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Abstract

Background: A current challenge in gene annotation is to define the gene function in the context of the network
of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach
to better understand the biology of the system and to study how several components of this network interact
with each other and keep their functions stable. However, in general there is no sufficient data to accurately
recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of
variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using
only the expression profiles in the inference process. Nowadays, the use of several biological information in
inference methods had a significant increase in order to better recover the connections between genes and
reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known
connections through the included biological data, and the possibility of discovering new relationships between
genes when observed the expression data. Although several works in data integration have increased the
performance of the network inference methods, the real contribution of adding each type of biological
information in the obtained improvement is not clear.

Methods: We propose a methodology to include biological information into an inference algorithm in order to
assess its prediction gain by using biological information and expression profile together. We also evaluated and
compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone
fusion proteins, (c) KEGG and (d) KEGG+GO.

Results and conclusions: This work presents a first comparison of the gain in the use of prior biological
information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates
that information based on direct interaction can produce a higher improvement in the gain than data about a less
specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a
very important approach for the improvement of the inference. We also compared the gain in the inference of the
global network and only the hubs. The results indicates that the use of biological information can improve the
identification of the most connected proteins.

Background

The regulation of a diversity of biological process is only
possible because of the interaction between distinct
components [1], maintaining the homeostasis of the sys-
tem. A major challenge in biological sciences is to
understand how several components interact with each
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other in order to perform their functions. By consider-
ing that proteins play their action not alone but into the
context of a network of interactions [2], the mapping of
the interrelationships among proteins is an important
step to understand their functions and the global cell
behavior [3]. In recent years, new high-throughput tech-
nologies allowed the measuring of expression profiles of
thousands genes simultaneously. Because of the large
amount of transcriptome data available, the inference of
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gene networks (GNs) from expression data has emerged
as an approach to the study of the systems biology [4].
The assumption is that if there is an interaction between
two elements (e.g. protein-protein, Transcription Factor-
DNA, etc.) their expression profiles should also be
related. However, two genes may have similar expression
profiles just by coincidence. Thus, the challenge is to
recover GNs reducing the number of false positives. The
expression data can be sampled as time points (time-
series / time-course data) or under different biological
conditions (steady state data). Also, the data can be pro-
duced by distinct technologies as microarrays [5], SAGE
[6] and RNA-Seq [7].

The so-called “curse of dimensionality” [8] is a phe-
nomenon in which the number of training samples
required for a satisfactory classification is given by an
exponential function of the size of the feature space. In
many applications, and especially in systems biology, the
size of the training samples is generally much lower than
the dimension of feature space. Thus, despite high-
throughput data available, there is still a limitation in the
inference of GNs: the number of genes (features) is much
larger than the number of time-points (samples). As an
example the expression dataset of P. falciparum has
7,745 oligos and only 48 time points.

Facing this problem, other biological information than
expression data has been included in order to reduce the
estimation error [9,10]. Several types of new biological
data have been recently produced: (a) Interaction Data:
protein-protein interaction [11-13] and protein-DNA
[14], (b) Function and Ontology: KEGG [15] and Gene
Ontology [16], (c) Other like phylogenetic profile [17]
and Rosetta stone fusion proteins [18,19]. In a recent
work [20], pairwise relationships obtained from Gene
Expression, Phenotypical Profile, KEGG Pathway, Transi-
tive Homology of protein sequences and protein-protein
interaction were used to increase the positive predictive
value (PPV) [21] and to predict the gene function. Each
dataset comprises pairwise relationships between genes
and each pair has an associated similarity measure
(except in protein-protein dataset). A PPV is calculated
for each dataset at each similarity value using Yeast Gene
Ontology annotation as Gold Standard. After, the PPVs
were combined into an equation (Biological Score) and
weights were associated to each PPV. Gene pairs were
grouped according to the Biological Score using the
KNN cluster algorithm [22]. Gene function was asso-
ciated to genes according to the group.

Although several data sources are integrated and
increase PPV, the result is only related to Gene Ontology
and the gain of adding each information remain unclear.
The work [20] is based on the assumption that if two
genes are related in the information dataset they should
share a common GO term. In other words, the weights
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show how much each information contributes to recover
Gene Ontology relationships but they do not make clear
how each information contributes to recover the same
type of information itself. Other study [3] assessed the
limit of data integration to predict protein-protein rela-
tionships. Using a Bayesian classifier, the relationship
between the number of features (prior biological infor-
mation) and the improvement in the predictive power
were evaluated. An improvement in accuracy and cover-
age was achieved by integrating data of four strongest
features: a) functional similarity based on GO, b) func-
tional similarity based on MIPS Functional Catalog data-
base, c) coessentiality and d) correlation between
expression data. The MIPS Functional Catalog is a data-
base of protein function provided by the Munich Infor-
mation Center for Protein Sequences (MIPS) [23]. The
MIPS terms are arranged hierarchically according to
classes (e.g. 01:Metabolism, 01:04 phosphate metabolism,
01:04:04 regulation of phosphate metabolism, 02.Energy,
etc.). Data from GO and MIPS are important because
proteins that belong to same biological process are more
likely to interact [3].

Also, statistical dependence between features (types of
biological information) was analyzed. The absence of
statistical dependence between the features available was
another important discovery.

Although increasing performance in prediction of pro-
tein-protein interactions is very significant, some other
important aspects must be highlighted: (a) The prediction
was not done in the context of the inference of GNs from
expression data, (b) the gain of each information is
unclear, (c) the protein-protein itself as prior information
was not evaluated.

Another important aspect is that several approaches of
data integration are based on the correlation measure
between expression profiles of gene pairs in biological
data (like protein-protein networks) as in [20]. However,
it has been shown that opposite to prokaryotes organ-
isms, in eukaryotes the correlation of related pairs is
similar to those of random networks [24]. Also, [25]
showed that transient protein complexes have a weak
correlation to expression profiles. Other work [26]
observed that although in S. cerevisiae and bacteriophage
T7 co-expression and protein-protein interaction are
related, self-interactions cannot be tested by correlation
between expression profiles which notably represent a
considerable proportion of the samples. In this work we
address this problem by using an approach based on
mean conditional entropy. Previous works [9,10,27] in
data integration have contributed to decrease the estima-
tion error. However, some questions are still unclear:

What is the gain of adding different biological informa-
tion in the GNs inference? In a previous work [28] we
describe the gain of adding protein-protein data to
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recover the GN of Plasmodium falciparum. Also, added
data of distinct types are normally evaluated against a
common gold standard related to a single feature (func-
tional, physical contact, etc.). It is not clear what is the
gain to infer the same type of data added. For example,
what is the gain of adding protein-protein information to
recover a protein-protein network?

An important aspect of adding biological information
is the heterogeneity of data.

For example, protein-protein networks obtained from
Yeast two hybrid experiment (Y2H) are in vitro verifica-
tion of physical interaction. Rosetta stone fusion pairs are
prediction of protein-protein interactions obtained indir-
ectly through sequence comparison. KEGG data can
inform if two components interacts in the same pathway.
The Gene Ontology (GO) information is useful to obtain
the physical cellular localization, biological process or
molecular function. In general, it does not make clear if
genes sharing the same GO-term interact directly with
each other. Thus, we propose a classification into two
types of biological information data: (a) direct physical
interaction data (e.g. protein-protein, protein-DNA) and
(b) feature data (e.g. biological process, cellular localiza-
tion, signaling pathway in which participates, etc.).

Thus, another important question is: what is the rela-
tive gain of distinct types of biological information? It is
not clear if they have the same behavior.

In this work we developed an algorithm to integrate
biological information data for the inference of GNs,
evaluated and compared the relative gain of four biolo-
gical information dataset for the P. falciparum organism:
(a) Protein-protein interaction, (b) Rosetta Stone fusion
proteins, (¢) KEGG, (d) Combined KEGG and GO
dataset.

Methodology

An important aspect regarding on introduction of a new
algorithm for the inference of GNs is to evaluate
whether or not the inferred relationships are reliable. In
order to do such assessment it is necessary to evaluate
its performance by using simulated or real biological
data.

By considering biological data, the evaluation of pre-
dicted interactions can be carried out through a gold
standard dataset. However, there is not a consensus
about how a gold standard dataset should be con-
structed. Particularly, in the inference of GNs a gold
standard can mean genes on the same metabolic or sig-
naling pathway, genes sharing the same ontology terms,
protein-DNA interaction, protein-protein interactions,
etc.

Thus, a common approach to evaluate predicted links
between genes is to questioning if each inferred relation-
ship is supported by some annotation data. Such
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evidence can be obtained if the predicted gene pair: (a)
participates in the same pathway, (b) shares the cellular
localization or (c) has the same gene function. Such
data is a type of qualitative information that does not
make clear if the two genes (or their corresponding pro-
ducts) have a physical interaction. However, the annota-
tion data allows counting predicted pairs that are
biologically related.

Another way to evaluate the predicted network is by
counting the number of predicted links corresponding
to real physical contact like protein-protein interactions.

In this work we assembled one main Sample Expres-
sion Dataset and four Gold Standard datasets: (a) pro-
tein-protein, (b) Rosetta Stone fusion, (c) KEGG, (d)
KEGG+GO. For each gold standard a sample expression
dataset was assembled containing only the subset of
genes in the gold standard set resulting in four sample
expression datasets, one for each gold standard. Thus,
each analysis was performed for a sample and the corre-
sponding gold standard network.

Biological dataset - expression data
The Malaria expression dataset used in this work was
first reported by [29]. The dataset consist of 48 time
samples of 7,745 genes of P. falciparum HB3 strain. We
used preprocessed samples acquired from USP dataset
in [30]. The dataset comprises only genes that were fil-
tered through a quality control (leave out genes with
less than 25 time points sampled) resulting in samples
of 6,532 genes (Additional file 1: Table S1). Since the
algorithm deals with discrete data, the original expres-
sion dataset (real numbers) of [29] was normalized and
quantized into three levels (-1,0,4+1): down, basal and up
regulated in relation to the reference in order to fit the
algorithm (Additional file 2: Table S2 and Additional
file 3: Table S3).

As developed in [30], the expression time series of
each gene g(¢), t = 1, 2, .... n, are normalized by the nor-
mal transformation:

(1) — E[g(1)]
a[g(9)]

where o[g(¢)] is the standard deviation of g(t) and E[g
(2)] is the expectation of g(t).

After the normal transformation, the signal a of every
gene g at a each instant ¢ > 0 is quantized through a
threshold mapping:

(g0l = 1)

+1 a>h
g(t)=y 0 I<ac<h 2)
-1 a <l

Also, in each subsequent analysis, only samples in
both expression dataset and in the gold standard
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network were selected. Samples that were not present in
the gold standard were excluded.

Protein-protein network

We used P. falciparum protein-protein network identified
by LaCount [13] through a high throughput version of
yeast two-hybrid assay as gold standard. Briefly, that net-
work was generated using RNAs isolated from mixed
intraerythrocytic stage that were used to build the libraries
of two-hybrid assay. The resulting data lack genes
expressed exclusively in the liver, gametocyte and mos-
quito stage. In order to obtain a reliable network, several
interactions obtained from 32,448 yeast two-hybrid
screens were eliminated in a downstream analysis. Protein
fragments with many partners were eliminated to avoid
promiscuous interactions in the two-hybrid assay. The
resulting data is a highly interconnected scale-free network
comprising 1,267 proteins (vertex) and 2,823 interactions
(edges).

We selected the subset of genes present both in
LaCount protein-protein network and Expression Pro-
files. Our resulting gold standard comprises 1,958 inter-
actions between 985 genes (Additional files 4 and 5:
Tables S4 and S5 respectively).

Rosetta Stone

Rosetta Stone protein data represents prediction of pro-
tein-protein interactions inferred from genome
sequences. The information of this type of data is similar
to that from Y2H experiments and are related to physical
interactions.

The term “Rosetta Stone” was proposed by [18] and is
based on the observation that some proteins that partici-
pates in a protein-protein interaction in an organism
forms a single protein chain in another organism. In
other words, sequences of two interacting proteins in one
organism are homologous to a single protein in another
organism. Thus, this association is a “Rosetta Stone” that
“deciphers” the protein-protein interaction.

In this work we used the dataset of Rosetta stone
fusion proteins developed by [31]. Briefly, it was used
Plasmodium falciparum plus 164 other genomes and
the presence of Rosetta stone fusion proteins was veri-
fied. It was excluded links for which fusion proteins
were found only in Plasmodium. Thus, 993 proteins
with 5,176 links compose the original dataset.

We selected proteins found both in the Rosetta stone
fusion proteins network and in the Expression Dataset. The
resulting network comprises 2,146 links between 702 genes
(Additional files 6 and 7: Tables S6 and S7 respectively).

KEGG pathway dataset
The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [15] is a description of several
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molecular interactions and how they are organized in a
biological pathway. KEGG data is a rich source of biolo-
gical information and at least two types of information
can be obtained: (a) if two gene products interact each
other directly and (b) if two gene products interact each
other indirectly into the same pathway.

The KEGG gold standard is a set of KEGG association
obtained from the work of Bozdech [32]. The dataset
comprises 11,046 links between 492 genes. After filtering
genes found in both expression and KEGG datasets the
resulting network comprises 393 genes with 8,750 links
(Additional files 8 and 9: Tables S8 and S9 respectively).

Combined KEGG and GO network dataset

The Gene Ontology (GO) (Gene Ontology Consortium
2004) [33] is a source of information about three point of
views: cellular component (the physical localization in
the cell or its extracellular environment), molecular func-
tion and biological process. Thus, once a gene pair is
associated through some method it is possible to argue
which the two elements share the same GO term. Also, it
is important to know at what level (in GO structure) two
genes shares the same annotation. For example, suppose
that the gene pair is associated to the GO term cellular
metabolism. Can we use this information to accept the
relationship? There are several components involved on
cellular metabolism and they are not all directly related
to each other. Thus, depending on the type of study the
data could provide a “poor” information. We could found
another scenario in which the data could be “richer”. For
example, if the genes were both associated to acetyl-CoA
biosynthesis from acetate. This is a more specific level of
metabolism than cellular metabolism. Thus, this type of
biological data does not make clear if the two compo-
nents interact directly with each other. However, it can
provide an idea of how much a predicted link is reliable.
In this work we used information of a valuable dataset of
KEGG pathways and biological process annotation (GO)
data developed by [31]. The dataset consists on prepro-
cessed and combined information of the KEGG pathways
and GO of P. falciparum. In the preprocessed dataset a
minimum GO term depth of 5 was maintained. The data-
set contains 10,267 links between 412 proteins. We fil-
tered genes that were not in our Expression Dataset
resulting in a network containing 344 proteins and 7,204
links (Additional files 10 and 11: Tables S10 and S11
respectively).

Overlap between gold standard datasets

The presented gold standard data differs in size, genes and
edges. As shown in Table 1, the networks with smallest
number of genes (KEGG and GO) have the largest num-
ber of edges (this points to high connected networks)
while the gold standard Protein-Protein has the largest
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Table 1 Summary of the 4 gold standard datasets. Table 3 Summary of 4 Intersection Datasets.
Gold Standard Genes Links Reference 1GS Intersection Gold Standard Genes Links
Protein-Protein 985 1958 LaCount et al, 2005 IGS1 Rosetta N KEGG +GO n KEGG 25 21
Rosetta Stone 702 2146 Date et al, 2006 1GS2 Rosetta Stone N KEGG 31 45
KEGG 393 8750 Bozdech et al, 2003 IGS3 Rosetta Stone N KEGG +GO 36 28
KEGG+GO 344 7204 Date et al, 2006 IGS4 KEGG n KEGG + GO 314 6,138

number of genes and the smallest number of links. This
indicates that available dataset may present different topo-
logical features (due the sampling). Also, the datasets can
have different genes and links.

We analyzed the overlap between the four gold stan-
dards. A summary of the comparison is shown in Table 2.
A low percentage of Protein-Protein genes is found in
other networks: 240 of 985 (24%) in Rosetta Stone, 11% in
KEGG and only 8.7% in KEGG+GO. The percentages of
Rosetta Stone genes present in Protein-Protein, KEGG
and KEGG+GO are respectively 34%, 15% and 14%. There
is a very low overlap of edges, especially in Protein-Protein
data.

KEGG and KEGG+GO datasets present the higher
overlap. In fact, there are 316 common genes of 393
and 6,138 edges of 8,750. This suggest a minor contri-
bution of GO data on this available dataset although
GO is a rich source of information.

Intersection gold standard dataset
Due to the heterogeneous nature of different datasets, we
explore the possibility of using the intersection of the
datasets as a high quality gold standard. An “intersection
dataset” is interesting because the gain (of each indepen-
dent dataset) can be evaluated in respect to a common
gold standard, and thus could help avoiding a possible
bias. However, as shown in the previous section, it is not
possible to combine all datasets because there is not a
large overlap between their edges. This points to a practi-
cal limitation in the evaluation of improvement of adding
data information: in general the available data come from
different and heterogeneous sources.

Despite these limitations we propose here four Intersec-
tion Gold Standard datasets (IGS) as shown in Table 3.
The Protein-Protein network was left out since it has not

Table 2 Overlap between the 4 gold standard datasets.

Rosetta KEGG KEGG
Stone +GO
Genes Links Genes Links Genes Links
Protein- 240 4 13 4 86 3
Protein
Rosetta Stone 107 45 105 28
KEGG 316 6,138

Genes and links was counted separately. In other words, a gene was counted
if it was found in both dataset even without edges.

intersection (intersection of only four edges) with other
networks. These assembled network are smaller than each
original gold standard but it captures the relationships
observed in all networks.

Inference of gene networks

In order to recover the GNs from expression profiles, it
was applied the approach described in [34], which is
based on a feature selection algorithm. A feature selec-
tion method is commonly composed of two parts: a
search algorithm and a criterion function that attributes
a quality value to the feature subsets, in order to select
a subset of features that makes a good representation,
classification or prediction of states (or values) of the
objects in study.

As explained before, in gene networks inference, the
number of genes is generally much larger than the num-
ber of time-points. In this context, the investigation of
effective ways of data integration in the inference meth-
ods represents an important challenge in systems biol-
ogy research.

The data integration approach considered in this work
is described in [20], which proposes a biological score
(BS) as a weighted sum of available biological informa-
tion. In this work, it is proposed a criterion function
inspired on BS, which is defined as follows:

BSY,X = EY,X X W + PY,X X W3, (3)

in which given a fixed gene Y as target, the general
idea of this model is to determine the subset of genes X
that makes the best prediction of the Y, by taking into
account E and P. E is the penalized mean conditional
entropy score obtained from expression profiles [34]
and P is the information about protein-protein
interaction.

The mean conditional entropy is based on the distri-
butions between classes of conditional probability of the
target gene given the subset of predictors, i.e., the more
concentrated is the conditioned distribution on the
observation of the predictors, the lower is the corre-
sponding entropy.

In this work, the coefficients w; and w, are positive
real numbers such that Zwi =1, from which one needs
to find a value combination that maximizes the predic-
tive power between a target gene and its predictors.
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In order to clarify how the GNs inference algorithm
works, it is presented in Algorithm 1 its pseudo code.

Initially, the algorithm receives its parameters, in
which target represents the target gene identification for
the inference of its predictors and the kmax represent-
ing the maximum cardinality of the subset of predictors
that will be searched. The w; and w, are weights for the
information of the expression profiles (Expressions) and
the biological interaction data like protein-protein inter-
action (Biologicallnteraction), respectively. After that,
the SFFS Algorithm [35] is applied in order to discover
the best newsubset of predictor genes for the target by
considering the cardinality (k), in terms of the adopted
criterion function, i.e., Eq. 3. The variable newvalue
represents the criterion function value achieved by the
newsubset of predictor genes. If the newvalue presents
better results than bestvalue, then the bestvalue and
bestset are updated by newvalue and newsubset, respec-
tively. The while loop performs the SFFS algorithm for
each cardinality k = 1, ..., kmax trying to find the best
subset of predictors in each cardinality k keeping the
best global solution in the variables bestvalue and best-
set. When its cardinality achieves the limit, i.e., kmax,
the inference algorithm is stopped and returns the best
subset of predictors achieved for the target gene.

Validation of the information gain

In order to quantify the similarity between the gold-
standard and inferred networks, it was adopted the PPV
(Positive Predictive Value, also known as accuracy or
precision) and Sensitivity (or recall) measurements pre-
sented by [21], which are based on a confusion matrix
[36] and widely used to compare the results of the gene
inference methods.

As presented in [37], the confusion matrix measures
could be interpreted as how much the GNs inference
method gets “confused” in inferring the network edges.
The measures considered in this work are based on topo-
logical features, which are described in the confusion
matrix showed in Table 4. These measures contain infor-
mation about the correct and incorrect inferred edges by
considering a gold-standard network and an inferred net-
work. The measures in this confusion matrix have the fol-
lowing meaning in the context of this work: TN is the
number of non-identified edges that are absent in the
gold-standard network, FP is the number of identified
edges that are absent in the gold-standard network, FN is

Table 4 Confusion matrix.

Edge Inferred Not Inferred
Present TP FN
Absent FP TN

TP = true positive, FN = false negative, FP = false positive, TN = true negative.
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the number of non-identified edges that are present in the
gold-standard network, and TP is the number of identified
edges that are present in the gold-standard network.

Algorithm 1 GNslInference (target, kmax, wy, wo,
Expressions, Biologicallnteraction)

1: var list bestset, newsubset

2: var float bestvalue, newvalue

3: var integer k < 1

4: while k < kmax do

5: [newsubset, newvalue] < SFES (target, wy, wy,
Expressions, Biologicallnteraction, bestset, k)

6: if newvalue < bestvalue then

7: bestvalue I newvalue

8: bestset N newsubset

9: end if

10: k—k+1

11: end while

12: return bestset

In this approach, the networks are represented in
terms of their respective adjacency matrices M, such
that each edge from node i to node j implies M(j, j) = 1,
with M(i, j) = 0 otherwise. The measures considered in
this work are calculated as follows:

Similarity(A, B) = \/PPV - Sensitivity,
TP TP (4)

PPV = Sensitivity = (TP + FN)’
+

(TP + FP)’

By observing the ground truth network A and the
inferred network B, the measure Similarity(A4, B) is the
geometrical average between the ratios of correct and
incorrect inferred edges, implying that the maximum
similarity to be obtained for values near 1. In order to
analyze the gain each measures was normalized into the
interval (0, 1).

We performed four distinct evaluations of quantitative
gain in respect to each gold standard dataset. Thus, in
each evaluation, a gene network was inferred from the
expression profiles of the corresponding genes in the
selected ground truth. Instead of adding distinct biologi-
cal information and comparing to a unique common
gold standard we used the information added as the
ground truth network. Thus, we verified the gain of
each type of information in respect to the expression
profile information. In other words, the variation of bio-
logical information weight can give an idea of the rela-
tionship between expression profiles and the biological
data.

Results

This section describes the experimental results obtained
by considering distinct biological information as well as
gold-standard networks and the inferred networks from
two distinct situations: from temporal expression
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profiles and by biological score approach, which in this
work was obtained by combining expression profiles
and biological data.

The same method and parameters (default) were kept
fixed during comparative analysis. It is important to
notice that temporal data is considered for the inference
method in a dynamical way, such that auto-relationships
were not considered in the present work.

The choice of w; and w, is an important problem in
data integration for which we performed the experi-
ments presented in Figure 1.

In order to assess the information gain, the experiment
was performed starting just with the expression informa-
tion of the Equation 3, i.e., by setting w; = 1 - w, and
wy = 0,02, 04, ..., 1.

Figure 1 shows the similarity between the inferred net-
work and protein-protein (gold standard network). It is
possible to observe, as expected, that biological information
improve the similarity of the network inference method.
However, the improvement is not linear and the consid-
ered measure present different behavior. The sensitivity
measure presents approximately 90% of gain, by setting w;
= w, = 0.5 indicating that protein-protein information is an
important data for improvement of GNs inference. It can
also be seen that the sensitivity measure presents behavior
close to logarithmic. The improvement behavior of the
PPV measure indicates that it is a very difficult task due to
the complexity of the biological machinery and the indirect
relationship between transcripts and proteins.

o |
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=
o}
E
s T
o
o
o
—— ppv
—&—  sensitivity
g = -+ similarity
T T T T T
0 0.2 0.4 0.6 0.8 1
Weight of biological information ( protein-protein )
Figure 1 Similarity, PPV and Sensitivity measures obtained by
including different weights of protein-protein information to
infer network edges from temporal expression profiles. The
improvement is not linear. In a weight of 0.5 the gain is near 90%.
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Figure 2 shows the result with Rosetta Stone protein
linkages network. The behavior of the similarity is not
linear. However, PPV presented a linear gain, propor-
tional do the weight of biological information. The same
behavior was not observed with protein-protein data of
LaCount. A possible explanation is that Rosetta Stone
data can have a lower number of False Positives connec-
tions among its genes. In other words, a threshold to
avoid false positives is considered in the process of
selecting putative interactions. Also, only one class of
proteins is selected to compose the dataset, i.e., those
with separated proteins in an organism and with a
fusion of proteins in other species. Therefore, since Y2H
is an in vitro experiment it can produce a large number
of false positive interactions.

The gain of inference with KEGG and Combined
KEGG and GO data is presented in Figure 3 and 4.
They have a very similar behavior. First, the curves are
not linear and not proportional to the weight of the bio-
logical information. Also, the gain in PPV is higher than
in Specificity. Since KEGG and GO do not guarantee a
direct physical interaction between two related genes,
some unrelated pairs could be taken as true examples.
Also, GO biological process can be more or less specific.
Thus the level in the GO graph in which the terms are
considered can affect the result since unrelated genes
(in a more general process like “metabolism”) might be
taken as being positive examples.

Thus, the algorithm can predict a direct interaction by
considering the biological information weight. By
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Figure 2 Similarity, PPV and Sensitivity measures obtained by
including different weights of Rosetta Stone information to
infer network edges from temporal expression profiles. Similar
to Y2H protein data the gain has a log behavior but PPV has a
better gain with Rosetta stone.
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Figure 3 Similarity, PPV and Sensitivity measures obtained by
including different weights of KEGG information to infer
network edges from temporal expression profiles.

considering the assumption that KEGG and KEGG+GO
datasets are true networks, the expression profiles do
not match to all its links.

Evaluation in hub networks

It has been reported that biological networks tend to
present some particular topology like scale-free net-
works. There is expected a few number of proteins with
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Figure 4 Similarity, PPV and Sensitivity measures obtained by
including different weights of KEGG and GO information to
infer network edges from temporal expression profiles.
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a large number of interactions (hubs) and a large num-
ber of proteins with a few number of interactions [2].

Thus, we evaluate the gain by considering a subnet-
work composed by the hubs and its interactions. In this
study the hubs were defined as the 10% more connected
elements in the network. We evaluated the gain for two
biological information datasets: Rosetta Stone (direct
interaction data) and KEGG (indirect interaction data).
The results are shown in Figures 5 and 6. The compari-
son of the results of Rosetta Stone with the result in
Figure 2 shows some interesting behaviors. There is an
inversion on the gain between sensitivity and PPV. The
Rosetta Stone information improved the gain in PPV for
hubs with a logarithmic behavior. For a weight of 0.6
the gain in PPV is near 0.8.

The information of KEGG produced a better improve-
ment in the gain for the global network than for the
hub subnetwork. The indirect relationships in this type
of data can explain the behavior for the hubs.

Evaluation in intersection gold standard dataset

As mentioned before, there is a practical limitation to
assembly Intersection Gold Standard datasets. Despite
the limitations we assembled the four intersection gold
standards presented in Table 3. The IGS1 (Additional
files 12 and 13: Tables S12 and S13 respectively), IGS2
(Additional files 14 and 15: Tables S14 and S15 respec-
tively) and IGS3 (Additional files 16 and 17: Tables S16
and S17 respectively) comprises small networks with
dozen of vertex and edges. As shown in Figure 7, 8 and 9
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Figure 5 Similarity, PPV and Sensitivity measures obtained by
including different weights of Rosetta stone information to
infer the subnetwork of hubs edges from temporal expression
profiles.
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Figure 6 Similarity, PPV and Sensitivity measures obtained by
including different weights of KEGG information to infer the
subnetwork of hubs edges from temporal expression profiles.

the gain is not linear. Although the analyzed intersection
networks are a small sampling of the entire network, they
present some common features with the original gold
standard datasets: (a) they present a non linear behavior
in PPV and Sensitivity, (b) the information of Rosetta
Stone information seems to maintain a logarithmic beha-
vior even in the intersection to KEGG and GO data.
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Figure 8 Similarity, PPV and Sensitivity measures obtained by
including different weights of a combined (intersection)
network from Rosetta Stone and KEGG information to infer the

network edges from expression profile.

The IGS4 comprises a large network with 316 genes and
6, 138 links (Additional files 18 and 19: Tables S18 and
S19 respectively). The result of the analysis is shown in
Figure 10. A similar behavior with the original gold
standard datasets (KEGG and KEGG+GO) can be
observed in this analysis. An explanation is that almost
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Figure 7 Similarity, PPV and Sensitivity measures obtained by
including different weights of a combined (intersection)
network from Rosetta Stone, KEGG and KEGG+GO information
to infer the network edges from expression profile.
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Figure 9 Similarity, PPV and Sensitivity measures obtained by
including different weights of a combined (intersection)
network from Rosetta Stone and KEGG+GO information to

infer the network edges from expression profile.
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Figure 10 Similarity, PPV and Sensitivity measures obtained by
including different weights of a combined (intersection)
network from KEGG and KEGG+GO information to infer the
network edges from expression profile.

the whole original network was maintained (6,138 links
of 7,204).
Some interesting features can be observed in the analy-
sis of these data. First, the information of Rosetta stone
seems to dominate the behavior when combined to
other datasets. In Rosetta stone gold standard (Figure 2)
it can be observed that Sensitivity is higher than PPV
for any weight. The same behavior can be observed in
the intersection datasets of Rosetta Stone (Figures 7, 8
and 9). Second, the curves in intersection datasets con-
taining Rosetta Data present a logarithmic behavior.
Third, Rosetta intersection gold standard performance is
very similar to protein-protein data and finally. Finally,
KEGG and GO present PPV higher than Sensitivity.
These results suggest that data from physical interac-
tions (protein-protein and Rosetta stone) and function
or biological process (KEGG and GO) could be classified
into two distinct groups with respect to the information
gain.

Conclusion

It is commonly know that data integration is a very
important procedure for obtaining better performance
on the inference process. However, it is not clear how is
the improvement for each information added in the
inference method. This work presented an objective way
to assess the gain of prediction (PPV and Sensitivity) by
adding four types of biological information on an infer-
ence method. We also compared the data types and
evaluated its relative improvement in the gain.
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The results were obtained by applying an inference
method of GNs from temporal expression data first
obtained from Bozdech [29], filtered, normalized and
quantized in [30]. The results indicate, as expected, that
adding the biological information data was important
for the inference improvement in terms of sensitivity
and PPV measures. In particular, the sensitivity measure
presented a gain of approximately 90% by setting w; =
wy = 0.5, indicating that protein-protein data improved
the recall gain. However, the PPV measure in our
experiments indicates that the temporal expression pro-
file has a little contribution to the inference of protein-
protein relationships. In addition, one can observe a
logarithmic behavior of the sensitivity measure. Also,
other biological data like Rosetta stone fusion proteins
increases the gain in PPV with an almost linear beha-
vior. The recovering of GNs by using data from KEGG
and GO presented a gain that is not proportional to the
weight of biological information. This can be explained
by the nature of data in which a link between two genes
does not mean (ever) a direct interaction. Thus, in this
work we suggested that biological information data
could be classified into at least two groups: direct inter-
action (data that informs a physical interaction, verified
or predicted) and feature information (data that informs
a common feature of the elements like cellular localiza-
tion, metabolic pathway, etc.). This work represents a
starting point to assess how different sources of biologi-
cal data can be integrated on an inference method and
how each information contributes to the improvement
of prediction.

In further works, more biological information could be
included and a search strategy for the parameters esti-
mation (w;) could be analyzed for the similarity maximi-
zation. Also, integration of data about known unrelated
genes (negative gold standard) could be tested for the
reduction of false positives. Other relevant improvement
is to include some different inference methods and bio-
logical data sources in the prediction gain analysis. Also,
the description about how the level of GO data affects
the gain can be another field of investigation.
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Additional file 2: USP QC dataset samples. File containing the
normalized and quantized signal into three expression levels: -1,0 and 1
(down, null and up regulated). The value 3 means not observed.
Additional file 3: Names of oligos. Name of each oligo in USP QC
dataset samples.

Additional file 4: PIP network. Protein-Protein Network obtained from
LaCount et al, 2005.

Additional file 5: PIP samples. Samples of the corresponding genes in
PIP network.
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