose-
quencing is the major sequencing technique used these
days for generating transcriptomic data, expressed
sequence tags (ESTs) remain the largest resource of hel-
minthic transcriptomic data, with data available for several
helminths. dbEST [7], the largest global repository of
ESTs, recorded 71,276,166 entries (as on December 1,
2011, release 120111). EST data has been widely used for
ES protein prediction in different transcriptomic studies
[8,9] but most of the studies do not cover ES proteins
comprehensively, especially non-classically secreted ones
[10]. Also, it must be noted here that although the hel-
minth proteome is directly affected by the developmental
stage-specific expression and indirectly by change/decrease
of 3'UTRs with their developmental stages, the data is so
sparse in dbEST for some organisms that all available EST
data from different stages are pooled together for the data
analysis reported here. These mixed datasets have been
used before for other nematode transcriptome studies like
S. ratti studies [11,12]. We have used such a composite
S. ratti dataset [12] in our previous secretome analysis [13].

In this study, we compiled ESTs for each helminth
organism, covering nematodes, trematodes and cestodes
and predicted ES proteins encoded by them, followed by
functional annotation and therapeutic target analysis. Our
earlier large-scale helminth secretome analysis was carried
out using EST2Secretome [14] but the study only consid-
ered the classically secreted proteins, based on N-terminal
secretory signals and covered only parasitic nematodes.
Also, the ES protein sequences predicted as a part of this
earlier study were not provided to the scientific commu-
nity. We believe such predicted ES proteins are a valuable
resource for understanding host-parasite interactions and
for the development of new therapeutic strategies against
helminth infections, for further validation using wet lab
assays.

Recently we proposed a new bioinformatics workflow
[13] for the prediction of classically and non-classically
secreted proteins using 454 transcriptomic data of parasi-
tic nematode, Strongyloides ratti. In the present study, we
applied our workflow with minor modifications to accom-
modate EST datasets of 78 different helminth species
available from dbEST, including those also available from
Nematode.net [15], the largest provider of nematode ESTs.

The data were cleaned, assembled into Unigenes (con-
tigs and singletons), which were then translated into pro-
teins. From these putative proteins, ES proteins were
predicted using a series of computational tools, which
were further verified by sequence similarity to our
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in-house experimentally-determined parasitic helminth
ES protein dataset (detailed in Materials and methods).
Predicted ES proteins were functionally annotated in
terms of similarity to other known proteins, biochemical
pathways, protein families and domains. ES proteins were
also searched for homologues in human, C. elegans, Schis-
tosoma mansoni and Schistosoma japonicum. The analy-
sis results are made available to the scientific community
via the Helminth Secretome Database (HSD) [16] web
portal All the Unigenes and ES protein sequence datasets
can be browsed in FASTA format and are available for
download. A BLAST web service is also provided for
researchers to check the similarity of their protein
sequences with our predicted ES datasets.

Materials and methods

Expressed sequence tags (ESTs) data sets

For this study, EST datasets for different helminth species
were downloaded from NCBI dbEST [7] and analysed
locally.

Bioinformatics approach components
Our bioinformatics approach has three phases as shown in
Figure 1, similar to one tested on the S. ratti transcrip-
tomic data [13] where we have used MIRA and CAP3 for
reliable de novo transcriptome assembly, with these tools
now combined by a Perl wrapper in iAssembler [17] for
the robust assembly of both 454 and Sanger EST datasets.
We have implemented our computational approach to the
large helminth EST data from dbEST.

Phase I: Preprocessing and assembly of raw EST data

Each organism raw EST data were cleaned to remove
short and vector sequences using Seqclean [18] and Uni-
vec [19] as a vector database. Seqclean is used to trim and
validate EST's for screening of vector contaminants, low
quality and low complexity sequences. Cleaned sequences
were assembled using iAssembler (version 1.3.1) [17]. The
assembly was carried out using a minimum percent iden-
tity for sequence clustering and assembly of 95% contigs
and singletons, collectively referred to as Unigenes. ESTS-
can [20] was used to conceptually translate Unigenes into
putative proteins.

Phase II: Prediction and validation of excretory/secre-
tory (ES) proteins

Prediction of ES proteins was carried out using a pipe-
line of four tools; SignalP [21], SecretomeP [22], TargetP
[23] and TMHMM [24] followed by validation with
experimentally determined helminth ES proteins as shown
in the bioinformatic workflow (Figure 1). This approach of
computational prediction of ES proteins has been success-
fully applied earlier to Stromnglyloides ratti [13]. SignalP
(version 3.0) was used for predicting classically secreted
proteins applying options of organism category of eukar-
yotes and truncation of protein sequence at 70 amino
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Figure 1 Secretome analysis workflow based on EST data. Secretome analysis workflow comprising Phase | (pre-processing and assembly of
raw data), Il (excretory/secretory (ES) protein prediction) and Il (Protein-level functional annotation) based on homologue identification against

acids. SecretomeP (version 1.0) was used for predicting
non-classically secreted proteins using default options.
TargetP (version 1.1) was used for the prediction of mito-
chondrial proteins with a prediction cut-off of 0.78 for
mitochondrial protein prediction and 0.73 for other loca-
tions. TMHMM (version 2.0) was used for the prediction
of transmembrane proteins with default options. Firstly,
putative proteins generated from ESTScan were analyzed
by SignalP for predicting classically secreted proteins.
Proteins were considered secreted, if the D-score and the
signal peptide probability computed by SignalP are greater
than 0.5. The remaining proteins were then input to
SecretomeP for non-classical secretory protein prediction.
Proteins were considered as secreted, if the neural network
(NN) score from SecretomeP is greater than or equal to

0.9. The combined set of classical and non-classical secre-
tory proteins is then passed to TargetP, to check for mito-
chondrial proteins. Mitochondrial proteins predicted by
TargetP were then removed and the remaining predicted
ES proteins analyzed by TMHMM. ES proteins with no
transmembrane segments are considered for further
analysis.

For the validation of computationally predicted ES pro-
teins, we checked their sequence similarity against our
compiled set of 1485 experimentally derived ES proteins
of parasitic helminths (Ancylostoma caninum, Brugia
malayi, Clonorchis sinesis, Fasciola hepatica, Schistosoma
mansoni, Schistosoma japonicum, Strongyloides ratti and
Teladorsagia circumcinta) compiled from literature
[25-35] using BLAST [36].
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Phase III: ES proteins annotation

Predicted ES proteins from phase II, were annotated for
protein domain and family classification using Interpros-
can [37] including gene ontology (GO) terms option.
ICAAS [38], provide functional annotation by BLAST com-
parisons against the manually curated KEGG databases.
This tool was used for KEGG pathways BRITE objects
mapping [39,40]. ES proteins were independently also
searched for homology matching against NCBI's non-
redundant protein database and Wormpep (C. elegans
proteins) [41] using BLAST [36]. ES proteins were also
checked for homology matching against human proteins.
BLAST was used with permissive (E-value: 1e-05), moder-
ate (le-15) and/or stringent (1e-30) search strategies.
These tools provide fast annotation of large volumes of ES
proteins and also reliably used before in other helminth
transcriptomic studies [13,14].

Hardware and Software specifications

The Helminth Secretome database (HSD) is developed
using MySQL 5 relational database [42]. The user-friendly
interface is developed using PHP [43] for BLAST service
and data management. The data is served using the
Apache web server [44]. Open source tools used for this
study were installed on a ubuntu server operating system
based 16-CPU Linux cluster (2.4 GHz, Intel(R) Xeon(R)
E5530, 32 RAM). Sequence assembly using iAssembler
and protein functional annotation mapping using Inter-
proscan are the most computationally intensive steps.

Results

Our recently developed bioinformatics workflow applied
to 454 transcriptomic dataset of S. ratti was modified
slightly to be applicable to EST data. The different compo-
nents of the workflow were linked by Perl, Python and
bash shell scripts (Figure 1).

Preprocessing and assembly of EST datasets

Initially a total of 870,223 ESTs ranging from 59 to 80,905
ESTs for different helminth species were downloaded and
stored in different directories on our Linux server. Accord-
ing to the workflow (Figure 1), raw ESTs were cleaned first
using Seqclean for removing very short or vector
sequences. 846,741 (97.3%) cleaned ESTs were passed to
iAssembler for de novo assembly. iAssembler is a standa-
lone Perl package to assemble ESTs using iterative cycles
of MIRA assemblies followed by CAP3 assembly. The tool
gives much higher accuracy in EST assembly than other
existing assemblers by employing an iterative assembly
strategy and automated error corrections of mis-assem-
blies [17]. This strategy of using MIRA+CAP3 for de novo
transcriptome assembly has been successfully implemen-
ted earlier for other helminth organisms [13] and there-
fore, using iAssembler is not only equivalent to these two
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programs but eliminates an extra step by incorporating
the running of both programs in a single step. The assem-
bly results in 303,657 Unigenes, comprising 103,791 con-
tigs and 199,866 singletons. 245,814 proteins were
obtained by conceptual translation of Unigenes using
ESTScan (Table 1). Statistics of the EST analysis reported
here, are provided in Additional file 1: Table S1.

ES protein prediction

Firstly, 18,287 (7.44%) proteins were predicted as classi-
cally secreted proteins out of 245,814 total putative pro-
teins using SignalP. The remaining 227,527 (92.56%)
putative proteins, predicted to be non-secretory by Sig-
nalP, were then scanned by SecretomeP for predicting
non-classical secretory proteins. SecretomeP predicted a
total of 9,244 (3.76%) non-classically secreted proteins.
Combining the results from these two programs yielded a
total of 27,531 (11.2%) classical and non-classical proteins
which wer then checked by TargetP for identifying mito-
chondrial proteins. TargetP predicted only 0.17% proteins
as mitochondrial, at 95% specificity. The remaining 27,116
proteins after removing 415 mitochondrial proteins were
analysed by TMHMM for the prediction of transmem-
brane proteins. A total of 18,992 (7.72%) proteins were
predicted finally as ES proteins after removing 8,126 pro-
teins, which were predicted by TMHMM as transmem-
brane proteins with at least one transmembrane helix.
This number is four fold higher than earlier reported
(4710 ES proteins) in the secretome analysis of 39 parasitic
nematodes [14].

All ES proteins that were predicted computationally
were searched for sequence similarity against our non-
redundant dataset of 1,485 experimentally determined ES
proteins of various parasitic helminth organisms using
BLASTP. We found 4,260 (22.43%) computationally pre-
dicted ES proteins homologous to known ES proteins. To
the best of our knowledge, the HSD dataset is the most
comprehensive collection of ES proteins of helminth
organisms. It will serve as a rich source for developing
new treatment strategies against parasitic infections and to
study the molecular mechanisms of helminth organisms.

Annotation of ES proteins

ES proteins predicted in Phase II were mapped to known
protein families and domains using Interproscan. These
proteins were also mapped to biochemical pathways using
KAAS. Of the 18,992 ES proteins predicted, we could
annotate a total of 7,802 (41.08%) proteins with 2,340 dif-
ferent protein domains and families. ES proteins were
annotated with Gene Ontology (GO) terms (2,893 for Bio-
logical Process, 4,558 for Molecular Function and 1,588
for Cellular Component) based on Interproscan annota-
tions (species wide annotation available from Additional
file 2: Table S2). Table 2 contains the most represented
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Table 1 Summary of EST data analysis
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Total number of species

Number of Nematode species

Number of Trematode species

Number of Cestode species

Total number of expressed sequence tags (ESTs) analysed
Total number of Unigenes (contigs + singletons)

Total number of putative peptides

Total number of excretory/secretory (ES) proteins predicted
Total number of ES proteins with annotation

Total number of ES proteins verified with experimentally derived helminth ES proteins

78

64

7

7
870,223
303,657
245814
18,992
11,390
4,260

Interpro terms (complete results in Additional file 3:
Table S3). Pathway associations were established for 5,893
(31.02%) ES proteins. Maximum number of ES proteins
belongs to metabolism and human diseases, making
these proteins important in parasitic infections (Table 3).
The predicted ES protein dataset comprises important bio-
logical molecules, including enzymes, the spliceosome and
the ribosome. Table 4 contains the most represented
KEGG BRITE objects among the different helminth spe-
cies (full results available in Additional file 4: Table S4).

Comparative analysis of ES proteins with well-studied
organisms

All computationally predicted ES proteins were searc-
hed for homology matching against the proteomes of
C. elegans (Wormpep), S. mansoni, S. japonicum and
human (Table 5) using BLASTP at an E-value of 1e-05.
We also checked for homologues at more stringent
E-values (1le-15, 1e -30) (complete results in Additional
files 5, 6 and 7). Along with the similarity of our helminth
ES protein dataset with other organisms, we checked these
proteins for interacting partners based on data obtained

from IntAct [45], BioGRID [46] and DIP [47] using
BLASTP (interaction results in Additional file 8: Table S8).

Our dataset comprises a fairly high number (23, 30%) of
parasitic helminth organisms infecting humans so ES pro-
teins were checked for homology matching against the
human proteome (Table 5). We found 13,756 (72.4%) ES
proteins had no sequence similarity against human pro-
teins and could be preferred targets for parasitic infections.
These human dissimilar ES proteins were further searched
for sequence similarity against known drug targets avail-
able from DrugBank [48]. Of these, 39 ES proteins from
human parasitic helminth organisms were found similar to
27 known drug targets and represent potential therapeutic
targets. These 27 drug targets are targeted by 75 small
drug molecules, out of which 14 are clinically approved
drugs. These therapeutic targets are also available from
HSD.

Helminth Secretome database (HSD) data

All the ES proteins and Unigenes generated from this
study can be viewed from the HSD data page for each
organism. Along with proteins and Unigenes, users have

Table 2 Top 15 most represented domains found in ES proteins using Interproscan

InterPro description

InterPro code

Number of ES proteins (%)

Peptidase C1A, papain IPRO13128
Transthyretin-like IPRO01534
Peptidase C1A, papain C-terminal IPRO00668
CAP domain IPRO14044
Peptidase, cysteine peptidase active site IPRO00169
Allergen V5/Tpx-1-related IPRO01283
Thioredoxin-like fold IPRO12336
C-type lectin fold IPRO16187
Peptidase C1A, cathepsin B IPRO15643
C-type lectin IPRO01304
Metridin-like ShK toxin IPRO03582
Domain of unknown function DUF148 IPRO03677
Saposin B IPRO08139
Saposin-like IPRO11001
Glycoside hydrolase, superfamily IPRO17853

305 (1.60%)
298 (1.57%)
276 (1.45%)
(1.40%)
(1.19%)
(1.07%)
(1.00%)
(0.89%)
(0.72%)
(0.71%)
(0.67%)
(0.67%)
(0.64%)
(0.63%)
(0.63%)
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Table 3 KEGG pathways inferred from predicted ES proteins

Parent KEGG pathway No. of Top KEGG pathway in the category
ESPs

Metabolism:

Carbohydrate metabolism 296 Citrate cycle (TCA cycle)

Lipid metabolism 221 Fatty acid metabolism

Amino acid metabolism 217 Valine, leucine and isoleucine degradation

Energy metabolism 188 Oxidative phosphorylation

Glycan biosynthesis and metabolism 167 N-Glycan biosynthesis

Nucleotide metabolism 137 Purine metabolism

Xenobiotics Biodegradation and 104 Metabolism of xenobiotics by cytochrome P450, Drug metabolism - other enzymes

Metabolism

Metabolism of Cofactors and Vitamins 95 Riboflavin metabolism

Metabolism of other amino acids 70 Glutathione metabolism

Biosynthesis of other Secondary 38 Isoquinoline alkaloid biosynthesis

Metabolites

Metabolism of Terpenoids and Polyketides 29 Terpenoid backbone biosynthesis, Limonene and pinene degradation

Genetic Information processing:

Folding, sorting and degradation 446 Protein processing in endoplasmic reticulum

Translation 334 RNA transport

Transcription 176 Spliceosome

Replication and repair 72 Nucleotide excision repair

Environmental information processing:

Signal transduction 243 MAPK signaling pathway

Signalling, molecules and interaction 23 Cell adhesion molecules (CAMs)

Membrane transport 6 ABC transporters

Cellular processes:

Transport and catabolism: 436 Lysosome

Cell Growth and Death 208 Cell cycle

Cell communication 130 Tight junction

Cell Motility 35 Regulation of actin cytoskeleton

Organismal systems:

Immune system 291 Antigen processing and presentation

Nervous System 186 Glutamatergic synapse

Endocrine system 172 Insulin signaling pathway

Digestive System 80 Pancreatic secretion

Circulatory System 52 Cardiac muscle contraction

Excretory System 51 Proximal tubule bicarbonate reclamation

Development 47 Axon guidance

Environmental Adaptation 30 Circadian rhythm - mammal

Sensory System 15 Phototransduction

Human Diseases:

Infectious Diseases 522 HTLV-I infection

Neurodegenerative Diseases 417 Alzheimer’s disease

Cancers 241 Pathways in cancer (overview)

Cardiovascular Diseases 55 Hypertrophic cardiomyopathy (HCM), Arrhythmogenic right ventricular cardiomyopathy

(ARVQ)
Immune Diseases 44 Rheumatoid arthritis
Endocrine and Metabolic Diseases 19 Type I diabetes mellitus

the choice to view protein domain mapping and pathway
mapping results. For ES proteins found homologous to
known proteins, we provide annotation in the form of

sequence identifiers along with percent identity and
E-value for BLAST search, e.g. {Acantortus_UN0312;
similar to gi|256096002|emb|CAR63732.1| hypothetical
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Table 4 Top 15 putative functions inferred from
predicted ES proteins

BRITE object

No. of species represented (%)

Peptidases 61
Spliceosome 50
Ribosome 49
Transcription Machinery 47
Protein kinases 38
Transfer RNA biogenesis 38
Chaperones and folding catalysts 34
Cytoskeleton proteins 34
Transcription factors 33
Ubiquitin system 26
Translation factors 25
Glycosyltransferases 24
DNA replication proteins 20
Amino acid related enzymes 19
Transporters 18

protein [Angiostrongylus cantonensis] (Evalue:2e-26,
identity:50.00) unverified}. Each annotated ES protein is
also tagged as verified or unverified based on the pre-
sence or absence of sequence similarity to experimentally
determined parasitic helminth ES proteins (Phase 1I,
Figure 1).

Helminth Secretome database (HSD) BLAST server

We have set up a BLAST server to run sequence similar-
ity searches against our predicted ES protein datasets
(Figure 2). All ES proteins are divided into three datasets
(Nematode ES proteins, Cestode ES proteins and Trema-
tode ES proteins) based on the organism. Users can also
query our dataset of experimentally determined helminth
ES proteins compiled from literature. The input data
uploaded can be either nucleotide or protein sequences
in FASTA format. A text box is also provided to paste
the sequences directly into the BLAST query submission
page. The results from the BLAST search are displayed
in HTML format.

Table 5 Sequence homology inferred between predicted
ES proteins in major helminth organism classes and
other well-studied protein datasets at an E-value of
1e-05, using BLASTP

Dataset Nematode Trematode Cestode
hits hits hits

C. elegans proteins 8457 345 280

(Wormpep)

S. mansoni proteins 3440 598 419

Human proteins 4539 408 326

NR protein database 10116 652 497

S. japonicum proteins 3456 612 416
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Discussion

Here, we demonstrates the utility of our computational
approach, integrating various open source tools, for the
prediction and analysis of ES proteins using EST data
available from dbEST. All software used in this study
are freely available under academic licence. These tools
can be installed on different flavours of UNIX based
operating system. With the advent of next-generation
sequencing (NGS) technologies, there are many tran-
scriptomic studies completed especially for individual
helminth species with good coverage but we have
focussed on the coverage of a large number of helminth
organisms for secretome analysis. The earlier analysis
from our group using the EST2Secretome pipeline has
now been extended to cover non-classical secretory pro-
teins, with validation against experimentally known
excretory/secretory proteins. We plan to carry out
further prediction of ES proteins using more compre-
hensive helminth transcriptomic datasets from NGS
platforms and provide the results through HSD.

Biological implications of this study

Several billion people worldwide are afflicted by infec-
tions caused by parasitic helminths. Infections from
parasitic helminths, especially from nematodes also
results in heavy economic losses worth billions of dollars
due to agricultural crop and livestock infection each
year. In this study, we have predicted and analysed ES
proteins from the largest freely available EST data of
several helminth organisms from dbEST.

Many predicted ES proteins map to peptidase domains
and families (944,5%) which are reported to be involved in
virulence activity (Table 2) and recently, cysteine peptidase
expression was studied in a helminth pathogen, Fasciola
hepatica [49]. Peptidases are well studied in F. hepatica
for their role in migration and maturation of the parasite
within its mammalian host [10]. Another representative
Interpro protein domain among the helminth ES proteins
is the transthyretin-like domain (1.57%). Transthyretin-
like proteins were reported as novel proteins in the B.
malayi secretome [50]. The most represented functional
class among the helminth ES proteins are enzymes, essen-
tial for the function of metabolic pathways. Protein
kinases, which play a key role in signal transduction, are
also present in 38 species of this analysis.

Among the most representative KEGG pathways found
in ES proteins are metabolic pathways (8.2%, as shown in
Table 3). The top energy metabolism pathway, Oxidative
phosphorylation and the top nucleotide metabolism
pathway, purine metabolism, found in our pathway analy-
sis were also reported in other helminth transcriptomic
studies [13,51]. The second most represented KEGG
pathway category among helminth ES proteins are
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HSD Data

Helminth Cecretome Databace (HSD) |

BLAST Server l Check Status ’ Statistics

Useful Links References

Organism name Plectus murrayi
Principal host or host group Bactena feeding
Number of ESTs 2591

Number of EST clusters (Unigenes) 1765

Number of predicted ES proteins 99

Number of Interpro (IPR) hits for ES proteins (Protein domamn and Gene Ontology Mapping) | 48

Number of KEGG pathways associated with ES proteins

64

Cross reference links

959 Nematode genomes

Copynight © Macquarie University

from this page.

Figure 2 Screen shot of Helminth Secretome Database (HSD) species page. Helminth Secretome Database (HSD) species page of Plectus
murrayi, a bacterial feeding nematode. Users can view Unigenes, ES proteins, protein domain and gene ontology and pathway mapping results

human diseases (6.83%). Association of helminth infec-
tions mainly by trematodes with cancers has been
recently reviewed [52]. Carcinogenic parasitic trematodes
like Opisthorchis viverrini, Clonorchis sinensis and Schis-
tosoma haematobium were studied in different transcrip-
tomics or genomics studies [53,54].

Representation of ES proteins with immune diseases
leads us towards hygiene hypothesis [55]. It is well known
that helminth ES proteins modulate the host immune sys-
tem during the infection for helminth survival inside the
host [56]. It is also suggested by regulating the host
immune system; helminth species reduce the host suscept-
ibility to allergic and autoimmune diseases [4]. A number
of studies are currently underway to test the association of
helminth infection with allergic diseases [57]. KEGG path-
ways contain disease pathways from which we note top
neurodegenerative disorder as Alzheimer’s disease and top
endocrine and metabolic disease as Type II diabetes melli-
tus (Table 3) in our current ES proteins, which were also
found in other helminth transcriptomic studies [13,51]. It
is well studied that helminth infection is also associated
with diabetes [58,59]. It was hypothesized that helmintic
infections may attenuate the development of cardiovascu-
lar diseases like atherosclerosis [60]. With the properties
of helminth ES proteins for host immune system modula-
tion and involvement of helminth infections in many

other disorders, these ES proteins demand further investi-
gation for the development of novel therapeutic strategies.
In our attempt to investigate predicted helminth ES pro-
teins as drug targets, we found 27 targets using Drug
Bank. Ten O. viverrini ES proteins were found similar to
-galactosidase which is used for the development of diag-
nostic tool for human helminthiasis [61]. S. stercoralis ES
protein (Sstercoralis_UN2092) was found similar to Cathe-
psin F. A cathepsin F cysteine protease of O. viverrini
(human liver fluke) has been characterized [62] and could
be a potential therapeutic target as in helminth parasites
as this protein is involved in excystation, tissue invasion,
catabolism of host proteins for nutrition and immunoeva-
sion [63,64]. We found heme as a potential drug molecule
for helminth infection targeting fumarate reductase flavo-
protein subunit. This target can be further investigated as
helminths lack the heme synthesis pathway [65].

In the present study we have predicted ES proteins
from helminth EST data available from dbEST followed
by functional annotation of ES proteins in terms of pro-
tein domains, pathways and gene ontology and also 39
ES proteins from human parasitic helminth organisms
were found similar to known drug targets but it is note-
worthy to mention that only few of the targets are vali-
dated in helminth organisms. Nearly 40% of predicted
ES proteins remain unannotated, which needs to be
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further investigated using genomic and functional char-
acterization studies.

Limitations of the current methodology

Integrated computational approaches, similar to those
used in this paper, have been applied to other transcrip-
tomic studies [8][13]. These approaches depend on the
availability of data for a reference organism from the same
taxonomic order. Annotation of the subject organism is
based on sequence similarity against proteins present in
non-redundant protein database from NCBI and proteins
available for well helminth organisms like C. elegans
(Wormpep), S. mansoni and S. japonicum. Availability of
secretome experimental data is another limiting factor for
validation of computationally predicted ES proteins. In the
current study, experimentally derived ES proteins from 8
species are used to validate computational predicted ES
protein data from 78 species using BLAST. Current valida-
tion percentage (22.43%) of computational predicted ES
proteins can be further improved by availability of more
experimental data. Another limiting factor is that we are
predicting functionality based on primary sequence anno-
tation alone, whereas protein function is actually deter-
mined by its three dimensional (3D) structure. Therefore,
these preliminary predictions of therapeutic targets from
this study needs to be further validated using wet-lab
assays.

Conclusion

Our bioinformatics approach made possible the large
scale prediction and analysis of ES proteins. As a result
of our analysis we develop a unique resource HSD (Hel-
minth Secretome Database) of ES proteins for the para-
sitology/infectious diseases/pharmacy communities. Our
approach can be used on new large-scale transcriptomic
data sets from NGS platforms, for rapid prediction and
annotation of ES proteins. The approach can be applied
to any organism but its main application is for neglected
organisms with limited knowledge.

Additional material

Additional File 1: Summary of large scale helminth EST analysis.
Statistics of excretory/secretory proteins and Unigenes across different
helminth species (Table S1)

Additional File 2: Gene Ontology distribution of helminth ES
proteins. Statistics of Gene Ontology distribution across different
helminth species (Table S2)

Additional File 3: Helminth ES protein domain mapping.
Represented Interpro domains found in helminth ES proteins. (Table S3)

Additional File 4: KEGG BRITE objects mapping of helminth ES
proteins. Represented KEGG BRITE objects found in ES proteins
predicted by KAAS (Table S4)

Additional File 5: Comparison of putative helminth ES proteins with
C. elegans (Wormpep) and S. mansoni proteins. Statistics of sequence
similarity results of helminth ES proteins with C. elegans (Wormpep) and
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S. mansoni proteins using BLASTP across different helminth species
(Table S5)

Additional File 6: Comparison of putative helminth ES proteins with
NR database proteins. Statistics of sequence similarity results of
helminth ES proteins with NR database proteins using BLASTP across
different helminth species (Table S6)

Additional File 7: Comparison of putative helminth ES proteins with
S. japonicum, human proteins. Statistics of sequence similarity results
of helminth ES proteins with S. japonicum, human proteins using BLASTP
across different helminth species (Table S7)

Additional File 8: Comparison of putative helminth ES proteins with
interaction databases proteins. Statistics of sequence similarity results
of helminth ES proteins with interaction databases proteins using BLASTP
across different helminth species (Table S8)
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