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Abstract

Background: Multiple transcription factors (TFs) are involved in the generation of gene expression patterns, such
as tissue-specific gene expression and pleiotropic immune responses. However, how combinations of TFs
orchestrate diverse gene expression patterns is poorly understood. Here we propose a new measure for regulatory
motif co-occurrence and a new methodology to systematically identify TF pairs significantly co-occurring in a set
of promoter sequences.

Results: Initial analyses suggest that non-CpG promoters have a higher potential for combinatorial regulation than
CpG island-associated promoters, and that co-occurrences are strongly influenced by motif similarity. We applied
our method to large-scale gene expression data from various tissues, and showed how our measure for motif co-
occurrence is not biased by motif over-representation. Our method identified, amongst others, the binding motifs
of HNF1 and FOXP1 to be significantly co-occurring in promoters of liver/kidney specific genes. Binding sites tend
to be positioned proximally to each other, suggesting interactions exist between this pair of transcription factors.
Moreover, the binding sites of several TFs were found to co-occur with NF-�B and IRF sites in sets of genes with
similar expression patterns in dendritic cells after Toll-like receptor stimulation. Of these, we experimentally verified
that CCAAT enhancer binding protein alpha positively regulates its target promoters synergistically with NF-�B.

Conclusions: Both computational and experimental results indicate that the proposed method can clarify TF
interactions that could not be observed by currently available prediction methods.

Background
Gene expression in multicellular eukaryotes varies consider-
ably between tissues and can change dramatically even
within the same cell type. Regulation of transcription is one
of the fundamental mechanisms for controlling the
observed diversity in gene expression [1,2], and recent stu-
dies have underscored the importance of combinatorial reg-
ulation by multiple transcription factors (TFs) in this regard
[3-6]. Progress is also being made towards experimental

methods for testing combinatorial regulators on a larger
scale in near-physiological conditions [7]. Combinatorial
regulation can explain, in general, how a relatively small
number of TFs can govern gene expression under diverse
conditions.
One such example is the regulation of gene expression

in immune responses. Pathogen recognition in the verte-
brate innate immune system is initially performed by a
limited number of pattern-recognition receptors (PRRs).
The Toll-like receptors (TLRs) are a family of PRRs
responsible for the recognition of a wide variety of patho-
gen-associated ligands, such as lipopolysaccharide, viral
RNA, unmethylated CpG DNA and so on. The recogni-
tion of ligands activates signaling pathways leading to the

* Correspondence: alexisvdb@ifrec.osaka-u.ac.jp; standley@ifrec.osaka-u.ac.jp
† Contributed equally
1Laboratory of Systems Immunology, Immunology Frontier Research Center,
Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
Full list of author information is available at the end of the article

Vandenbon et al. BMC Genomics 2012, 13(Suppl 7):S11
http://www.biomedcentral.com/1471-2164/13/S7/S11

© 2012 Vandenbon et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:alexisvdb@ifrec.osaka-u.ac.jp
mailto:standley@ifrec.osaka-u.ac.jp
http://creativecommons.org/licenses/by/2.0


activation of several TFs, such as NF-�B, and IRFs. These
TFs are known to induce expression of various genes and
evoke pleiotropic immune responses. Although several
studies have addressed the importance of combinatorial
transcriptional regulation in TLR signaling [8,9], little is
known about which specific combinations of TFs are
involved.
Various bioinformatics strategies have been used for the

prediction of cooperation between TFs. Some studies have
used a combination of features, such as co-expression data
and protein-protein interactions [10,11]. Other studies uti-
lized a combination of chromatin immunoprecipitation
combined with microarray (ChIP-chip) data and expres-
sion data [12-16]. However, while the integration of het-
erogeneous experimental data sources is potentially very
powerful, in practice such data is too scarce to be of use to
a particular tissue of interest, especially for higher eukar-
yotes like humans and mice. ChIP-chip data, in particular,
is available for a very limited number of TFs, in a limited
number of cell types. In addition, in the case of de novo
predicted regulatory motifs, it might not be known what
protein (if any) is binding the motif in question, which
restricts the applicability of ChIP-chip analysis. For these
reasons, a number of studies have focused on identifying
combinatorial regulation solely based on predicted tran-
scription factor binding sites (TFBSs). For example, Mura-
kami et al. used position weight matrices (PWMs) to
predict TFBSs on a genomic scale in order to quantify the
co-occurrence of regulatory motifs in human promoters
[17]. Sudarsanam and colleagues used a cumulative hyper-
geometric distribution to predict regulatory motifs co-
occurring on a genome-wide scale in yeast [18]. Other stu-
dies have described measures for co-occurrence of pairs of
motifs as a measure to predict TF synergy [19]. Synthetic
libraries of promoters have been used to study combina-
torial regulation using thermodynamic models [20], and
more recently, combinations of oligomers have been used
to predict from sequence EP300-bound and CREBBP-
bound enhancers in three mammalian cell types [21].
A small number of studies have attempted to identify

pairs of co-occurring motifs in the promoters of co-
expressed genes [22,23]. However, methods for predicting
combinatorial regulation from predicted TFBSs are pla-
gued by a number of problems. These include similarities
beween the PWMs used to predict TFBSs, biases caused
by motif over-representation, and difficulty of evaluating
the significance of observed co-occurrences using standard
statistical tests.
In this study, first we describe a new measure for TFBS

pair co-occurrence. For each PWM pair (A,B), we calcu-
late the frequency of motif B in sequences containing one
or more A sites, as well as the frequency of motif B in
sequences that lack A sites. We use the ratio of these two
frequencies, the frequency ratio (FR), as a measure for

co-occurrence. Applying this measure on the TFBSs in the
genomic set of human and mouse promoters, we observed
how co-occurrence tendencies are strikingly different
between promoters with high GC content and CpG scores
and promoters with low GC content and CpG scores,
with the latter having a higher variety in FR values. We
also observed a strong influence of TFBS GC content
differences.
Based on the above observations, we developed a

method for predicting co-regularing pairs of TFs in a set
of co-expressed genes. Given the promoter sequences for
a set of genes that are co-expressed, we identify motif
pairs that co-occur more often than expected. We use the
relative increase in co-occurence in the co-expressed set
of genes as an indicator of combinatorial regulation.
Our proposed method was designed to overcome the

problems associated with previously reported statistics-
based measures of co-regulation. In order to obtain a mea-
sure of statistical significance, we compare the observed
FR values for pairs of motifs in a set of co-expressed genes
with those of sets of genes sampled at random, thus taking
into account biases caused by genome-wide co-occurrence
tendencies. We applied our approach to a number of sets
of co-expressed mouse genes, and found a number of
significantly co-occurring PWMs pairs. Importantly, the
proposed approach was not biased by TFBS motif over-
representation, and could thus detect co-occurrences
missed by existing approaches. For the identified TF pair
NF-�B - C/EBPawe experimentally validated the co-
regulation after TLR stimulation in dendritic cells. Since
the proposed method does not rely on ChIP-chip data, it
is generally applicable and can complement existing com-
putational methods for discovery of TF co-regulation.

Methods
We refer to Additional file 1 for a workflow of our fra-
mework for the detection of co-occurring motifs.

Promoter sequences
We used a combination of DBTSS data [24], CAGE data
[25], and annotation data from the UCSC Genome Browser
[26] to define transcription start site (TSS) positions for
both human and mouse genes, as described before [27].
The regions from -1000 to +200 were extracted from the
repeat-masked hg18 and mm9 versions of the human and
mouse genome. For each pair of highly similar sequences
(BLAST E value < 1e-70, threshold decided after visual
inspection of alignments) one sequence was removed from
our sequence dataset in order to reduce biases caused by
duplicated sequences.

Position weight matrix dataset
From the TRANSFAC [28] and JASPAR [29] databases
all vertebrate PWMs were extracted. Redundancies were
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removed using tomtom [30] by the following strategy:
for each pair of similar PWMs (tomtom E value < 1,
and overlap between motifs > 75% of each motifs
length) the motif with the lowest information content
was removed from our dataset. Pairs were considered in
order of increasing tomtom E value. This resulted in a
PWM dataset of 199 non-redundant PWMs, each repre-
senting a group of similar PWMs. For each PWM a
score threshold was set in a way that there is about 1
hit per 5000 bps in the mouse promoter sequences. GC
content values of PWMs were calculated as the average
of the probability of nucleotides C and G over all posi-
tions of the PWMs.

Measure for TFBS co-occurrence: frequency Ratio
As a measure of TFBS co-occurrence we introduce the
Frequency Ratio (FR) value. Consider two TFs, TF A and
TF B, whose binding preferences are represented by PWM
A and PWM B respectively. Given a set of sequences and
the predicted sites for both PWMs, we calculate the FR(B|
A), the tendency of sites for TF B to co-occur with those
of TF A, as follows. First, we define seq(A) as the number
of sequences containing at least one site for motif A, and
n(B|A) as the number of sites for motif B co-occurring
with one or more sites for motif A. From these we calcu-
late frequency(B|A), a measure for the number of B sites
co-occurring with A sites:

frequency (B|A) = n (B|A) /seq (A) (1)

Likewise, we define frequency(B|!A) as the number of
predicted sites for motif B per sequence lacking sites for
motif A:

frequency (B|!A) = n (B|!A) /seq (!A) (2)

where n(B|!A) is the number of B sites in the set of
promoters lacking A sites and seq(!A) is the number of
sequences without A sites. We calculate the ratio of
these two frequency values, FR(B|A):

FR(B|A) =
n(B|A)
seq(A)
n(B|!A)
seq(!A)

=
number of B sites per sequence having ≥ 1 A site
number of B sites per sequence having no A site

(3)

FR(B|A) is a measure for the tendency of sites of motif
B to be present in sequences having at least one A site
compared to sequences not having an A site. In order to
limit the bias caused by overlapping sites for pairs of
similar motifs, sites for motif B overlapping A sites are
not included in n(B|A). In the case of homotypic motif
pairs (where motif B and motif A are the same motif),
there are obviously no motif B sites in sequences not
containing sites for motif A. In this case we define
frequency(A|!A) = 1. In this case FR(A|A) can be inter-
preted as the average number of A sites in sequences

containing at least one A site. Note that the FR measure
is not limited to TFBS motifs, but can be used for other
sequence motifs and nucleotide oligomers.

Micro-array gene expression data
We used micro-array expression data for a large number
of human and mouse tissues [31], and for dendritic cells
(DCs) after stimulation with a number of immune stimuli
[9] (GSE17721). The raw intensity data were processed to
calculate robust multi-array average (RMA) values. Genes
with at least 3-fold differential expression between any
pair of samples were picked up. Expression values for each
gene were rescaled to mean 0 and standard deviation 1,
and dimension reduction was performed with principal
component analysis. The gene expression patterns were
hierarchically clustered with Ward’s algorithm and divided
into subclusters. All analyses were performed using R and
Bioconductor.

Definition of CpGhigh promoters and CpGlow promoters
We based our definition of CpGhigh and CpGlow promoters
on previously reported definitions for CpG islands [32].
For each promoter sequence we defined the ratio of each
nucleotide as the number occurrences of that nucleotide
divided by the number of non-masked nucleotides in the
sequence. The GC content is then the sum of the C ratio
and the G ratio. The CpG score is the observed ratio of
CpG dinucleotides divided by the ratio expected from the
ratio of C and G nucleotides. We defined “CpGhigh promo-
ters” as promoters with a GC content ≥ 50% and a CpG
score ≥ 0.6. Promoters not meeting these requirements
were labeled as “CpGlow promoters”. These two conditions
gave us 6750 CpGhigh promoters in mouse (37% of total)
and 9029 CpGhigh promoters in human (50% of total).

Detection of over-represented TFBSs
As a measure for over-representation of a TFBS motif in
a set of sequences we use the Over-Representation Index
(ORI) as defined by Bajic et al. [33]. P-values for ORI
values were assigned by random sampling sets of
sequences of the same size as the set of interest from the
genomic set of promoter sequences. For the estimation
of p-value in CpGhigh promoters and CpGlow promoters
the sampling was done from the genomic set of CpGhigh

promoters and the genomic set of CpGlow promoters,
respectively. As p-value threshold for over-representation
we used the threshold of 0.01.

Co-occurrence significance in promoters of co-regulated
genes
For each co-expressed set of genes containing at least 50
genes, we identified over-represented TFBSs, as described
above. For each pair of motifs (A,B), where A is an over-
represented motif and B is any of the 199 PWMs, we
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calculated FR(B|A)set in the promoter sequences corre-
sponding to the set of co-expressed genes. The signifi-
cance of FR(B|A)set was evaluated using a sampling
approach. In this sampling approach, a set of sequences
are sampled from the genomic set of sequences until the
same number of B sites and A sites as in the co-expressed
cluster is obtained. From these, a FR(B|A)sampled is calcu-
lated, reflecting the genome wide co-occurrence tenden-
cies of the pair of motifs. This is repeated a large number
of times (105 times in this study), and the p-value of FR(B|
A)set is defined as the ratio of the number of times where
FR(B|A)sampled ≥ FR(B|A)set.

Generation of artificial and semi-artificial promoter
sequences
Artificial promoter sequences were constructed by gener-
ating sequences of the same length as the actual promoter
sequences used in this study, where at each position the
nucleotide is decided using a uniform distribution over the
alphabet (A,C,G,T). Semi-artificial sequences were gener-
ated by scanning through actual sequences and randomly
adding either a G or C to the semi-artificial sequence
when a G or C was encountered in the actual sequence;
and randomly adding either an A or T when an A or T
was encountered.

Construction of plasmids, transfection, and luciferase
assay
Promoter sequences of selected genes were PCR amplified
and cloned into pGL3-basic vectors (Promega). Sequences
from about -1200 to +250 relative to transcription start
site were cloned. kB-tandem reporters were purchased
from Promega. Complementary DNA for TFs was PCR
amplified and cloned into pEF-BOS expression vectors.
The resulting reporter plasmids and TF over-expression
plasmids were co-transfected into HEK 293 cells with
pRL-TK encoding Renilla luciferase (Promega) and appro-
priate signaling molecules with using Lipofectamin 2000
(Invitrogen). At 24 hours after transfection, the cells were
lysed and subjected to reporter assay according to the
manufacture’s instruction (Promega). The primers used
will be provided upon request.

Results and discussion
Frequency ratio, a novel measure for co-occurrence of
two TFBSs: general results and genomic tendencies
As a measure for the co-occurrence of the TFBSs for two
TFs, TF A and TF B, we propose the Frequency Ratio, FR
(see Methods section). The FR(B|A) value is a measure for
the tendency of motif B to co-occur with motif A. On a
molecular level, it reflects the tendency of TF B to bind
the same promoters as TF A, although this does not
necessarily imply a direct physical interaction between
A and B. Cases where FR(B|A) values are higher than 1

reflect a tendency of TF B to bind promoter sequences
that also are bound by TF A, while FR(B|A) values lower
than 1 reflect a tendency for TF B to bind to promoter
sequences not bound by TF A. To avoid biases caused by
motif similarities, sites where motifs A and B overlap were
discarded before the calculation of the frequency values.
Note that FR(B|A) is not necessarily the same as, or similar
to, FR(A|B) (Supporting text in Additional file 2).
Using the above definition of FR we calculated the gen-

ome-wide FR values for all 39,601 (199 × 199) TFBS motif
pairs, in the genome-wide sets of 18,218 human promoter
sequences, and 18,168 mouse promoter sequences. A his-
togram of FR values in the genomic set of mouse promo-
ters is shown in Fig. 1A. Although the majority of PWM
pairs have FR values close to 1 (84.9% of the pairs have a
FR value between 0.7 and 1.3), some pairs have high or
low FR values. Similar observations were made for human
sequences (Fig. S2A in Additional file 3). The outliers with
large or small FR values indicate the genome-wide tenden-
cies for high or low co-occurrence of sequence motifs,
respectively. These genome-wide tendencies represent
reference values to which we will compare the FR values
of particular sets of co-expressed genes.

Similar sequence motif pairs tend to be co-occurring
Next, we analyzed the correlation between FR values and
motif-motif similarity. We used the difference of GC con-
tent between pairs of motifs as an indicator of motif simi-
larity. Fig. 1B shows a plot of the difference in GC content
between pairs of motifs versus FR for the genomic set of
mouse promoter sequences. This figure clearly shows that
motif pairs with a smaller difference in GC content tend
to have higher FR values, while motif pairs with different
GC content tend to have lower FR values. A similar ten-
dency was obtained in human promoter sequences (Fig.
S2B in Additional file 3). Since we excluded overlapping
sites, the tendency of these motifs to co-occur cannot be
explained simply by a tendency of sites for similar PWMs
to overlap with each other. In semi-artificial promoter
sequences, where overall GC content and local GC con-
tent fluctuations were identical to those of real promoter
sequences, a similar tendency was observed (84.7% of the
pairs had a FR value between 0.7 and 1.3; Fig. S3A in
Additional file 4). On the other hand, in completely artifi-
cial sequences with 50% GC content, this tendency was
not observed: the vast majority of motif pairs had FR
values close to 1 (99.0% of the pairs had a FR value
between 0.7 and 1.3; Fig. S3B in Additional file 4).

CpGlow promoters have a higher variety of FR values
than CpGhigh promoters
Given the observed influence of GC content on co-
occurrence, we decided to separately investigate the tenden-
cies in CpGhigh and CpGlow promoters. The genome-wide

Vandenbon et al. BMC Genomics 2012, 13(Suppl 7):S11
http://www.biomedcentral.com/1471-2164/13/S7/S11

Page 4 of 15



set of promoter sequences was divided into a set of CpGhigh

promoters and CpGlow promoters (see Methods section),
and the FR values in each set were calculated. Figure 1C
shows the difference in GC content between pairs of motifs
versus their FR values in the genome-wide CpGhigh promo-
ter set in mouse. From this figure we can see that for the
CpGhigh promoter set, the tendency for motif pairs with a

smaller (larger) difference in GC content to have higher
(lower) FR values was not observed. In contrast, for the
CpGlow promoters (Fig. 1D) such a tendency was clearly
observed. These trends were also found in human
sequences (Fig. S2C,D in Additional file 3) and semi-
artificial promoters sequences (Fig. S3C,D in Additional
file 4). Assuming that the variety in FR values reflects the

Figure 1 Genome-wide tendencies of Frequency Ratios. (A) Histogram of FR values for all PWM pairs in the genomic set of mouse promoter
sequences. (B,C,D) Plots of GC content differences as a measure of PWM-to-PWM dissimilarity (Y-axis) versus FR values (X-axis, same as in A), for
all promoters (B), CpGhigh promoters (C), and CpGlow promoters (D).
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potential of sequences to encode combinatorial regulation,
these results suggest that the regulatory complexity of
CpGlow promoters is higher than that of CpGhigh promoters.
An additional result supporting the notion that

CpGlow promoters have a higher potential for combina-
torial regulation was obtained from the analysis of FR
values of 200 randomly selected oligomers. Although
these oligomers are likely not to be associated with any
regulatory motifs, the tendencies of FR values are similar
to those we observed for PWM motifs in CpGhigh and
CpGlow sequences (Fig. S4 in Additional file 5).

Only few motif pairs have high or low FR values on a
genome-wide level
The above observations raise the question to what extent
genome-wide FR values are indicative of combinatorial
regulation between pairs of TFs on a genome-wide level.
We compared FR values observed in the genome-wide set
of promoter sequences with those observed in 10 sets of
semi-artificial sequences. To take into account the influ-
ence of GC content difference, we divided pairs of PWMs
into 10 bins according to their pairwise GC content differ-
ence. Table 1 shows all pairs of PWMs with high and low
tendencies to co-occur on a genome-wide scale (FR values
higher/lower than 99.99% of the FR values observed for
PWM pairs with similar GC content differences in semi-
artificial sequences).
Two important observations can be made. The first

point is that out of the 39,601 pairs of PWMs, only very
few have exceptionally high/low FR values (Table 1). In
mouse promoters 14 pairs, and in human promoters 2

pairs of PWMs had exceptionally high values, while in
mouse promoters 2 pairs had low values. In human and
mouse CpGhigh sequences and mouse CpGlow sequences,
no pairs with exceptional values were found. These indi-
cate that the vast majority of FR values in true sequences
are within the range of values we can expect to find in
semi-artificial sequences lacking any biological meaning. A
second point is that, interestingly, most of the pairs with
high values involve the TBP motif (TATA box), a core
promoter motif. This motif is thought to be typically pre-
sent in non-CpG island-associated promoters of genes
with relatively strictly regulated transcription initiation.
On the other hand, we found the GC-rich and CpG-rich
E2F TF motif, which might be indicative of CpG-rich
sequences, to have low co-occurrence with a regulatory
motif (TFE).
In conclusion, the above observations support the

hypothesis that the genome-wide variation in FR values,
except for those involving a small number of exceptional
sequence motifs such as the TATA box and GC-box, is
mainly a result of sequence variations, and not an indica-
tion of genome-wide combinatorial interactions between
TFs. It is important that these genome-wide biases are
taken into account by approaches that predict combina-
torial regulation in smaller sets of co-regulated genes.

The FR approach allows for detection of co-occurring
regulatory motifs in tissue-specific promoter sequences
without bias caused by TFBS over-representation
Next, we turned our attention to the problem of finding
significantly co-occurring motifs in the promoter

Table 1 PWM pairs with high and low FR values in the genomic set of promoters.

Transcription factor A (PWM ID) Transcription factor B (PWM ID) FRgenomic(B|A) (high/low) * Species GC content difference

TBP (M00471) Six6 (PB0163) 2.75 (high) human 0.28

Six6 (PB0163) TBP (M00471) 2.56 (high) human 0.28

POU1F1, POU3F2 (M00463) Six6 (PB0163) 2.10 (high) mouse 0.22

TBP (M00471) POU2F1, Sox15 (M00162) 2.09 (high) mouse 0.21

POU2F1, Sox15 (M00162) TBP (M00471) 2.08 (high) mouse 0.21

TBP (M00471) Cux1 (PH0017) 2.07 (high) mouse 0.22

Six6 (PB0163) POU1F1, POU3F2 (M00463) 2.06 (high) mouse 0.22

Six6 (PB0163) TBP (M00471) 1.89 (high) mouse 0.28

various homeobox TFs (PH0077) TBP (M00471) 1.88 (high) mouse 0.27

Sox17, Sox8 (PB0178) TBP (M00471) 1.80 (high) mouse 0.28

Zfp105 (PB0197) TBP (M00471) 1.80 (high) mouse 0.29

TBP (M00471) Six6 (PB0163) 1.79 (high) mouse 0.28

TBP (M00471) Sox17, Sox8 (PB0178) 1.79 (high) mouse 0.28

TBP (M00471) various homeobox TFs (PH0077) 1.76 (high) mouse 0.27

TBP (M00471) Zfp105 (PB0197) 1.75 (high) mouse 0.29

C/EBP factors (M00201) TBP (M00471) 1.53 (high) mouse 0.34

MITF-TFE family (bHLH) (M01029) E2F TFs (M00516) 0.65 (low) mouse 0.12

E2F TFs (PB0009) MITF-TFE family (bHLH) (M01029) 0.54 (low) mouse 0.15

* (high/low) indicates whether the genomic FR is higher or lower than expected.
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sequences of sets of co-expressed genes. We used gene
expression data for a large number of mouse tissues [31]
to define clusters of co-expressed genes (Fig. S5 in Addi-
tional file 6, Table S1 in Additional file 7), and applied our
approach to each cluster containing at least 50 genes (see
Methods). Below, we present some of our findings for a
set of 155 genes with high expression in mouse liver and
kidney. Of these, only 13 genes were associated with a
CpGhigh promoter. In the following discussion we focused
on the CpGlow promoters. The most over-represented
motifs in this set of promoters were those for PWMs
for HNF1, HNF4, and a number of nuclear receptors
(Table S2 in Additional file 8). These factors and their
importance in liver-specific regulation of transcription
have been widely reported [34-37].
As described in Methods, the significance of co-occur-

rence for each A-B TF pair present in the set of sequences
was estimated by sampling sequences from the genomic set
of sequences until the same number of A and B sites were
obtained, and the p-value of FR(B|A)set was computed. In
the kidney/liver-specific set we found 11 co-occurrences
with p-values < 0.01. In one case, the PWM for FOXP1 co-
occurred significantly with HNF1 sites. FOXP1 plays a role
in the development of various organs, including liver. In
this set of promoters, 17 out of 21 non-overlapping FOXP1
sites co-occurred with HNF1 sites, yielding a FR value of 5.5
(Fig. 2A). Given the genomic FR value (1.6), we would
expect only about 10.7 FOXP1 sites to co-occur with HNF1
sites on average (see Methods, from Eq. 3). Moreover, the
distance between FOXP1 sites and HNF1 sites was biased
towards proximal positioning: of the 26 FOXP1-HNF1 site
pairs, 14 were separated by less than 200 bps (Fig. 2B,C). In
addition, visual inspection of the site pairs revealed a prefer-
ence of the FOXP1 site to be upstream of the HNF1 site.
To illustrate the difference between our approach and

approaches based on statistical tests, we calculated co-
occurrence p-values using the method of Yu et al. [22],
and using the method of Sudarsanam et al. [18]. The
approach by Yu et al. evaluates co-occurrences using two
p-values, one for co-occurrences, Pocc, and one for the
bias in distances between pairs of sites, Pd. Here we
focused on Pocc, the probability of observing an equal or
greater number of co-occurrences, calculated based on
the number of sequences in the co-regulated set versus
the size of the genome-wide set, the number of co-occur-
rences between two motifs in the genome-wide set, and
the number of co-occurrences in the co-expressed set.
The approach by Sudarsanam et al. uses a cumulative
hypergeometric model to evaluate the significance of the
observed number of co-occurrences for a motif pair, by
comparing it to the distribution of expected co-occur-
rences given the number of occurrences of the individual
motifs. We applied our FR approach, the Pocc approach,

and the Sudarsanam approach on all sets of co-expressed
genes, and compared the results in terms of the over-
representation of co-occurring motifs. Fig. 3 shows that
the distribution of ORI p-values for all 1294 PWMs co-
occurring significantly with an over-represented motif is
similar to that of all PWMs, confirming that the FR
approach is not biased by motif over-representation.
Indeed, the majority of predicted co-occurring motifs are
not over-represented. In contrast, the distribution of ORI
p-values of predicted co-occurring motifs in the top 1294
pairs as predicted by Pocc, showed a strong bias towards
lower ORI p-values, indicating that this method is
strongly biased by motif over-representation. The fact
that with increasing motif over-representation the
expected number of co-occurrences modeled by the
hypergeometric distribution also increases, makes the
approach described by Sudarsanam et al. [18] relatively
robust against the bias caused by motif over-representa-
tion, but less so than the FR measure. However, this
method does not use a reference set of sequences during
the evaluation of significance, making it the most easily
affected of these three approaches by PWM-to-PWM
similarities (as measured by GC content differences). A
relatively high number of co-occurring pairs predicted by
the approach by Sudarsanam et al., have similar GC con-
tent levels, and pairs of motifs with large differences in
GC content are relatively rarely predicted to be co-occur-
ring (Fig. S6 in Additional file 9).
As an illustration, for the set of promoters of liver- and

kidney-specific genes in mouse, the top co-occurrences
in terms of Pocc were strongly dominated by PWM pairs
containing HNF1 and HNF4, which were both strongly
over-represented in this cluster. In the top 20 motif pairs,
18 involved HNF1, which was found to have significant
Pocc values with most other over-represented motifs, such
as those for HNF4 and Ikaros. The pair HNF1 - HNF4
had the lowest Pocc value (2.06e-11). However FR(HNF4|
HNF1)set was only moderately higher than FR(HNF4|
HNF1)genomic (1.22 vs 1.01, p-value 0.25). Indeed, only 27
out of 62 (44%) HNF4 sites co-occurred with HNF1 sites,
which were present in 60 out of 155 (39%) sequences in
this cluster. Even though both motifs were over-repre-
sented in this cluster, they did not have a strong tendency
to be present in the same sequences. The measure
described by Sudarsanam et al. too, predicted a number
of significant co-occurrences involving HNF1. Strikingly,
the top 10 motifs predicted to co-occur with HNF1
motifs have similarly low GC content value as the HNF1
motif (mean difference in GC content: 5.7%), while this is
not the case for the 10 motifs with most significant FR
values with regard to HNF1 (mean difference in GC con-
tent: 20.9%). Collectively, these results indicate that
Pocc is more related to co-over-representation than
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to co-occurrence, and that the measure proposed by
Sudarsanam et al. is relatively sensitive to GC content
similarities. Our proposed approach, on the other hand,
can find non-over-represented motifs, which are likely to
be missed by traditional approaches, and is less influ-
enced by PWM-to-PWM GC content similarity.

Identification of TFs co-occurring with NF-�B or IRF in
gene sets having specific expression patterns on TLR
stimulation
Several TFs such as NF-�B, IRF, and AP-1 are known to
play roles in gene expression evoked by TLR signaling.
However, little is known about involvement of other

Figure 2 Predicted HNF1 and FOXP1 binding sites in the promoters of liver- and kidney-specific genes. (A) Visual representation of
predicted TFBSs for HNF1 (green) and FOXP1 (red) in promoters containing at least 1 predicted site for each TF. Gene symbols are indicated at
the left. (B) Histogram of distances between pairs of HNF1 and FOXP1 sites in the promoters of liver- and kidney-specific genes. (C) Histogram of
distances between pairs of HNF1 and FOXP1 sites in the genomic set of promoters.
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TFs and how these TFs orchestrate variety of gene
expression patterns.
To elucidate the diverse gene expression patterns gen-

erated by combinations of various TFs, we next applied
our method for the analysis on TLR signaling. We used a
large scale microarray dataset on gene expression in bone
marrow-derived DCs after stimulation with various TLR
stimuli [9]. The gene expression values were calculated
and hierarchically clustered into 18 clusters (Fig. 4A, and
Fig. S7 in Additional file 10 for details).
Frequency ratio analysis revealed that a wide variety of

TFs had significant co-occurrence with each other
(Table S3 in Additional file 11). Firstly, we looked into
TFs co-occurring with the binding motifs of NF-�B or
IRF, since ORI analysis showed that these two motifs are
significantly over-represented in the clusters, suggesting
their key roles in TLR signaling, consistent with former
studies (Table S2 in Additional file 8). Several TFs were

found to have significant co-occurrence with NF-�B or
IRF (Table 2). NF-�B and IRF motifs were found to co-
occur significantly with themselves (homotypic co-
occurrences) in clusters 1, 9, and 13. Clusters 1 and 9
contained genes whose expression levels peaked at
about 0.5 to 4 hours after stimulation, suggesting multi-
ple NF-�B sites in promoters of those genes enable
rapid induction (Fig. S7A in Additional file 10). Genes
in cluster 13 were specific for poly (I:C) stimulation, and
their expression peaked at around 6 hours after stimula-
tion (Fig. S7B in Additional file 10). In addition to var-
ious IRF family TFs, the PWM M00063 represents
Stat1, implying that these genes may be induced secon-
darily by type I interferon. Other well-known motifs
found were c-Fos (MA0099), presumably representing
the AP-1 motif. These collectively suggest that our
method could identify known TF pairs involved in TLR
signaling.

Figure 3 Over-representation p-values of co-occurring motifs predicted by two approaches. Co-occurrences based on Pocc are strongly
biased by PWM over-representation, while this is not the case for co-occurrences predicted using the FR measure. The distribution of ORI
p-values as measure for PWM over-representation is shown 1) for all PWMs in all sets of co-regulated genes (”all motifs), 2) for the 1294 PWMs
found to be significantly co-occurring with an over-represented motif according to FR values (”co-occurring motifs, FR“), 3) for the PWMs found
to be co-occurring with an over-represented motif according to Pocc (”co-occurring motifs, Pocc“), and 4) for the PWMs found to be co-occurring
with an over-represented motif according to the approach of Sudarsanam et al. (”co-occurring motifs, Sudarsanam”). For the latter two
approaches the 1294 pairs with the most significant co-occurrence were used.
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We found that in cluster 14, CCAAT enhancer binding
protein alpha (C/EBPa) had significant co-occurrence
with NF-�B (Table 2, p < 6.23e-3). C/EBP family tran-
scription factors are reported to be involved in TLR sig-
naling-induced gene expression such as cytokine gene
expression [38]. Importantly, while Pocc is relatively low
for the pair NF-�B - C/EBPa, up to 30 out of 199
PWMs have a Pocc < 0.01 for co-occurrence with the
over-represented NF-�B motif in cluster 14 (data not
shown), making Pocc not useful for predicting co-occur-
rences in this case. A gene in the cluster, Nos2, has
C/EBP motifs and NF-�B motifs in its promoter (Fig. 4B,
upper scheme), thus the promoter activity is expected to
be controlled by C/EBP and/or NF-�B. To check this, we
cloned the Nos2 promoter, and its activity upon over-
expression of TFs or signaling molecules MyD88 simulta-
neously with C/EBPa was checked by luciferase assay.
The activity of the Nos2 promoter was up-regulated only
by over-expression of C/EBPa, RelA (a major component
of NF-�B [39]), or MyD88 (an adaptor protein of TLR
signaling pathways [40]) (Fig. 4B), indicating these TFs
positively regulate the Nos2 promoter. Moreover, when
C/EBPa was over-expressed simultaneously with RelA or
MyD88, luciferase activity increased compared to that on
RelA or MyD88 over-expression alone. This result

indicated that C/EBPa controls the expression of the
Nos2 gene, and also suggested that it controls the expres-
sion of genes other than Nos2 in clusters 14.

Synergistic activation of TLR-regulated promoters by
NF-�B and C/EBPa
The above results prompted us to check if a broader
array of promoters is regulated by C/EBPa. We tested
whether C/EBPa controls NF-�B-regulated promoters
or not. Since four PWMs in our PWM set represent
C/EBP TFs (M00249, M00622, M00201, and M00159),
we picked up promoters having predicted TFBSs for
NF-�B and one of the four motifs (Fig. 5). We also
added as a positive control Arg2, which has a pre-
dicted NF-�B site and has been reported to be a target
of C/EBPb [41].
Five promoters out of 6 tested were up-regulated syner-

gistically by RelA and/or MyD88 and C/EBPa (Fig. 5A),
whereas activation of one promoter was suppressed by
C/EBPa over-expression (Nfkbiz). In contrast, the tan-
dem-kB luciferase reporter was suppressed by C/EBPa
over-expression (Fig. 5B), indicating a specific activation of
promoters by C/EBPa. These results suggested that
C/EBPa synergistically and specifically up-regulates the
activity of a set of promoters regulated by NF-�B. Taken

Figure 4 Gene expression patterns in TLR-stimulated dendritic cells and identification of a TF pair synergistically upregulating target
promoters. (A) Hierarchical clustering of gene expression in DCs upon TLR-stimulation. A heatmap of gene expression is shown with clusters
indicated by the colored banner besides the heatmap. (B) The Nos2 promoter was synergistically controlled by RelA or MyD88 with C/EBPa.
Schematic representation of the Nos2 promoter structure is shown (red box, NF-�B sites; blue box, C/EBPa sites). The Nos2 promoter was cloned
upstream of a luciferase encoding gene. The resulting plasmid, where luciferase is under the control of the Nos2 promoter, was transfected into
HEK 293 cells with RelA or MyD88 and C/EBPa. After 24 hours, luciferase activity was measured as described in Methods. Error bars represent
standard deviations of duplicate experiments. The data shown is a representative of three independent experiments with essentially identical
results.
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together, our method successfully identified a pair of tran-
scription factors involved in the immune response.

Conclusions
In this study, we introduced a new measure for regulatory
motif co-occurrence, and investigated genome-wide co-
occurrence tendencies between pairs of regulatory motifs.
Our initial results show that some motif pairs have a
strong tendency to co-occur, while other pairs have a
strong tendency to avoid co-occurrence. However, further
investigation showed that these tendencies reflect GC con-
tent fluctuations in promoter sequences, rather than a
genome-wide level of combinatorial regulation: semi-artifi-
cial sequences in which GC content fluctuations were
identical to real sequences showed very similar trends. On
the other hand, this trend was lost in completely artificial
sequences. Also, we found that only few pairs of regulatory
motifs had exceptionally high or low FR values in the
genomic set of sequences as compared to semi-artificial
sequences. Pairs that did show exceptionally high FR
values often involved the TATA-box motif, which might
reflect the tendency of strictly regulated non-CpG island-
associated promoters to contain a TATA-box more
frequently than other promoter sequences.
In addition, we showed that the tendencies were comple-

tely different between CpGhigh promoters and CpGlow pro-
moters. Our measure for regulatory motif co-occurrences
showed a relatively limited range in CpGhigh promoters
compared to CpGlow promoters. Similar observations were
made for a set of randomly selected oligonucleotide motifs.
These observations reflect a fundamental difference
between these two types of promoters. CpG islands have
been reported to be associated with ubiquitously expressed
genes and housekeeping genes, while genes not associated
with CpG islands tend to be tissue-specific or condition-
specific genes [42,43]. On the promoter sequence level too,

there are considerable differences: while the promoters of
CpG island-associated genes tend to lack typical core pro-
moter elements and tissue-specific TFBSs, the promoters
of genes not associated with CpG islands tend to contain
TATA boxes or other core promoter elements and TFBSs
allowing their precise regulation of expression [44]. The
apparent lack of high and low FR values in the genome-
wide set of CpGhigh promoters might reflect a relatively
low need for complex combinatorial regulation, compared
to CpGlow promoters. On the other hand, for tissue- or
condition-specific genes combinatorial regulation might be
necessary to ensure spatio-temporal specificity, reflected
in the larger range of FR values observed in CpGlow

promoters.
Keeping the above observations in mind, in the proposed

method, for the set of promoter sequences of interest, the
significance of co-occurring pairs was estimated using a
random sampling procedure. This approach thus takes into
account the genomic tendency of motif pairs of similar
structure to appear in the same promoter sequence.
Furthermore, we considered CpGhigh promoters and
CpGlow promoters as separate cases. A recent study on
TFBS analysis has led to a similar recommendation [45].
Moreover, we excluded overlapping pairs of sites to avoid
bias caused by similarity between motifs.
Applying our method to a large number of tissue-specific

sets of mouse promoters, we could predict a large number
of pairs of significantly co-occurring TFBS pairs. One
example is the pair HNF1 - FOXP1, for which we found
binding sites to be significantly co-occurring in the promo-
ters of genes with specific expression in liver and kidney.
Moreover, the TFBSs of this pair of TFs showed a tendency
to be located proximally to each other, with the FOXP1
TFBSs located upstream of the HNF1 TFBSs. Importantly,
our approach demonstrated improved robustness against
biases caused by strongly over-represented motifs in

Table 2 Overview of the co-occurrences in TLR-stimulated DC gene expression patterns.

Cluster index Promoter set PWM A PWM B TF(s) associated with PWM A TF(s) associated with PWM B

1 nonCpG M00054 M00054 NF-kappaB NF-kappaB

1 all M00054 M00054 NF-kappaB NF-kappaB

9 all M00054 M00054 NF-kappaB NF-kappaB

12 all M00063 M01171 IRF family Bcl6

12 all M00063 M00963 IRF family T3R

12 nonCpG M00063 M00963 IRF family T3R

12 nonCpG M00063 M01171 IRF family Bcl6

13 all M00063 M00063 IRF family IRF

13 all M00063 PB0060 IRF family Hand1::Tcfe2a, Hand1:E47, SMAD, Smad3

13 all M00063 M00701 IRF family Smad3

14 all M00054 M00249 NF-kappaB CHOP:C/EBPalpha

14 all M00054 M00257 NF-kappaB RREB-1

14 all M00054 M00769 NF-kappaB AML, Osf2, PEBP, Runx1

18 all M00063 MA0099 IRF family Fos
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comparison to a previously reported statistics-based
method. Indeed, the majority of significant interactions we
found involved motifs that were not over-represented (a
considerable fraction was actually under-represented). This
was also the case for C/EBPa binding sites in cluster 14
from the DC expression data. Such motifs would thus not
be detected by standard over-representation analysis.
For one of the significantly co-occurring TF pairs

involved in TLR signaling we could verify the predicted
combinatorial regulation. We found that C/EBPa co-
regulates a set of promoters with NF-�B. Co-regulation
by NF-�B and C/EBP has previously been reported.

Lcn2 and Arg2 were reported as targets of C/EBPb [41],
confirming that the Frequency Ratio could predict biolo-
gically meaningful TF pairs. Moreover, C/EBPa itself
has recently been found to control a number of RelA-
dependent inflammatory promoters, and NF-�B activa-
tion synergistically with PU.1 [46], further supporting
our findings on the significance of the NF-�B-C/EBP
pair. It would be interesting to check the involvement of
other pairs identified as in Table 2 in TLR-induced gene
expression patterns.
There is some room for possible improvements of our

approach. First of all, epigenetic factors that might be

Figure 5 C/EBPa regulates a set of promoters with NF-�B motif. (A) Promoters with the co-occurrence of NF-�B and C/EBPa sites were
suppressed (Nfkbiz), or activated (others) by C/EBPa. (B) �B-tandem promoter was not activated but rather suppressed by C/EBPa expression.
Promoter structures are shown as in Figure 4B. Error bars represent standard deviations of duplicate experiments. All the results shown are
representative of three independent experiments with essentially identical results
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responsible for tissue- or condition-specific expression
should be taken into account. At present, chromatin
remodeling data is still limited to a small number of cell
types, which makes it difficult to incorporate in our
approach. Undoubtedly, as the amount of available data
increases, there will be a need to incorporate it, resulting
in approaches combining both TFBS information and
epigenetic information. Importantly, while we have lim-
ited our analysis to promoter sequences here, the role of
distal enhancers in the regulation of transcription is gen-
erally accepted. As epigenetic data for various cell types
increases, we will become able to apply our method not
only to promoter regions but also to enhancers, and
investigate potential differences in combinatorial regula-
tion occurring in promoter and enhancers. Secondly,
since our approach relies on TFBS prediction, which is
still known to have a low specificity, further develop-
ments in the prediction of TFBSs, and additional gen-
ome-wide binding data is likely to improve our method
as well as other TFBS prediction-based methods.
In conclusion, our FR approach circumvents biases

which former methodology suffers from, and we could
identify some meaningful co-occurring TFBS pairs, one of
which was experimentally supported. We believe this
approach can help us detect combinatorial interactions
between TFs in the regulation of transcription, and we
also believe that this sets a basis for future developments
in computational identification of combinatorial gene
regulation.
An online application of our method, which we call

REgulatory MOtif COmbination Detector (REMOCOD),
is available at our website [47].

Additional material

Additional file 1: Figure S1 - (PPT, Powerpoint file) Workflow of our
framework for the detection of co-occurring motifs. The analysis of
genome-wide tendencies starts with a set of TFBSs, predicted in
promoter sequences and a set of PWMs. For each pair of motifs, FR
values are calculated, and used for further analysis of genome-wide
tendencies. The analysis of co-occurrences in sets of co-regulated genes
similarly starts with the prediction of TFBSs. Using these, significantly
over-represented TFBSs are detected, and for each motif the tendency to
co-occur with each of the over-represented motifs is analysed. The
significance of the co-occurrences is evaluated using a random sampling
approach, sampling sequences from the genomic set of promoters.

Additional file 2: Supporting text - (DOC, Word file) On the
asymmetry of the Frequency Ration measure.

Additional file 3: Figure S2 - (PPT, Powerpoint file) Genome-wide
tendencies of Frequency Ratios in human promoter sequences.
(A) Histogram of FR values for all PWM pairs in the genomic set of human
promoter sequences. (B,C,D) Plots of GC content differences as measure of
PWM-to-PWM dissimilarity (Y-axis) versus FR values (X-axis, same as in A), for
all promoters (B), CpGhigh promoters (C), and CpGlow promoters (D).

Additional file 4: Figure S3 - (PPT, Powerpoint file) Tendencies of
Frequency Ratio in semi-artificial and completely artificial
sequences. Plot of GC content differences as measure of PWM-to-PWM
dissimilarity (Y-axis) versus FR values (X-axis) in semi-artificial sequences

(A), and completely artificial sequences (B), semi-artificial CpGhigh

sequences (C), and semi-artificial CpGlow sequences (D).

Additional file 5: Figure S4 - (PPT, Powerpoint file) Genome-wide
tendencies of Frequency Ratios for 200 randomly selected 7-mers
in human and mouse promoter sequences. Plots of GC content
differences (Y-axis) versus FR values (X-axis) are shown for all human
promoters (A), all mouse promoters (B), human CpGhigh promoters (C),
mouse CpGhigh promoters (D), human CpGlow promoters (E), and mouse
CpGlow promoters (F).

Additional file 6: Figure S5 - (PPT, Powerpoint file) Heatmap
representation of the average expression values for each of the 44
clusters obtained from the GNF GeneAtlas mouse data.

Additional file 7: Table S1 - (XLS, Excel Spreadsheet) Summary of
main tissues for the 44 clusters obtained from the GNF GeneAtlas
data.

Additional file 8: Table S2 - (XLS, Excel Spreadsheet) Summary of
over-represented PWM motifs in tissue-specific sets of mouse
promoters (GNF GeneAtlas data and Amit et al. data)

Additional file 9: Figure S6 - (PPT, Powerpoint file) Histogram of the
PWM-to-PWM GC content differences of co-occurring motifs
predicted by three approaches. Co-occurrences predicted by the FR
measure are least affected by PWM-to-PWM GC content differences. The
distribution of GC content differences of predicted co-occurring pairs of
PWMs is shown 1) for the 1294 PWMs found to be significantly co-
occurring with an over-represented motif according to FR values ("co-
occurring motifs, FR“), 2) for the PWMs found to be co-occurring with an
over-represented motif according to Pocc ("co-occurring motifs, Pocc“), and
3) for the PWMs found to be co-occurring with an over-represented
motif according to the approach of Sudarsanam et al. ("co-occurring
motifs, Sudarsanam”). For the latter two approaches the 1294 pairs with
the most significant co-occurrence were used.

Additional file 10: Figure S7 - (PPT, Powerpoint file) Heatmap
representation of clusters of TLR-stimulated DC gene expression
data referred to in the main text.

Additional file 11: Table S3 - (XLS, Excel Spreadsheet) Summary for
the co-occurrences in tissue-specific sets of mouse promoters (GNF
GeneAtlas data and Amit et al. data).
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