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Abstract

Regulation of gene expression has been shown to involve not only the binding of transcription factor at target
gene promoters but also the characterization of histone around which DNA is wrapped around. Some histone
modification, for example di-methylated histone H3 at lysine 4 (H3K4me2), has been shown to bind to promoters
and activate target genes. However, no clear pattern has been shown to predict human promoters. This paper
proposed a novel quantitative approach to characterize patterns of promoter regions and predict novel and
alternative promoters. We utilized high-throughput data generated using chromatin immunoprecipitation methods
followed by massively parallel sequencing (ChIP-seq) technology on RNA Polymerase II (Pol-II) and H3K4me2.
Common patterns of promoter regions are modeled using a mixture model involving double-exponential and
uniform distributions. The fitted model obtained were then used to search for regions displaying similar patterns
over the entire genome to find novel and alternative promoters. Regions with high correlations with the common
patterns are identified as putative novel promoters. We used this proposed algorithm, RNA-seq data and several
transcripts databases to find alternative promoters in MCF7 (normal breast cancer) cell line. We found 7,235 high-
confidence regions that display the identified promoter patterns. Of these, 4,167 regions (58%) can be mapped to
RefSeq regions. 2,444 regions are in a gene body or overlap with transcripts (non-coding RNAs, ESTs, and
transcripts that are predicted by RNA-seq data). Some of these maybe potential alternative promoters. We also
found 193 regions that map to enhancer regions (represented by androgen and estrogen receptor binding sites)
and other regulatory regions such as CTCF (CCCTC binding factor) and CpG island. Around 5% (431 regions) of
these correlated regions do not overlap with any transcripts or regulatory regions suggesting that these might be
potential new promoters or markers for other annotation which are currently undiscovered.

Background
Multicellular organism consists of hundreds of different
cell types. A cell typically expresses only a fraction of its
genes. Each type of cells become different from others
because they activate different sets of genes whose activ-
ities turn on and off various biological processes. The pro-
cess in which a cell determines which genes it will express
and when is called gene regulation. Because of the multi-
tude of cell types, the regulation of gene expression in

complex genomes, such as the human genome, is known
to be an extremely complicated process. It is now well
accepted that apart from sequence polymorphism and var-
iations, gene regulation in human plays an important role
in many disease onset and progression. By matching the
gene expression profiles to those of known tumors,
researchers can type cancer cells of unknown tissue origin.
As such, understanding the mechanism governing regula-
tion of genes is very crucial. For many genes, their expres-
sion levels are controlled by attachment of specific
proteins known as transcription factors to locations on the
DNA to activate or suppress expression of the target
genes. The location where transcription factor binds to is
known as promoter region. Recent discoveries show that
regulation of gene expression not only involve the binding
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of transcription factors in target gene promoters but it also
depends on the characterization of the epigenetic events
such as histone marks around which DNA is wrapped
around [1-3]. Certain histone modification, for example
di-methylated histone H3 at lysine 4 (H3K4me2) has been
suggested to relax the nucleosome packing, allowing
nuclear factors to bind into promoter region and activate
gene [1]. Specific chromatin signatures were also reported
to be present at gene promoters [4]. Thus, characterization
of histone modifications at promoter regions fundamen-
tally contributes toward deciphering of gene expression
mechanism. To complicate the process even further, more
than half of the human genes has been known to have
multiple promoters. Genes that display complex transcrip-
tion regulation in different cellular conditions or develop-
mental stages have been shown to utilize alternative
promoters [5]. Therefore, predicting all these gene promo-
ters including their alternatives are deemed to be impor-
tant in understanding gene regulation mechanism.
With the rapid availability of high-throughput technol-

ogies such as chromatin immunoprecipitation followed
by next-generation sequencing (ChIP-seq), scientists can
now observe the binding patterns of the protein of inter-
est in the entire genome. Genome-wide identification of
promoter is commonly done using antibody against RNA
polymerase II (enzyme that are required for gene tran-
scription) [6]. However, due to non-specific binding of
Pol-II over the genome and the specific characteristics of
antibody against Pol-II, it is hard to predict promoters
based on Pol-II enrichment alone. The dynamics of tran-
scribing Pol-II throughout the gene body also makes it
hard to pinpoint the exact promoter region. Furthermore,
there has been evidence showing that although Pol-II
may accumulate at a promoter, the gene is not tran-
scribed. A phenomenon known as RNA Pol-II stalling,
which has been shown to occur in Drosophila [7], may
also happen in human.
Thus, development of a better promoter identification

algorithm is needed to account for these different situa-
tions. It is conceivable that promoter regions display
unique combination of chromatin and Pol-II patterns.
Condition such as Pol-II stalling may display different pat-
terns than those of transcribing genes. As an attempt to
address this problem, in this article, we propose a compu-
tational method using a finite mixture model to identify
promoter signature profiles based on both Pol-II and
H3K4me2 binding patterns. We choose to use H3K4me2
pattern because H3K4 di-methylation has been shown to
promote transcriptional activities of genes [1]. We scan
the genome to find regions which display the identified
promoter signatures using the fitted model. We call these
regions putative promoters. Aided by RNA-seq data com-
bined with several transcripts databases, we annotate these
putative promoters as predicted alternative and novel

promoters. We have also found similar patterns exist in
regions that have been associated with gene regulatory
sites besides promoters such as ER/AR (Estrogen and
Androgen Receptor) binding sites. These two proteins
have been known to bind to non-promoter regions known
as enhancers [8,9]. We have also found genomic regions
displaying these Pol-II and H3K4me2 patterns that
mapped exclusively to other regulatory regions such as
CTCF (CCCTC binding factor) and CpG island.

Methods
Data sets and genome annotations
Two ChIP-seq data sets are used to identify patterns of
promoters, RNA Pol-II ChIP-seq data and H3K4me2
ChIP-seq data, both from MCF7 (normal breast cancer
cell line). RNA-seq (RNA sequencing) data also from
MCF7 are used to identify transcripts in the breast cancer
cell line including alternative splicing. Genome annota-
tion databases such as non-coding RNA (ie. snoRNA and
miRNA), ESTs (Expressed Sequence Tags), CpG island
and CTCF (CCCTC binding factor) tracks are down-
loaded from UCSC genome browser. ER/AR (Estrogen
and Androgen Receptor) binding sites are retrieved from
HRTBLDb (Hormone Receptor Target Binding Loci)
database [10].

Methods
In the 1st step, we characterize Pol-II binding and chroma-
tin mark patterns by performing k-means clustering
around the gene transcription starting site (TSS) of known
genes. This is then followed in the second step of fitting a
double-exponential and uniform mixture model. At the
end of the two step procedure the patterns identified will
be used to scan the genome to identify putative promoter
regions (see Figure 1).
Specifically, we consider the H3K4me2 and Pol-II ChIP-

seq profiles along 10-kb regions surrounding well-anno-
tated TSS in known genes using RefSeq database. Each
10-kb (with 5-kb on each side of TSS) regions contains
read counts in bins of size 100-bp. In pre-processing step,
we smooth the data using a moving average filter replacing
each count in each bin with the average of three consecu-
tive bins. Next, in order to prevent interference from
neighboring genes, we exclude genes with TSSs within
10-kb of each other. Furthermore, to prevent degenerate
clustering, we remove regions with low binding intensities
and low variance. Low binding intensities regions are
regions with maximum read counts less than 4 among the
100-bp bins over the 10-kb regions. Low variance regions
are defined as regions with variance less than 10th percen-
tile over all 10-kb regions. These filtering criteria result in
a dataset consisting a total of 9,859 10-kb regions.
K-means clustering using correlation as distance measure-
ment is then performed to find sets of common patterns.
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The optimal number of cluster is determined using silhou-
ette values [11]. Larger value of silhouette indicates greater
similarity of these patterns within a cluster compared to
between clusters. In our application, we found clustering
these 9,859 regions into 4 common patterns yields the
highest silhouette. Next, we modeled the characteristic sig-
nature of Pol-II and H3K4me2 within each cluster using a
double-exponential and uniform mixture. The double
exponential components will be able to capture both
unimodal and bimodal distribution. This is essential
because Pol-II and H3K4me2 peaks has been shown to be
unimodal and bimodal, respectively. The uniform compo-
nent will be used to model the tails of Pol-II profiles.
Let y1(t) and y2(t) be the read counts of Pol-II and

H3K4me2 ChIP-seq in the 10-kb region around TSS of a
gene where t is an indicator variables denoting the bin
index, respectively. If we quantify the data into bins of
size = 100-bp, then t Î T = {-50,- 49, ..., 49, 50}. Let R(t)
be the chromosomal region relative to the TSS of the
gene. Thus, for t = -50, R(t) denotes region 4901-bp to

5000-bp upstream of TSS. The mixture model for each
profile (i.e. Pol-II and H3K4me2) can be defined as follows:

fk(t) = π1
e
−

∣∣∣ t−μ1
β1

∣∣∣

2β1
+ π2

e
−

∣∣∣ t−μ2
β2

∣∣∣

2β2
+ π3

1
b − a

∀t ∈ T (1)

where μ and b are the location and scale parameters
of the double exponential distribution, respectively. π is
the mixing proportion (i.e.

3∑
i=1

πi = 1), a and b are the
parameters of the uniform distribution. k = 1, 2 for fit-
ting Pol-II and H3K4me2 ChIP-seq profiles respectively.
Each model is fitted by minimizing the Kullback-Leibler
distance [12] to fk(t) as follows:

min
∑

t

yk(t)log
yk(t)
fk(t)

(2)

using generalized pattern search (GPS) algorithm [13].
GPS method is a derivatives-free optimization algorithm
using positive spanning directions. The GPS algorithm

Figure 1 Analysis Workflow. Workflow of the analysis done to identify chromatin and histone characteristics of promoters and to find potential
novel promoters and other markers.
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is run until one of the following criteria is satisfied: (1)
the number of function evaluations reaches 20,000; (2)
maximum number of iterations the algorithm performs
reaches 2000; (3) the minimum distance between the
current points at two consecutive iteration is less than
10-6, (4) After a successful poll, the difference between
the function value at the previous best point and the
function value at the current best point is less than 10-6.
The search algorithm is repeated 16 times with different
initial points. Using this strategy, we obtained four dis-
tinct models of Pol-II and H3K4me2 signatures repre-
senting the majority of the patterns exist at promoter
region of known genes. Each model is a mixture of dou-
ble exponential and uniform components. Figure 2
shows the 4 distinct patterns modeled by the finite
mixture.
Finally, we scan the whole genome using the fitted mod-

els to find regions that display these Pol-II and H3K4me2
patterns (see Figure 3). We concatenate the fitted Pol-II
and H3K4me2 models then use a sliding window of 10-kb
moving 1-bp at a time to find regions with the Pol-II and
H3K4me2 fitted model. Once genome-wide correlation
with these models have been obtained, a threshold for
these values must be established in order to classify
regions as putative promoters which display these promo-
ter signatures. A null distribution of the test statistics (cor-
relation) are approximated by randomly permuting the
read counts of the H3K4me2 and Pol-II regions and calcu-
lating their correlation with the fitted model. Regions with
high correlation coefficients are defined as regions that
have correlation greater than a threshold z. The threshold
z is chosen as the 95th percentile of the asymptotic distri-
bution of the test statistics. These genomic locations

which display these specific patterns of Pol-II and
H3K4me2 are designated as potential promoters. For brev-
ity, we will refer to the fitted Pol-II and H3K4me2 patterns
as promoter patterns. We further annotate these corre-
lated regions as known promoters and predicted alterna-
tive promoters using RNA-seq data in MCF7 along with
transcripts databases such as ESTs, snoRNA/miRNA
downloaded from USCS genome browser.

Results
Scanning the entire genomic region for promoter pat-
terns, we found 7,235 highly correlated regions. These
are the regions that show high similarity with any of the
four patterns modeled by the double-exponential and
uniform mixture models. Around 58% (4167) of these
matched regions overlapped with known promoter
regions (1-kb upstream and downstream of the RefSeq
TSSs). Although these regions only represent 22% of the
entire known promoters, it is not surprising as it has
been known that not all genes are expressed at the same
time. Hence, these promoter patterns may represent
those that are currently active in the breast cancer model
MCF7 cell line. Indeed as shown in Figure 4, genes
whose promoters display these patterns have a signifi-
cantly higher expression values compared to genes which
do not (Mann-Whitney test, p-value <10-16). Genes
expression are determined using FPKM (Fragments Per
Kilobase of transcript per Million mapped reads) values
derived from RNA-seq data on MCF7 using CuffLink
[14].
For the rest of highly correlated regions (3,068) which

cannot be mapped to known genes, we found 1,104 of
them falls inside known gene bodies. Some of them are

Figure 2 Fitted Pol II and H3K4me2 patterns. The 4 distinct profiles of Pol II and H3K4me2 fitted by the double exponential uniform mixture
model.
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known isoforms. For example gene TANK on chromo-
some 2 has been found to have isoforms. Interestingly, as
shown in Figure 5A, the transcription starting site for its
isoform coincide with the location where the promoter
pattern is identified. Alternative promoter of gene

MAT2B also display the promoter pattern (see Figure
5B). This is evidence of the existence of the promoter
pattern in the alternative promoter regions. On the other
hand, there are regions showing the promoter pattern
which do not overlap with any known isoform. Some of
such regions overlap with exons which indicate that
these region are very likely be an unknown alternative
promoters (see Figure 5C).
For the rest of correlated regions (1,964), we went to

find whether these regions can be associated with any
transcripts. In order to do this we first find whether
there is overlap between these correlated regions and
non-coding RNA tracks (i.e. snoRNA and miRNA) from
UCSC genome browser as the RNA-seq protocol does
not yield data for small RNAs. We found only 6 regions
overlap with the location of non-coding RNA in human
genome. One example of this region is shown in Figure
6A. Next, we try to find whether the rest of the regions
(1,958) have an overlap with human transcripts listed in
the expressed sequence tags (EST) database (from
UCSC genome browser). The human ESTs are single-
read sequences that usually represent fragments of tran-
scribed genes. We found 1,330 regions that overlap with
ESTs. An example of this region is shown in Figure 6B.
We have also used RNA-seq data on MCF7 to find tran-
scripts of new (undiscovered) genes. RNA-seq data are
processed using CuffLinks [14] to assemble transcripts.
We found four regions which cannot be mapped to
other transcripts but are found to be in the proximity of
transcripts detected using RNA-seq data. Example of
this region is shown in Figure 6C. Detected transcript

Figure 3 Schematic of the scanning process to find regions with promoter patterns. Scan genome using the fitted models to find
correlated regions. Gray area (top) is the ChIP-seq data of Pol-II and gray area (bottom) is the ChIP-seq data of H3K4me2. Red curve (top, red-
solid-curve) is the double exponential-uniform model fitted to the Pol-II patterns and blue curve (bottom, blue-dot-curve) is the double
exponential-uniform model fitted to the H3K4me2 patterns. Correlated regions are identified as region which have significantly high correlation
coefficient with both Pol-II and H3K4me2 models (curves).

Figure 4 Genes with promoter patterns have higher expression
values. Genes whose promoter regions display the Pol-II and
H3K4me2 patterns have significantly higher expression value than
genes which do not have the same promoter patterns (Mann-
Whitney test, p-value < 10-16).
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image is generated using Integrative Genomics Viewer
(IGV) [15]. An overlap with these transcripts is defined
as any base pair overlap between the 2-kb area sur-
rounding the center of correlated regions with the start-
ing and end location of the transcripts. A total of 1,340
regions (68%) out of 1,958 region that cannot be
mapped to known promoters and their gene body are
found to be overlapped with transcripts annotated as

non-coding RNAs, ESTs and also those that are detected
by RNA-seq. We annotate these 1,340 as predicted
alternative promoters as they are shown to be over-
lapped with some type of transcripts either non-coding
or predicted using RNA-seq data.
Recently there has been new discovery on the pre-

sence of RNA polymerase II at enhancer regions. These
regions which are found to affect genes far away can

Figure 5 Promoter patterns are present in the gene bodies. Exons (black bar) and transcriptional orientation (arrow) are indicated at the
bottom of each panel. The location of the longest isoform is indicated at the top of each panel. (A) Promoter pattern exists at the starting site
of isoform of TANK gene on chromosome 2. (B) Promoter pattern also exists at the starting site of isoform of MAT2B gene on chromosome 5.
(C) Promoter pattern overlap with exon of gene ENPP3.
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Figure 6 Regions displaying promoter patterns that overlap with transcripts or other regulatory regions. (A) Region that overlap with
non-coding RNA (hsa-mir-375) on chromosome 2. (B) Region that overlap with 7 human ESTs. (C) Region that is overlap with detected transcript
in RNA-seq data. (D) Region that is overlap with ER binding site. Examples of regions displaying promoter patterns. (E) Region that overlap with
CpG island (F) Region that overlap with CTCF. Regions are found hierarchically. Hence region that overlap with CTCF do not have an overlap
with any other annotation.
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manufactured their own RNA molecules. Thus, we try
to find whether the same promoter pattern can be
found at enhancer regions. We used the binding sites of
ER (Estrogen Receptor) and AR (Androgen Receptor) as
representative of the enhancer regions since both of
these protein have been shown to bind at distal enhan-
cer region. Overlapping unmapped region with ER bind-
ing sites, we found 120 regions with similar promoter
patterns. This region is shown in Figure 6D. However,
after mapping ER binding sites, we did not find any
overlap with AR binding sites.
We found 73 out of the rest of the correlated region

(504) can be further mapped to other regulatory regions
such as CpG island and CCCTC binding factor (CTCF).
We used CpG island tracks downloaded from UCSC gen-
ome browser to annotate CpG island location. For CTCF,
we used the CTCF binding sites that are present in three
different cell lines (Jurkat, CD4 and HeLa) since it has
been shown that these sites are conserved [16]. Example
of regions mapped to CpG island and CTCF binding sites
are shown in Figure 6E and 6F, respectively. Finally, we
ended up with 431 region that display the promoter pat-
tern which cannot be mapped to neither known genes,
transcripts nor any regulatory regions. Example of this
region is shown in Figure 7 (right panel). Ultimately,
these unmapped regions may very much be potential
new promoters or markers for other annotation that
needs further investigation. Figure 8 shows the summary

of the overlaps which are done hierarchically from top to
bottom. The number of regions that independently
matched to each genome annotation is summarized on
Table 1.
We investigated the overlap of these correlated regions

with more than one genome annotation (Figure 9, image
is generated using Venny [17]). We found that almost all
of the correlated regions that overlap with RNA tran-
scripts also overlap with EST (99%,2703 out of 2707).
There are about 26% of correlated regions which exclu-
sively map to ESTs and only 3 map exclusively to TSS of
RefSeq genes. There are still about 5% (431) of the corre-
lated that do not overlap with known genes, transcripts or
other regulatory regions, they may still represent potential
novel promoters. For example, Figure 7 (left panel) shows
an example of a putative promoter region that overlap
with a known gene called RPS6KB1 on chromosome 17.
The Pol-II and H3K4me2 patterns are very prominent
around the TSS of this gene with the combination of
unimodal Pol-II peak and the bimodal H3K4me2 peak.
Figure 7 (right panel) shows an example of a putative
novel promoter region that does not overlap with any of
the above genome annotations. Although, the pattern on
the right also display unimodal Pol-II peak and bimodal
H3K4me2 peak just like the known promoter pattern on
the left, it does not have tails in the transcribed region. As
we have discussed earlier, this phenomenon could be due
to Pol-II stalling [7].

Figure 7 Example of regions with Pol-II (top-red) and H3K4me2 (bottom-blue) patterns. Left panel, the region predicted has an overlap
with a RefSeq gene called RPS6KB1. Transcriptional orientation (arrow) is indicated at the bottom. Right panel, a potential promoter is predicted
at chromosome 14 at around 88,549,400. However no overlap is found with neither RefSeq, transcripts or other regulatory regions.
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Discussion
In this paper, we develop a novel algorithm based on
finite mixture model to predict promoter regions using
ChIP-seq profiles. We are interested in identifying tran-
scriptionally active promoters clustering all TSSs regions.
We use the term promoter to describe these regions
throughout the paper. We identified putative promoter
regions based on their statistical significance. Our algo-
rithm takes advantage of the new sequencing technology
which allow one to observe the binding patterns by mod-
eling the shape of these promoter patterns instead of
simply categorizing binding sites as binary (present/
absence) [18]. Four common models representing shapes
of promoter patterns are obtained by K-means clustering

Figure 8 Summary of overlap of correlated regions with genome annotation, transcripts and other regulatory regions. Number of
regions displaying promoter patterns that are found to be overlapping with genome annotation, transcripts or other regulatory regions. The
search for regions that overlap was done hierarchically. Hence at the end, the unmapped regions are region that do no overlap with any of the
genome annotation, transcripts or other regulatory regions.

Table 1 Number of correlated regions that overlap with
each genome annotation or transcripts including those
that are detected using RNA-seq

Annotations Number of overlaps

RefSeq 4167

Gene body 1177

ncRNAs 21

ESTs 6586

RNA-seq 2707

ER 800

AR 224

CpG island 4838

CTCF 519
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algorithm. Although these patterns appear to be similar,
the shift in the location of peaks may be meaningful. For
example, the shift may indicate genes that are poised to
be transcribed but not yet active. Furthermore, the dis-
tinctive patterns may prove to be important in differen-
tiating different functions or different behavior of these
promoters. More detailed investigation is needed in order
to draw more clear picture of the gene expression
mechanism. Nevertheless, the proposed algorithm may
help with the discovery of novel promoters (including
alternative promoters) and aid in the ongoing annotation
of promoters from different ChIP-seq experiments.
Finally, the proposed algorithm may also be extended to
identify enhancers elements important in distal gene reg-
ulation. For instance, in 6C, the combined Pol-II and
H3K4me2 peaks mapped to a potential enhancer region
with detectable transcripts in the RNA-seq experiment.
These short transcripts are likely to be the recently dis-
covered eRNA which are short RNA transcribed from
enhancer regions even though its function is still not
clear [19]. These findings will lead to new insight on the
epigenetic mechanisms on transcription regulation with
applications in cancers.
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