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Abstract

optimal cluster number is still problematic.

the parameters.

Background: DNA methylation occurs in the context of a CpG dinucleotide. It is an important epigenetic
modification, which can be inherited through cell division. The two major types of methylation include
hypomethylation and hypermethylation. Unique methylation patterns have been shown to exist in diseases
including various types of cancer. DNA methylation analysis promises to become a powerful tool in cancer
diagnosis, treatment and prognostication. Large-scale methylation arrays are now available for studying
methylation genome-wide. The lllumina methylation platform simultaneously measures cytosine methylation at
more than 1500 CpG sites associated with over 800 cancer-related genes. Cluster analysis is often used to identify
DNA methylation subgroups for prognosis and diagnosis. However, due to the unique non-Gaussian characteristics,
traditional clustering methods may not be appropriate for DNA and methylation data, and the determination of

Method: A Dirichlet process beta mixture model (DPBMM) is proposed that models the DNA methylation
expressions as an infinite number of beta mixture distribution. The model allows automatic learning of the relevant
parameters such as the cluster mixing proportion, the parameters of beta distribution for each cluster, and
especially the number of potential clusters. Since the model is high dimensional and analytically intractable, we
proposed a Gibbs sampling “no-gaps” solution for computing the posterior distributions, hence the estimates of

Result: The proposed algorithm was tested on simulated data as well as methylation data from 55 Glioblastoma
multiform (GBM) brain tissue samples. To reduce the computational burden due to the high data dimensionality, a
dimension reduction method is adopted. The two GBM clusters yielded by DPBMM are based on data of different
number of loci (P-value < 0.1), while hierarchical clustering cannot yield statistically significant clusters.

Background

DNA methylation profiles has become an alternative
molecular footprint for classification. It occurs in the con-
text of a CpG dinucleotide. It is an important epigenetic
modification, which can be inherited through cell division.
In this chemical modification of the cytosine nucleotide,
the 5-carbon position is enzymatically modified by the
addition of a methyl group such that cytosines can occur
in a methylated or unmethylated state. CpG islands are
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usually not methylated in normal tissues but frequently
become hypermethylated in cancer [1]. This hypermethy-
lation is associated with gene silencing [2] and plays an
important role in the inactivation of tumor suppressor
genes. Most CpGs or CpG regions have been found to
have a bimodal distribution of methylation profiles, either
hypomethylated or hypermethylated [3]. Unique methyla-
tion patterns have been shown to exist in diseases includ-
ing various types of cancer [4]. DNA methylation analysis
promises to become a powerful tool in cancer diagnosis,
with possible applications to the choice of treatment and
prognostication. The high throughput methylation profil-
ing technology has been developed to survey methylation
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status of more than 1500 CpG sites for a large collection
of cancer genes and been specifically targeting. Studying
how the methylation profiles can be used to distinguish
different subtypes of the tumor has been a focus in current
cancer research. But most existing algorithms working on
methylation data are from sequence level. The exact levels
of methylation expression are not fully considered yet.

To this end, clustering analysis is often used to identify
methylation subgroups that are distinct from one another
in data [5,6]. However, the DNA methylation data presents
unique challenges. First, it is not appropriate to cluster
DNA methylation expressions using traditional clustering
methods. The traditional k-means clustering algorithms
are based on Gaussian Mixture Model (GMM) assump-
tions. In GMM, the individual data points are assumed to
follow multivariate Gaussian distribution and thus the dis-
tance between two points can be evaluated by Euclidean
distance conveniently. However, since “beta” values from
DNA methylation array represent the percentage of the
methylated alleles and are between 0[1], traditional GMM
is no longer appropriate. Instead, a mixture of the beta dis-
tribution [7,8] would be a more accurate model. Second, a
model selection process is often needed in clustering to
determine the number of clusters, making the clustering
analysis more complicated. A predefined number of clus-
ters (or model) is required in the mixture distribution
based methods (such as k-means). Since different number
of clusters will yield different clustering results, a model
selection process is desirable to determine the best num-
ber of clusters. The model selection is very different pro-
blem, whose optimal solution is of exponential complexity.
The popular suboptimal solutions have been proposed
that include minimum description length (MDL) and
Bayesian information criterion (BIC). Although computa-
tionally efficient, these methods would fail when clusters
are not well separated. The recent proposed nonpara-
metric Bayesian methods including Dirichlet process (DP)
provide an avenue that can lead to a better solution.

In a response to the aforementioned limitations, we
proposed here a nonparametric Dirichlet process beta
mixture model (DPBMM) method for clustering DNA
methylation expression profiles produced by I[llumina
Infinium Beadchip. DPBMM makes use of Dirichlet pro-
cess mixture to place a prior [9] on cluster assignment,
thus enables automatic determination of the optimal
number of clusters. To perform the analytical intractable
learning, an algorithm based on Gibbs sampling and “no-
gap” sampling is developed to effectively infer all the rele-
vant variables. The proposed DPBMM method builds an
infinite beta mixture model to describe DNA methylation
data, which is different from the finite beta mixture
model in [8]. We present a simulation study comparing
its properties to RPMM (Recursively partitioned mixture
model) employing BIC (Bayesian information criterior)
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in [8]. The results demonstrated the better performance
of our proposed method. Finally, we applied the DPBMM
to the methylation array obtained from 55 Glioblastoma
Multiform (GBM) brain tissue samples.

Methods
Problem formulation
Model DNA methylation profiles with beta mixture
distribution
For a two-color hybridization based array such as Illumina
Infinium array, the measurements are associated with the
percentage of the methylated alleles, which is called the
“beta” values because it can be described by a mixture of
beta distributions [7,10]. Since the distribution of “beta”
values shows bimodalities [11], the beta distribution com-
ponent in the mixture model should be convex, which
means the beta distribution component should be
equipped with large parameters, shown in Figure 1.
Consider the problem of clustering #» independent
DNA methylation samples, let X = {X;, X5, ..., X,;} be the
DNA methylation expressions for n samples. For each
sample i, X; = {x;1, X2, ..., x;1} be a vector of L continuous
outcomes falling between zero and one. Suppose there
exists a total K clusters and sample i belongs to cluster
class ¢; € {1, .., K}. Conditional on class membership say
k, each outcome x; could be viewed as an independent
identically distributed variable from a beta distribution
with Oy and ﬁkl

e_l Rl —
x?;u (1 _ xil)ﬁ” 1
B(awl, Br)

where B(«, 8) =f01 x*~1(1 —x)f'dx stands for the
Beta function. Then, DNA methylation sample X; can be
modeled by (2).

fCealowr, B, ci = k) = (1)

L Dtkz—l(l _xil)ﬂszl

K
X
X,[0) = ' il
p(Xil6) ;”’H B(e, Bui)

I=1

2)

where 6; = {a, By, VI}. With the limitation of large para-
meters for beta distribution component, oy, >1 and By, >1.
Note that due to clustering in samples, §; and 6; for i = [
may be equal, 7;s represent the cluster proportion and
Zf::l m, = 1. Now, in reality, the total cluster number K is
not known a priori. We discuss next a model based on
Dirichlet process to address this difficulty.
Dirichlet process mixture model
The Dirichlet process is an nonparametric extension of the
original Dirichlet distribution. Let x; be a random sample
from a distribution f with parameters ;. In a Bayesian for-
mulation, the model for parameter §; can be defined as

xil0; ~ f(6:)

3
0ilG ~ G ®)
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Figure 1 Examples of beta distributions. Beta densities with large hyperparameters (& > 1, § > 1) are unimodal.

where G is the prior distribution of ;. It is not always
realistic to assume that G is of a known form and the

nonparametric Bayesian models including the Dirichlet
process (DP) is proposed to address this problem. Now,
instead of defining a parametric form for G, G is
assumed to be a draw from a Dirichlet process with a
base distribution Gy and a precision parameter 7 [12].
The model for the Bayesian estimation is also built in

Figure 2 following the principles of graphical models. It
can also be written as (4) with a DP prior.

Xilo: ~ f(6:)

6ilG ~ G (4)
G|T, GO ~ DP('L', Go)

where G is such that E[G] = G, and has a parametric
form, 7 measures the strength of belief in Gy. The DP of
mixtures (DPM) are proposed to model the clustering
effect in data. Compared with other clustering models,
DPM is very attractive because it allows the cluster
number K to be a priori « and learned from the data.

To capture the clustering natural of DNA methylation
samples, a beta mixture model with infinite classes can
be built with DPM. Let 6; = {a;, B} be the set of para-
meters for each sample and note that some of them
may be equal. In DPM models, each 6; is marginally
sampled from Gy, and with positive probability some of
the 0; are identical due to the discreteness of the ran-
dom measure G. Therefore the new value of 6; can

either be one of the 6/s(I # i), or 6; could be a new draw

from Gy. Let K in (2) be «, we assume a DPBMM for
DNA methylation array.

Inference

Let @ = {®;, D, ..., D} denote the set of distinct 6;s,
where K is the number of distinct elements of 4, ..., 9,,,.
Let s = {sy, ..., S,,,; denote cluster assignment vector, that
means, s; = [ if and only if §; = ¢;. Then 6 =1{0;:i =1, ..,
m} can be reparameterized as {@1, ..., Qg S1, .- Sp). Let n, i
= 1, .., K be the number of elements s; equal to i. Let sub-

script “-i stands for all the variables except the i-th one.

The goal from a Bayesian perspective is to calculate the



Zhang et al. BMC Genomics 2012, 13(Suppl 6):520 Page 4 of 9
http://www.biomedcentral.com/1471-2164/13/56/520
N
T S 7 (Y;
O T

.

)’ i \
®

Figure 2 Graphical model. The model for the Bayesian estimation is built following the principles of graphical model.

posterior distribution of the known parameters {0, 7, }.
However, the analytical expression is intractable and we
instead develop a Gibbs sampling solution to obtain ran-
dom samples from the posterior distribution. The key for
Gibbs sampling is to derive the conditional posterior dis-
tributions of the unknown parameters. Due to the con-
strains on o and f3, we first re-parameterize o as L, by o =
exp(|Ly|) and B as Lg by B = exp(|Lg|). Thus, we only need
to sample in the range of (-eo, ) for L, and Lg. Then the
transformed o >1 and 8 >1. Thus, we can specify G, as
Go(a, B) = N(0,07)N(0,05), where N(u,o?) repre-
sents the Gaussian distribution with mean ¢ and variance
0” [13]. The prior distribution of the cluster proportion 7
is the Dirichlet distribution

7 ~ Dir(n; + /K, ..., ng + t/K). (5)

There are some useful expression of a Dirichlet pro-
cess, such as Chinese Restaurant Process(CRP) [14,15],
Stick-breaking construction [16], Polya Urn formulation
[17,18], etc... Blackwell showed that Dirichlet process are
discrete as they consist of countably infinite point prob-
ability masses [19]. Escobar and West [20] first showed
that Markov Chain Monte Carlo (MCMC) techniques,
specifically Gibbs sampling, could be used for posterior
density estimation if the Blackwell-MacQueen Polya Urn
formulation of Dirichlet process is used. Based on the
generalized Polya urn scheme, the conditional prior dis-
tributions s;|sy, ..., s;.1, i = 1, ..., n and 6;]6_; have the fol-
lowing forms as (6) and (7).

P(S] = 1) =1
P(si = I|s1, ..., si-1) = (:11'11)'

P(S,’ = ki + 1|S], vy Si—l) =

I=1,..k (6)

(r+:':—1)

and,

61 ~ Go(61)

7)

K
T 1 .
6i161...6i—1 ~ i IGO(Q,-) + ;nlr vio 18¢,(9i), fori > 1.

Then the conditional posterior distribution for sam-
pling 6; has the form

n—1
p6:16-i, 51, X) o< 4i0Gi(6:) + Y diada (6)
=114
< 8)
= Gi0Gi(0:) + ) n_ipdi1d,(6)).

I=1

Thus the conditional posterior distribution for sam-
pling ®; has the form

p(cbi'(b—ir S, Xr 7T)
X P(Xinzsyy=s; |, 8, T )p(Pi| Py, 5, 77)

o —1 (1 _ xml)ﬂkz—l

L
_ xml
=Co 1_[ 1_[ B(ai, Bur)

M:Sy=s; I=1

It is obvious that G, is not conjugate with f; so the
integral g;o cannot be evaluated analytically and drawing
samples from G; is also extremely challenging [21]. To
overcome the difficulty, we adopt the “no-gaps” algo-
rithm proposed in [22] to enable sampling from (8).

As to 7, it is useful to choose a weakly informative
prior in many applications. If 7 is assigned a gamma
prior, its posterior becomes a simple function of K, then
samples are easily drawn via an auxiliary variable
method. For the convenience of sampling, we adopt the
7 ~ Gamma(a, b) as the prior [9,20].
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The final Gibbs sampling steps can be summarized by
the following steps:

Gibbs sampling for DPBMM
Iterate the following steps and for the ¢-th iteration:

1. For each sample i, re-sample s; according to (6) if
ns, > 1. In this case k; = K. If n;; = 1, then with prob-
ability 1 - 1/K leave s; unchanged. With probability
1/K rearrange s such that s; = K, then re-sample s;
according to (6). But in this case k; = K - 1.

2. For i = 1, .., K, the posterior distribution for @;
has the form as (9).

For i = K + 1, ..., n, both prior and posterior distri-
bution for @; are G,,.

3. Sample 7 following (5) with nj, = Y"1, 8(si, k).

4. Based on Step 1, we can get the value of K, then
sample 7|K, n where © ~ Gammal(a, D).

Due to the large number of parameters, the initial values
for parameters o2 and Jé should be chosen carefully.

Results

Test on simulated data

We conducted simulations to test our proposed method.
For the first case, the simulated data set is generated
based on the model described in (2) with K = 4. The
simulated dataset consists of 100 samples, each having
200 continuous response lying in the unit interval. The
occurring probability of each cluster is set to {0.2, 0.3,
0.2, 0.3}. For each cluster, parameters L,, Lg related to
beta distribution in the model are generated randomly
from Gaussian distributions with zero means and differ-
ent variances. In order to systematically evaluate the clus-
tering performance, the F metric that combines BCubed
overall precision and recall [23] was implemented as sug-
gested in [24]. Let {c} represent the real cluster label of
samples and {s} represent the cluster assignment by clus-
tering method, the correctness of the relation between
sample i and i’ is defined as Ct(i, i) based on {c} and {s}.

1 iffc=cy <> si=s7;

Cii 7) = {O otherwise. (10)

The overall precision P and recall R are defined as

R = Avgi[Avgy ., [Ct(i, )]

- (11)
p= Avgi [Avgi’ Si=Sy [Ct(l/ l/)]]

F metrics is used to evaluate the clustering result by
combining P and R metrics.

1

F(RP) = 0.5/P + (1 — 0.5)/R

(12)
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Figure 3(a) illustrates the sampled number of clusters
in each Gibbs sampling iteration for one time of
DPBMM clustering. After 300 iterations of “burn-in”
stage, the number of clusters stay at four. The uncovered
cluster proportion is {0.19, 0.31, 0.19, 0.31}. Figure 3(b-d)
show that for 2000 times of DPBMM clustering, F metric
can come to one for most times.

For our second case, we used two simulated data set
from [8]. The data set of Case I consists of 100 subjects,
which mimics the real methylation data. Each subject has
1413 continuous responses lying in the unit interval. Each
subject was a member of five classes, each cluster occur-
ring with 0.2 probability. The clusters were defined by
beta-distribution parameters for each of 1413 methylation
loci that were autosomal and passed quality-assurance,
obtained by fitting a beta model on each locus to one of
the five data sets from our normal data: adult blood, new-
born blood, placenta, lung/pleura, and everything else.
The data set of Case II considered 100 subjects from four
clusters. We compare the performance with RPMM
method proposed in [8], with the same dimension reduc-
tion method employed. We order all the loci with respect
to variance, and the / most variable loci are considered in
the clustering algorithm. Table 1 and Table 2 summarizes
the number of classes found with RPMM and with our
proposed DPBMM for both Case I and Case II. For the
cases considered, DPBMM obtained the correct K with a
priori « directly while the RPMM fitted finite mixture
models for a range of possible values and chose the correct
K by BIC statistic. The F metric vs. recall curve of J € {25,
50} loci for case I is shown in Figure 4(a). The histogram
of F metric results with J = 50 is shown in Figure 4(b). The
F metric vs. recall curve of different /€ {5, 10} loci for
Case II is shown in Figure 4(c). The histogram of F metric
results with J = 10 is shown in Figure 4(d). For the above
two cases, the more the number of loci are considered in
the clustering, the better clustering performance we can
get.

Test on real data

We then applied our proposed DPBMM clustering on the
GBM methylation microarray dataset in The Cancer
Genome Atlas (TCGA). This dataset consists of 74
patients assayed on Illumina HumanMethylation450 array.
Samples for DPBMM clustering analysis were selected to
have clinical annotations. At last, 55 patients were left for
consideration. Twenty-seven patients were alive at the
time of last follow up, whereas twenty-eight patients
experienced disease progression since last follow-up. The
median follow up time was 198 days (range, 2-953 days).
Each sample includes up to 485,577 CpG dinucleotides
spanning gene-associated elements as well as intergenic
regions. The associated detection P-value reported
together with the methylation expression data is used as a
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Figure 3 Clustering evaluation on simulation data set. The result is based on the simulated data with 4 dimensions. Figure 3(a) shows the
number of clusters k in 2000 MCMC iterations. Figure 3(b) shows the overall precision vs. overall recall for 2000 times of DPBMM. The overall
precision almost always stays at 1. Figure 3(c) shows the F metric vs. recall curve. Figure 3(d) shows the histogram of F metric results for 2000

N

(b) Clustering Evaluation for 2000 times of DPBMM

1 -IHII-H-O-

0.8 4
, —
o
0

2 0.6 1
B

T 04 i
@
o=
o

0.2 {

0 L - _—s - - —

0 0.2 04 06 0.8 1

overall recall

(d) histgram of F metric for 2000 times of DPBMM
2000

1500

1000

500

0

0 02 04 06 08 1

quality control measure of probe performance. Following
the probe excluding method in [25], the probes with
detection P-values >0.01 in >10% of the samples are
excluded from further consideration.

Since the small sample, large dimensional property of
methylation array, many loci in the data set have low var-
iance and may not contribute to clustering. it is safer
only to consider loci that change significantly [26]. Thus,
those loci with low variance across all 55 samples were
removed from the data sets which is also used by [8].

Table 1 Number of classes obtained for RPMM and
DPBMM applied to simulated data (Case I: 5 classes).

This also made the DPBMM clustering process computa-
tionally more tractable. In this paper, we only consider
Je {1, 2, .., 20} most variable loci for DPBMM clustering
method since the number of samples is only 55. The
selected top 20 variable loci are listed in Table S1 (see
Additional file 1). DPBMM yields two clusters from the
data for most J. Kaplan-Meier survival analysis are carried
out based on the clustering results, and the P-values of
Kaplan-Meier confidence for J e {1, 2, ..., 20} are shown
in Table S2 (see Additional file 2). Among these, J = 11

Table 2 Number of classes obtained for RPMM and
DPBMM applied to simulated data (Case lI: 4 classes).

Method J Median Mean SD Method J Median Mean SD
RPMM 25 8 7.7 20 RPMM 5 2 20 0.10
50 5 56 132 10 2 24 238

DPBMM 25 5 516 093 DPBMM 5 7 6.9 1.04
50 5 529 143 10 4 409 1.60
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4(d) shows the histogram of F metric results with J = 10.

Figure 4 Clustering evaluation based on different J. Figure 4(a) shows the F metric vs. recall curve of J e {25, 50} loci for case I. Figure 4(b)
shows the histogram of F metric results with J = 50. Figure 4(c) shows the F metric vs. recall curve of different J e {5, 10} loci for Case II. Figure
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gives the best P-value of 0.03. And the heatmap plot of J
= 11 is shown in Figure 5, the Kaplan-Meier overall sur-
vival curve is shown in Figure 6. When J = 11, the clus-
ters in GBM methylation array uncovered by DPBMM
are statistically significant (P-value < 0.1). We also ana-
lyzed the survival of the two clusters uncovered by hier-
archical clustering, but the clusters yielded are not
statistically significant (P-value > 0.1).

The computation time is always an issue for Gibbs sam-
pling methods. Our simulation is carried out on a Linux
based high-performance computer cluster. Each proces-
sing core is equipped with 2GB RAM. Figure 7 displays
the computation time resulting from the real data study
described before. The more loci considered for cluster-
ing, the more time the algorithm takes.

Discussion
We discuss next a few distinct features of DPBMM.
First, in accordance with the fact that “beta” values in

DNA methylation array data fall in the range of zero to
one, we assume mixtures of beta distribution for the
data. It can provide more flexible shapes, thus can
describe data of various types. This is different from tra-
ditional Gaussian mixture model based clustering meth-
ods such as K-means. Second, since most existing
methods can not determine the number of clusters
automatically, we adopted a Dirichlet process prior for
cluster assignment. Thus, we get a non-conjugate
Dirichlet process beta mixture model, whose parameters
are hard to estimate. A Gibbs sampling and “no-gap”
sampling solution is developed to overcome this diffi-
culty. This is different from traditional parametric meth-
ods, whose result also relies on a model parameter,
which is usually determined in a model selection
process.

The limitation of the proposed methods are mainly as
follows. First, the algorithm is based on Gibbs sampling,
which is somewhat a resource-heavy MCMC method,
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Figure 5 Estimated clustering structure based on DPBMM and Hierarchical clustering. 55 samples from TCGA are separated into two
clusters on the basis of lllumina methylation expression array. The samples (columns) are arranged according to the estimated clusters by
DPBMM while the locus (rows) according to hierarchical clustering.

therefore, the computation time is still heavy. Second,
the model is computationally too slow to apply to
methylation data of genome scale. We need to reduce
the dimensionality to keep DPBMM computationally

In the future, it would be interesting to develop more
effective dimension reduction method for DPBMM. It
would also be interesting to integrate the information
from different data sources such as gene expression and

affordable. copy numbers variation into one model for cluster
analysis.
P
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Figure 6 Kaplan-Meier estimate of survival analysis based on Figure 7 The computation time resulting from the real data
uncovered structure of DPBMM method (J = 11). The figure study for JL {1, 2, ..., 20}. The figure shows the computation time
shows the survival functions of the two clusters obtained based on resulting from the real data study for J e {1, 2, .., 20}. It is carried out
the top 11 variable locus (P-value = 0.03) by DPBMM, which is more on a Linux based high-performance computer cluster. Each
significant than the corresponding result of hierarchical clustering processing core is equipped with 2GB RAM. With the number of loci
(P-value = 0.51). considered for DPBMM clustering, the computation time increases.
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Conclusions

An infinite Dirichlet process beta mixture model was
proposed to unveil the latent cluster structure from Illu-
mina Infinium methylation profiles. By utilizing a
Dirichlet process prior for cluster assignment, the num-
ber of clusters is determined. A Gibbs sampling and
“no-gaps” sampling solution was developed to infer the
relevant parameters automatically. The effectiveness and
validity of the model and the proposed Gibbs sampler
were evaluated on simulated data and on real data. The
results demonstrated that DPBMM could yield the clus-
ter structure automatically with better accuracy.

Availability

MATLAB code is available at https://sites.google.com/
site/bdpmmmethy/home.

Additional material

Additional file 1: Top 20 variable loci (ranked by variance through
samples) selected from the methylation profiles of the 55 GBM
samples.

Additional file 2: The number of uncovered clusters and P-value of
overall survival analysis for J|_ {1, 2, ..., 20}. P-value is used to test the
Kaplan-Meier confidence.
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