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Abstract

Background: Multi-target therapeutics has been shown to be effective for treating complex diseases, and
currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic
outcomes. However, considering the huge number of possible ways to mix multiple drugs at different
concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing.

Results: In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU)
algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm
iteratively updates the drug combination to improve its response, where the update is made by comparing the
response of the current combination with that of a reference combination, based on which the beneficial update
direction is predicted. The reference combination is continuously updated based on the drug response values
observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness
of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and
compared it with existing algorithms.

Conclusions: Simulation results show that the ARU algorithm significantly outperforms existing stochastic search
algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug
combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU
algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm
well-suited for practical drug optimization applications.

Background
Biological networks are known to be redundant at various
levels, which makes them robust to various types of per-
turbations. As a consequence, it is generally difficult to
change their long-term dynamics by blocking a specific
gene or intervening in a specific pathway. This is one of
the reasons why monotherapy is often not very effective in
treating complex diseases, such as cancer and diabetes. In
fact, multi-target therapeutics based on combinatory drugs
are known to be much more effective, and they are com-
monly used these days for treating various diseases [1-6].

However, considering the huge number of possible ways
to mix multiple drugs, it is practically impossible to find
the optimal “drug cocktail” simply by trial and error or by
exhaustive testing. Clearly, we need a systematic way of
identifying the most effective drug cocktail, and recently,
several algorithms have been proposed to address the pro-
blem of combinatorial drug optimization [7-12].
For example, Calzolari et al. [7] developed a drug optimi-

zation algorithm based on sequential decoding algorithms
that have been traditionally used in digital communica-
tions [13,14]. In [7], it was shown that we can algorithmi-
cally identify the optimal drug combination by testing only
a relatively small number of drug combinations, compared
to exhaustive search. Unlike the approach proposed by
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Calzolari et al. [7], which was deterministic, Wong et al. [9]
proposed a different approach based on a stochastic search
algorithm, called the Gur Game algorithm [15,16]. In this
work [9], they formed a closed-loop optimization frame-
work, in which the Gur Game algorithm was used to pre-
dict an updated drug combination that is likely to improve
the current drug response, and the drug combination is
iteratively updated until the response is maximized. It was
shown that this closed-loop optimization method can
quickly identify potent drug combinations. More recently,
another stochastic search algorithm was proposed in [11]
that addresses the limitations of the Gur Game algorithm,
thereby further improving the performance of the closed-
loop optimization approach originally proposed in [9].
In this paper, we propose a novel stochastic search algo-

rithm, called the adaptive reference update (ARU) algo-
rithm, that can significantly improve the performance of
the existing stochastic search algorithms [9,11]. The key
idea of this algorithm is to adaptively update the reference
drug combination to guide the search algorithm and help
it to make better informed guesses without requiring
extensive prior knowledge of the underlying biological net-
work. We demonstrate that the proposed ARU algorithm
outperforms existing stochastic drug optimization algo-
rithms, in terms of both efficiency, success rate, and
robustness.

Methods
Combinatorial drug optimization problem
Suppose we have N different types of drugs, where each
drug can take one of pre-specified concentrations. Our
goal is to predict the optimal drug cocktail, by mixing the
available drugs, that maximizes the overall therapeutic
effect. Let xn be the concentration of the n-th drug,
where xn can take one of Mn distinct concentrations in

the set Cn = {c1n, c2n, c3n, . . . , cMn
n } , where ckn < ck+1n for all

k. The drug cocktail is represented by an N-dimensional
vector x = (x1, x2, . . . , xN), which consists of the N drug
concentrations. Let f(x) be the normalized drug response
that quantitatively measures the effectiveness of a given
drug combination x. We assume the response has been
normalized such that 0 ≤ f (x) ≤ 1 for x ∈ X , where
X = C1 × C2 × · · · × CN is the set of all possible drug
combinations. We denote the number of all possible

drug combinations as M = |X | =
∏N

n=1
Mn. f (x) = 0

implies that the drug cocktail x is completely ineffective,
and larger f (x) implies higher efficacy. In practical appli-
cations, f (x) may be obtained by monitoring the cell
response to a drug intervention using fluorescent ima-
ging, microarrays, or sequencing techniques. Under this
setting, we aim to find the optimal drug combination x*
that maximizes the normalized drug response:

x∗ = argmax f (x)
x∈X

.

As we can see, this is a combinatorial optimization
problem, in which we have to find the optimal drug
combination out of M1 M2 . . . MN possible combina-
tions. The total number of distinct drug combinations
quickly grows as the number of drugs increases. Consid-
ering the practical cost of experimentally measuring the
normalized drug response function f (x), it is apparent
that we cannot test all drug combinations to find the
most effective one.

Stochastic search algorithms
Stochastic search algorithms [9,11] aim to efficiently
identify the potent drug combinations without exploring
the entire combinatorial solution space. The basic idea is
to randomly search through the solution space by itera-
tively updating the drug combination until an effective
combination emerges. At each step, the current drug
combination is incrementally updated towards the direc-
tion that is likely to improve the overall drug response.
The updating decision is made in a stochastic manner,
which allows the search to proceed towards directions
that are deemed to be less likely to improve the response.
This is an important characteristic of stochastic search
algorithms, which is critical for keeping the search from
being trapped in local maxima. Since a stochastic search
algorithm tries to arrive at the optimal solution (i.e., the
most effective drug combination) by performing iterative
local searches, its overall performance depends on how it
chooses the next solution state (i.e., an updated drug
combination in X , the set of all possible combinations)
from a given state (i.e., the current drug combination).
The two performance metrics of interest are: (i) the effec-
tiveness of the predicted drug combination, in terms of
how close its response is to the optimal response, and (ii)
the number of search steps that the algorithm needs to
take until an effective combination is found. Basically, we
want to predict a potent drug cocktail by testing minimal
number of drug combinations to minimize the actual
experimental cost for measuring the cell response to
combinatorial drugs. When choosing the next state, the
search algorithm has to be as parsimonious as possible,
in terms of the number of function evaluations, so that
the overall experimental cost for identifying the optimal
drug combination can be minimized. This has been one
of the main design considerations of existing stochastic
search algorithms that have been developed for combina-
torial drug optimization [9,11].
For example, the Gur Game algorithm adopted in

[9] determines how to update the drug combination
solely based on the current drug response. Suppose
xc = (xc1, x

c
2, · · · , xcN) is the current drug combination
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with a normalized drug response of f (xc). The algo-
rithm generates N random numbers rn Î [0,1], one
for each drug. Each rn is compared against the current
drug response xc = (xc1, x

c
2, · · · , xcN), which is used to

either “reward” or “penalize” the n-th drug. For exam-
ple, the drug is rewarded if f (xc) >rn. Otherwise, it is
penalized. This update process is repeated for each of
the N drugs. According to this scheme, drug combina-
tions with higher response are more likely to be
rewarded, while combinations with lower response are
more likely to be penalized. In the long run, the algo-
rithm is expected to drive the concentration of each
drug towards the one that maximizes the response.
Now, an important relevant question is what is the
right way of rewarding (or penalizing) the current
concentration of a given drug. The Gur Game algo-
rithm used in [9] uses a predetermined finite state
automaton (FSA) for this purpose. For example, let
xc = ckn ∈ Cn be the current concentration of the n-th
drug. Suppose we have f (xc) >rn, hence the current
concentration xcn of the n-th drug should be rewarded.
The FSA in [9] is designed such that the drug concen-
tration is increased further if the current concentra-
tion xcn is larger than a reference concentration crefn ,
and decreased further if xcn is smaller than crefn . More
specifically, if xcn = ckn and f(xc) >rn, then the drug con-
centration is updated as follows.

xcn =

⎧⎪⎪⎨
⎪⎪⎩

ck+1n , if xcn > crefn and k < Mn

ckn, if xcn > crefn and k = Mn

ck−1
n , if xcn < crefn and k > 1
ckn, if xcn < crefn and k = 1

(1)

The reference concentration crefn is typically chosen as
the median of the set Cn . As shown in (1), the drug
concentration remains unchanged if it cannot be
increased (or decreased) further. Now, suppose that f

(xc) <rn, and therefore the current concentration xcn = ckn
should be penalized. In this case, the concentration is
updated in the opposite direction:

xcn =
{
ck−1
n , if xcn > crefn
ck+1n , if xcn < crefn

(2)

Note that penalization moves the current drug con-

centration closer to the reference concentration crefn . As

previously discussed in [11], one of the weaknesses of
the Gur Game algorithm is that it uses a predetermined
FSA for updating (i.e., rewarding/penalizing) the drug
concentrations and does not adapt to the drug response
function at hand, which is not known in advance. As a
result, the algorithm may perform poorly unless the
drug response function f(x) is properly normalized and

the reference concentration crefn is chosen adequately for

each drug. For example, consider the one-dimensional
drug response f(x) shown in Figure 1A. As we can see,
the drug response has been over-normalized, hence f(x) <
0.5 for any allowed concentration x Î [cmin, cmax]. Since
f(x) < 0.5, a uniformly distributed random number r Î
[0,1] is more likely to be larger than f(x). This implies
that the Gur Game algorithm always tends to penalize
the current drug concentration (no matter what its value
is), which will probabilistically drive the concentration
towards cref although it is clearly not optimal. Figure 1B
shows another drug response, for which the Gur Game
algorithm will not work properly. In this example, we
have f(x) > 0.5, hence the Gur Game algorithm is always
more likely to reward the current drug concentration,
which tends to drive the concentration away from the
reference concentration cref. This will push the concen-
tration either towards cmin or cmax, both of which are
suboptimal.
The enhanced stochastic algorithm proposed in [11]

addresses this problem by making the search algorithm
adapt to a given drug response. The basic idea of this
algorithm is to make an “informed-guess” about how to
beneficially update a given drug concentration, instead
of following a predetermined update rule. Unlike the
Gur Game algorithm in [9], where all N drugs are
simultaneously updated based on the (same) current
drug response f(xc), the enhanced algorithm updates the
concentration of one drug at a time. As an example,
suppose during the last update of the n-th drug, the
drug combination has been updated as

x = (x1, · · · , · · · , xN) ⇒ x′ = (x′
1, · · · , · · · , x′

N),

where x and x′ are identical except for the concentra-

tion of the n-th drug, hence xi = x′
i(i �= n)and

xi �= x′
i(i = n) . We assume that xn and x′

n differ only by

a single concentration level, so that xn = ckn and

x′
n = ck+1n , or xn = ck+1n and x′

n = ckn , for some k. The algo-

rithm compares the two drug responses f (x) and f (x’) ,
thereby determine wether it would be more beneficial to
further increase or decrease the concentration of the
n-th drug. For example, we may have the following four
cases.

(Case - 1) xn < x′
n and f (x) < f (x′) : increasing the concentration is more beneficial

(Case - 2) xn > x′
n and f (x) > f (x′) : increasing the concentration is more beneficial

(Case - 3) xn < x′
n and f (x) > f (x′) : decreasing the concentration is more beneficial

(Case - 4) xn > x′
n and f (x) < f (x′) : decreasing the concentration is more beneficial.

(3)

The above rules allow the algorithm to adaptively
determine how to reward (or penalize) a given drug con-
centration based on the observed drug response values.
However, the decision whether to reward or penalize the
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current drug is made in a probabilistic manner. For this
purpose, we evaluate the following function

g(x, x′) =
1
2

{
1 + α · max

[
f (x), f (x′)

]}
, (4)

where a Î [0, 1] is a control parameter that adjusts
the randomness of the algorithm [11]. This g(x, x’) is
compared with a uniformly distributed random number
rn Î [0, 1]. If g(x, x’) > rn, the n-th drug is rewarded,
i.e., updated in such a way that appears to be more ben-
eficial for enhancing the drug response according to the
rules shown in (3). Otherwise, the n-th drug is pena-
lized, i.e., updated in a way that appears to be less bene-
ficial based on the past observations. It is not difficult to
see that this algorithm is always more likely to reward,
or beneficially update, a given drug. Since the algorithm
proposed in [11] adaptively determines how to update
the drug concentration based on previous observations,
it can also effectively deal with drug response functions
shown in Figures 1A and 1B, for which the Gur Game
algorithm does not perform well. Despite its merits, this
algorithm also has its own shortcomings. For example,
as the update rule for a given drug is determined only
based on the two observations that correspond to its lat-
est update, not on a longer-range trend, the algorithm
may be sensitive to small variations in the drug
response. As a result, it may not show satisfactory
search performance for drug response functions that are
similar to the one in Figure 1C. Furthermore, consider-
ing that f(x) has to be experimentally estimated, where a
certain level of measurement noise and small variations
due to a number of practical factors may not be avoid-
able, such sensitivity may adversely affect the overall
performance of the algorithm. Another weakness of the
algorithm is that it only utilizes a very small part of the
past observations without fully utilizing them. In the fol-
lowing section, we introduce a novel stochastic search
algorithm that can effectively address the aforemen-
tioned issues.

The adaptive reference update (ARU) stochastic search
algorithm
In order to make the search algorithm robust to small
variations in the observed drug response, the update
rules have to be decided based on the general trend of
the drug response change over a wide range of drug
concentration, not just based on the response change
resulting from a single-level concentration change. Based
on this motivation, we propose a novel algorithm called
the adaptive reference update (ARU) algorithm. In
this algorithm, we compare the current drug response
f(xc) with the response f(xref) of a reference drug combi-
nation xref, which is adaptively updated based on past
observations. In the beginning, xref is set to the initial
drug concentration, where we start the search process.
During the search, when the algorithm encounters a
local maximum, the current reference combination is
replaced by the corresponding drug combination. As an
example, let us consider the one-dimensional drug
response function f(x) in Figure 2. For illustration, we
consider the following hypothetical search process,
where the drug concentration is constantly updated
from left to right, starting from the lowest concentration
cmin to the highest concentration cmax. Suppose the
search begins at the concentration x = cmin. Initially the
reference concentration is also set to this initial drug
concentration xref ¬ cmin. As the search reaches the
first local maximum, the reference concentration is
updated to this local maximum solution xref ¬ xref1. As
the search continues to the right, this reference concen-
tration is used until we reach the next local maximum.
After passing the second local maximum solution xref2,
the reference point is updated to xref ¬ xref2. In a simi-
lar manner, as the search continues further to the right,
the reference point is updated to xref ¬ xref3 after pas-
sing the third local maximum point.
At each iteration, the current drug response f(xc) is

compared to the response f(xref) of the reference drug
combination, based on which the drug update rule is

Figure 1 Drug response functions. (A) A normalized drug response f(x) that is always below 0.5. (B) A normalized drug response f(x) that is
always above 0.5. (C) A drug response function with a large number of small variations.
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determined. For example, let xc = (· · · , xcn, · · · ) and
xref = (· · · , xrefn , · · · ), and assume that we want to update
the concentration of the n-th drug by comparing the
two drug response values f(xc) and f(xref). As before, we
have the following four possible cases.

(Case − 1) xcn < xrefn and f (xc) < f (xref) : increasing the concentration is more beneficial

(Case − 2) xcn > xrefn and f (xc) > f (xref) : increasing the concentration is more beneficial

(Case − 3) xcn < xrefn and f (xc) > f (xref) : decreasing the concentration is more beneficial

(Case − 4) xcn > xrefn and f (xc) < f (xref) : decreasing the concentration is more beneficial.

(5)

Conceptually, we can view the above as estimating the
“virtual” slope between two points (xcn, f (x

c)) and
(xrefn , f (xref)) as follows

f (xref) − f (xc)
xrefn − xcn

, (6)

based on which we determine how to update the con-
centration xn of the n-th drug to increase the drug
response f( x). Given the update rules in (5), the actual
update decision is made by evaluating the following
function

g(xc, xref) =
1
2

{
1 + α · max

[
f (xc), f (xref)

]}
(7)

and comparing it with a random number rn Î [0, 1]. If
g(xc, xref) >rn, the drug concentration xn is updated by a
single level, following the beneficial update direction
predicted by (5). Otherwise, the concentration is
updated in the opposite direction. As briefly mentioned
before, the parameter a Î [0, 1] controls the random-
ness of the algorithm. For example, a = 0 will make the
search process completely random, regardless of the
observed drug responses. Using a larger a means that
we are giving a larger weight to the past observations
when deciding how to update the drug concentrations.
The value of this control parameter is limited to a ≤ 1
such that g(xc, xref) ≤ 1. Also note that we always have g
(xc, xref) ≥ 0.5, which implies that at any drug update
step, the update is always more likely to take place in
accordance with the rules in (5), which have been
derived based on past observations of the drug response.
In other words, the ARU algorithm tries to effectively

Figure 2 Updating the reference point. As the search for the optimal drug concentration continues from left to right (from the lowest
concentration to the highest one), the reference concentration is updated from the initial drug concentration cmin to the local maximum points
xref1, xref2, and xref3, according to this order.
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utilize the past response data to beneficially update the
drug concentrations, and ultimately, to identify a potent
drug combination, while keeping the search still stochas-
tic. For illustration, let us again consider the drug
response function in Figure 2, where the hypothetical
search process proceeds from the lowest drug concen-
tration to the highest concentration. The black solid
arrows below the graph shows the drug update direction
that gets higher probability according to the new algo-
rithm, described above. For example, in region-A
(cmin < × < xref1), the algorithm tends to increase the
drug concentration x further, as the response f(x) is lar-
ger than f(cmin) of the initial reference concentration
(i.e., cmin). As x continues to increase and passes the
first local maximum point xref1, the reference is updated
to xref ¬ xref1. In region-B (xref1 < × < xref2), the search
algorithm tends to drive the concentration towards xref1

by decreasing the concentration. Suppose the search
continues to increase the drug concentration x beyond
xref2, the second local maximum point, despite the ten-
dency of the algorithm to decrease x back to xref1. After
passing xref2, the reference is updated to xref ¬ xref2. In
region-C, the search algorithms assigns higher probabil-
ity to the update rule that tries to bring the concentra-
tion down to xref2, since f(x) < f(xref2) in the given
region. However, once x enters region-D, where f(x) >
f(xref2), the algorithm begins to drive the drug concen-
tration x further to the right until it passes the third
local maximum point xref3. The reference concentra-
tion is updated to xref ¬ xref3, once the search con-
tinues to the right and the drug concentration x gets
larger than xref3. Since f(xref3) is larger than f(x) in
region-D (xref3 < × < cmax), the search algorithm will
tend to bring the concentration down to the current
reference concentration, namely, xref = xref3.
Choosing a local maximum solution as a reference com-

bination has a number of practical advantages. First of all,
it allows the algorithm to adjust the drug update rules
based on a long-range trend of the given drug response
function, which makes the algorithm robust to small varia-
tions in the observed response. Another advantage of
using a long-range trend is that the search process will
become also less sensitive to random fluctuations that may
exist in the observed drug response. Considering that the
drug response function f(x) has to be experimentally esti-
mated through actual biological experiments, where ran-
dom factors (e.g., measurement noise) that affect the
estimation results cannot be completely ruled out, such
robustness is critical for the algorithm to be used in practi-
cal drug optimization applications. It is also beneficial to
use the drug combination that corresponds to the most
recent local maximum response, instead of the drug com-
bination that has yielded the highest response among all
past combinations, as the reference point. This prevents

the search process from dwelling too much on past obser-
vations, while keeping it robust to variations and random
fluctuations.

Drug response functions
In order to evaluate the overall performance of the ARU
algorithm, we used the algorithm to search for the opti-
mal drug cocktail for several different drug response
functions.
Two-dimensional drug response functions For

performance assessment, we first used the four two-
dimensional drug response functions that are shown in
Figure 3. The first drug response function f2a(x1, x2)
shown in Figure 3A is the normalized HIV inhibitor
response obtained from [17], where x1 Î {0, 0.01, 0.03,
0.09, 0.27, 0.82, 2.47, 7.41, 22.22, 66.67}(nM) was consid-
ered for Maraviroc and x2 Î {0, 0.09, 0.27, 0.8, 2.41,
7.22, 21.67, 65}(nM) for ROAb14. The second drug
response f2b(x1, x2) shown in Figure 3B is the normal-
ized second De Jong function (Rosenbrock’s saddle)
[18]. We considered x1, x2 Î {c0, c1, ... , c20}, where ck =
4(k/20 - 0.5), obtained by evenly dividing the range [-2,
2] into 21 distinct values. The third drug response func-
tion f2c(x1, x2) in Figure 3C is the normalized lung can-
cer inhibition response obtained from [1], where x1 Î
{0, 1, 2, 4, 6, 8, 12, 16, 20, 22}(μM ) was considered for
Chlorpromazine and x2 Î {0, 0.25, 0.4, 0.6, 0.8, 1, 1.5, 2,
4, 6.8}(μM ) for Pentamidine. Finally, Figure 3D shows
the fourth response function f2d(x1, x2), the normalized
bacterial (S. aureus) inhibition response reported in [6].
x1 Î {0, 0.08, 0.16, 0.32, 0.63, 1.25, 2.5, 5, 10} was con-
sidered for Trimethoprim and x2 Î {0, 0.31, 0.62, 1.25,
2.5, 5, 10, 20, 40} was considered for Sulfamethoxazole.
All four drug response functions were normalized to
span the entire range [0, 1], such that the minimum
response is 0 and the maximum response is 1.
Multi-dimensional drug response functions To eval-

uate the performance for optimizing multi-drug cocktails,
we defined several hypothetical drug response functions
with up to six drugs. First, we defined two 3-dimensional
drug functions f3a(x1, x2, x3) and f3b(x1, x2, x3). The first
function is defined as

f3a(x1, x2, x3) = x21 · sin2(x2) · cos2(x3), (8)

where each of x1, x2, x3 can take one of the 11 discrete
concentrations that evenly divide the range [-2.5, 2.5].
The second function is defined as follows

f3b(x1, x2, x3) = peaks(x1, x2) · x3, (9)

using the Matlab peaks(x1, x2) function. We assume
that each drug can take one of the 11 discrete values
that evenly divide [-3, 3]. Next, we defined two 4-dimen-
sional drug functions
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f4a(x1, x2, x3, x4) = x1 · e−(x21+x
2
2+x

2
3+x

2
4) (10)

and

f4b(x1, x2, x3, x4) = cos2(0.3x1) · sin(0.3x2) · tan(0.1x3) · x4. (11)

We assume that x1 and x2 in the first function f4a(x1,
x2, x3, x4) can take one of the 11 discrete values that
evenly divide the range [-2, 2], while x3 and x4 can take
one of the 11 discrete values that evenly divide the
range [-3, 3]. For the second drug response function f4b
(x1, x2, x3, x4), we assume that each drug can take one
of the 11 distinct values that evenly divide [-3, 3]. In
addition, we also defined the following 5-dimensional
drug response functions

f5a(x1, x2, x3, x4, x5) = e−x1 · cos2(x2) · x23 ·
[
e−(x4+2)

2−(x5+3)
2
+ e−(x4−2)2−(x5−3)2

]
(12)

and

f5b(x1, x2, x3, x4, x5) =
1
2
peaks(x1, x2) · cos(0.5x3) · sin(0.5x4) · x25. (13)

For the first function f5a(x1, x2, x3, x4, x5), x1 and x2 are
allowed to take any value from the set of values obtained
by evenly dividing the range [-2, 2] into 11 discrete con-
centrations. The remaining drug concentrations (x3, x4,
and x5) can take any of the 11 concentrations that evenly
divide [-4.5, 4.5]. For the second drug response function
f5b(x1, x2, x3, x4, x5), we assume that each drug can take
one of the 11 discrete values that evenly divide [-3, 3].
Finally, we also defined two 6-dimensional drug response
functions

f6a(x1, x2, x3, x4, x5, x6) = e−0.75(x1) · (
sin2(x2) + cos(x3)

) · e−0.75(x24+x
2
5) · x6 (14)

and

f6b(x1, x2, x3, x4, x5, x6) = e−0.1(x21−x22)−0.1(x23+x
2
4) · cos2(0.2x35) · sin(0.2x36), (15)

where every drug concentration can take its value
from one of the 11 discrete concentrations that evenly
divide the range [-2.5, 2.5].

Figure 3 Two-dimensional drug response functions. (A) Inhibition of HIV. (B) Second De Jong function (Rosenbrock’s saddle). (C) Inhibition of
A549 lung carcinoma cell proliferation. (D) Inhibition of bacteria (S. aureus) proliferation.
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Results
Optimizing the combination of two drugs
We first evaluated the overall performance of the
ARU stochastic search algorithm based on four two-
dimensional drug response functions (see Methods). (i)
HIV inhibitor response f2a(x1, x2), (ii) second De Jong
function (Rosenbrock’s saddle) f2b(x1, x2), (iii) normal-
ized lung cancer inhibition response f2c(x1, x2), and (iv)
bacterial (S. aureus) inhibition response f2d(x1, x2).
These functions are shown in Figure 3. For each drug
response function, we searched for the optimal drug
response using the proposed algorithm, starting from
randomly selected drug concentrations x1 and x2. The
parameter a that controls the randomness of the search
was set to a = 1, which implies that the algorithm adap-
tively determines the search direction (i.e., how to
update the current drug concentration) by fully utilizing
the past observations. Note that setting the parameter to
a = 0 in (7) would make the search completely random
and independent of the past observations: at each step,
the concentration of a given drug will be randomly
increased or decreased with equal probability, regardless
of the update rules given in (5). In each search experi-
ment, the iterations were repeated up to two times the
total number of possible drug combinations. This
experiment was repeated 5,000 times to obtain reliable
results. For comparison, we performed similar experi-
ments using the Gur Game algorithm [9] and the sto-
chastic search algorithm proposed in [11] with a = 1.
We computed the following two performance metrics:
the success rate and the average number of unique drug
combinations that need to be tested. The first metric is
defined as the relative proportion of experiments, in
which the algorithm was able to identify a potent drug
combination whose response is within 5% of the maxi-
mum response, i.e., f(x1, x2) ≥ 0.95. The second metric
is defined as the average number of unique drug combi-
nations that have to be tested until a potent drug com-
bination is identified, in case the search is successful.
These performance assessment results are summarized
in Table 1. Note that the Gur Game algorithm has been
tested using both the simultaneous update strategy as

well as the sequential update strategy. Unlike the ARU
algorithm and the search algorithm proposed in [11],
which update one drug at a time (i.e., “sequential” drug
update), the original Gur Game algorithm adopted in
[9] updates all drugs simultaneously. However, it is also
possible to use the sequential update strategy with the
Gur Game algorithm, and we have evaluated both stra-
tegies for comparison. Table 1 shows that the proposed
ARU algorithm outperforms the existing algorithms in
terms of success rate. Furthermore, when the success
rates are comparable, the ARU algorithm can in general
identify an effective drug combination more efficiently,
as reflected in the smaller number of unique drug com-
binations that need to be tested. We can get a more
complete picture of the efficiency of the ARU algorithm
from Figure S1 and Figure S2, which respectively show
the distribution of the number of unique drug combina-
tions that need to be tested and the distribution of the
number of iterations that are needed to identify a potent
drug combination (see Additional file 1).

Optimizing multi-drug cocktails
Next, we tested the performance of the ARU algorithm
for optimizing multi-drug cocktails that consist of three
to six drugs. For this purpose, we used the eight hypothe-
tical drug response functions that were defined before
(see Methods). As in our previous experiments, for each
drug response function, we used the proposed ARU algo-
rithm (with a = 1) to search for a potent drug combina-
tion whose response is within 5% of the maximum
response (i.e., f(x) ≥ 0.95). In each search experiment, we
started from an randomly selected initial concentrations,
and continued the search up to 1,000 steps for 3 drugs,
2,000 steps for 4 drugs, 3,000 steps for 5 drugs, and 4,000
steps for 6 drugs. This experiment was repeated 5,000
times to obtain reliable performance assessment results.
The simulation results are summarized in Table 2. As
shown in this table, the proposed algorithm boasts a sig-
nificantly higher success rate compared to the Gur Game
algorithm [9]. It also results in either comparable or
slightly improved success rate compared to the previous
drug optimization algorithm (a = 1) [11]. However, we

Table 1 Performance for optimizing the combination of two drugs.

Gur Game
(simultaneous)

Gur Game (sequential) Previous search
algorithm [11](a = 1)

ARU algorithm
(proposed) (a = 1)

success
rate

unique
comb.

success
rate

unique
comb.

success
rate

unique
comb.

success
rate

unique
comb.

f2a(x) : HIV INHIBITION (M = 80) 97% 13.2 95% 17.2 100% 13.4 100% 12.1

f2b(x) : DEJONG (2ND) (M = 441) 9% 3.6 10% 4.5 99% 56.2 99% 46.2

f2c(x) : CANCER
INHIBITION

(M = 100) 58% 11.3 53% 13.0 98% 13.2 98% 12.4

f2d(x): BACTERIA
INHIBITION

(M = 81) 96% 5.9 91% 6.8 100% 4.8 100% 4.5
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can see that the ARU algorithm clearly outperforms the
previous search algorithm in terms of efficiency, as
reflected in the significantly smaller number of unique
drug combinations that need to be tested until an effec-
tive combination is identified. Figures S3 and S5 show
the distribution of the number of unique drug combina-
tions that need to be tested to identify an effective drug
cocktail (see Additional file 1). Similarly, Figures S4 and
S6 show the distribution of the number of search itera-
tions that are needed by each algorithm.

Drug optimization in the presence of measurement noise
In order to use a drug optimization algorithm in practi-
cal applications, the algorithm has to be robust to ran-
dom fluctuations in the estimated drug response. To
evaluate the robustness of the proposed ARU algorithm,
we evaluated its search performance in the presence of
measurement noise and compared it with other existing
stochastic search algorithms. In these experiments, we
considered two different types of search strategies. In
the first search strategy (referred as type-A), when the
search algorithm happens to revisit a drug combination
that was previously tested, it does not re-evaluate the
drug response and simply uses the previously estimated
value. On the other hand, according to the second strat-
egy (referred as type-B), the search algorithm always re-
evaluates the drug response, even if it revisits a pre-
viously evaluated drug combination, since the measured
response may be different every time due to the random
measurement noise. The first strategy may be useful
when the noise level is relatively low, in which case this
strategy may be able to reduce the total number of drug
response evaluations, thereby reducing the overall
experimental cost for identifying a potent drug combi-
nation. However, when the noise level is high, the
search performance may be degraded as the search algo-
rithm clings to the past (noisy) response, once it has
been measured. In contrast, the second search strategy
generally requires a relatively larger number of drug
response evaluations, but it tends to be more robust to

random fluctuations and noise in the measured drug
response function.
In order to evaluate the performance of the different

search algorithms in the presence of noise, we per-
formed similar search experiments as before at three dif-
ferent levels of additive noise. 2%, 5%, and 8%. More
precisely, we assume that

fobs(x) = ftrue(x) + η,

where fobs(x) is the observed drug response, ftrue(x) is the
true response, and h is an independent random noise that
is uniformly distributed over (-u, u), where u Î {0.02, 0.05,
0.08}. For each drug response function and a given noise
level u, we tested the performance of both search strate-
gies. For type-A search, we evaluated the success rate and
the average number of unique drug combinations that
have to be tested until a potent drug combination is identi-
fied. For type-B search, we evaluated the success rate and
the average number of iterations, instead of the number of
unique drug combinations, until an effective combination
is identified. This is because, in a type-B search, the search
algorithm re-evaluates the drug response even if it revisits
the same drug combination that was previously tested. The
simulation results are shown in Table 3, 4, 5, 6, 7, for drug
response functions with two to six drugs. The parameter a
was set to a = 1 for the ARU algorithm as well as the pre-
vious search algorithm proposed in [11].
As we can see in these Tables, measurement noise cer-

tainly affects the overall performance of the ARU algo-
rithm, where a higher noise tends to reduce the success
rate and increase the number of iterations as well as that
of the unique drug combinations to be tested. For many
drug response functions considered in our simulations,
the performance degradation is typically not too signifi-
cant for the proposed algorithm, showing that the ARU
algorithm is relatively robust to measurement noise.
However, we can also observe that the extent of perfor-
mance degradation will critically depend on the land-
scape of the underlying drug response. In most cases, the

Table 2 Performance for optimizing multi-drug cocktails.

Gur Game (simultaneous) Gur Game (sequential) Previous search algorithm [11]
(a = 1)

ARU algorithm (proposed)
(a = 1)

success rate unique comb. success rate unique comb. success rate unique comb. success rate unique comb.

f3a(x) (M = 113) 1% 4.3 2% 5.5 100% 105.3 100% 74.0

f3b(x) (M = 113) 83% 229.4 58% 204.8 100% 88.5 100% 79.4

f4a(x) (M = 114) 20% 823.9 11% 666.6 100% 177.9 100% 136.8

f4b(x) (M = 114) 52% 706.7 24% 520.9 100% 117.9 100% 91.6

f5a(x) (M = 115) 8% 2.1 2% 4.8 100% 138.1 100% 80.6

f5b(x) (M = 115) 89% 1013.4 54% 976.2 100% 252.9 100% 216.8

f6a(x) (M = 116) 90% 1269.1 44% 1260.8 100% 191.9 100% 178.1

f6b(x) (M = 116) 90% 446.7 40% 1033.2 100% 238.1 100% 190.1
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Table 3 Performance for optimizing the combination of two drugs in the presence of noise.

Noise
level

Search
type

Performance
metric

Gur Game
(simultaneous)

Gur Game
(sequential)

Previous search algorithm
[11](a = 1)

ARU algorithm
(proposed) (a = 1)

f2a(x) (2%) A success rate
unique comb.

97% 96% 100% 100%

12.5 17.0 13.3 11.6

B success rate
iterations

97% 95% 100% 100%

37.8 45.2 25.8 20.0

(5%) A success rate
unique comb.

97% 96% 100% 100%

12.6 17.1 13.3 11.8

B success rate
iterations

97% 95% 100% 100%

38.0 45.4 26.6 20.2

(8%) A success rate
unique comb.

97% 96% 100% 100%

12.6 17.0 13.3 12.0

B success rate
iterations

97% 95% 100% 100%

38.2 45.4 26.8 20.4

f2b(x) (2%) A success rate
unique comb.

10% 10% 99% 99%

3.9 4.2 57.0 45.1

B success rate
iterations

10% 10% 99% 99%

4.0 44 148.5 120.0

(5%) A success rate
unique comb.

9% 9% 98% 98%

4.1 4.5 62.9 52.2

B success rate
iterations

9% 9% 98% 99%

4.3 4.7 172.1 143.8

(8%) A success rate
unique comb.

8% 9% 97% 98%

4.1 4.7 66.2 55.6

B success rate
iterations

9% 9% 97% 98%

4.4 4.9 198.1 167.3

f2c(x) (2%) A success rate
unique comb.

61% 54% 98% 98%

10.9 12.7 13.1 12.5

B success rate
iterations

60% 54% 98% 98%

33.1 36.0 35.9 35.2

(5%) A success rate
unique comb.

71% 66% 98% 98%

11.4 13.2 12.9 12.4

B success rate
iterations

60% 54% 98% 98%

33.2 35.4 36.7 36.0

(8%) A success rate
unique comb.

88% 83% 98% 98%

11.7 13.4 12.6 12.0

B success rate
iterations

6.% 54% 98% 98%

33.4% 34.3 37.4 37.0
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Table 3 Performance for optimizing the combination of two drugs in the presence of noise. (Continued)

f2d(x) (2%) A success rate
unique comb.

100% 100% 100% 100%

4.9 6.0 4.6 4.1

B success rate
iterations

96% 9.% 100% 100%

18.3 19.7 8.2 7.7

(5%) A success rate
unique comb.

100% 100% 100% 100%

4.9 5.7 4.3 4.1

B success rate
iterations

96.% 91% 100% 100%

18.4 19.6 8.1 7.5

(8%) A success rate
unique comb.

100% 100% 100% 100%

4.8 5.6 4.4 4.2

B success rate
iterations

96% 91% 100% 100%

18.6 19.6 8.1 7.1

Table 4 Performance for optimizing the combination of three drugs in the presence of noise.

Noise
level

Search
type

Performance
metric

Gur Game
(simultaneous)

Gur Game
(sequential)

Previous search algorithm
[11](a = 1)

ARU algorithm
(proposed) (a = 1)

f3a(x) (2%) A success rate
unique comb.

1% 3% 99% 100%

2.4 7.3 110.6 77.3

B success rate
iterations

1% 3% 99% 100%

2.8 10.9 201.1 139.6

(5%) A success rate
unique comb.

1% 3% 99% 100%

2.4 7.4 111.7 78.4

B success rate
iterations

1% 3% 99% 100%

2.5 10.1 201.6 144.0

(8%) A success rate
unique comb.

1% 3% 99% 100%

2.5 7.7 113.3 80.5

B success rate
iterations

1% 3% 99% 100%

2.3 9.4 210.9 151.7

f3b(x) (2%) A success rate
unique comb.

86% 69% 99% 99%

224.3 201.6 110.8 93.3

B success rate
iterations

83% 59% 99% 99%

367.1 419.1 211.5 205.3

(5%) A success rate
unique comb.

89% 72% 99% 99%

222.3 201.6 116.6 106.2

B success rate
iterations

83% 59% 98% 98%

359.3 439.9 225.5 222.9

(8%) A success rate
unique comb.

90% 74% 97% 98%

225.9 200.9 126.4 114.3

B success rate
iterations

82% 60% 97% 98%

359.4 431.3 249.1 246.8
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Table 5 Performance for optimizing the combination of four drugs in the presence of noise.

Noise
level

Search
type

Performance
metric

Gur Game
(simultaneous)

Gur Game
(sequential)

Previous search algorithm
[11](a = 1)

ARU algorithm
(proposed) (a = 1)

f4a(x) (2%) A success rate
unique comb.

21% 13% 96% 98%

798.9 711.7 393.9 327.4

B success rate
iterations

21% 12% 96% 97%

941.9 1032.1 558.3 452.3

(5%) A success rate
unique comb.

21% 14% 90% 95%

816.3 653.6 473.1 398.3

B success rate
iterations

21% 13% 90% 95%

895.6 1022.9 675.4 581.2

(8%) A success rate
unique comb.

24% 14% 85% 95%

858.7 681.6 505.7 433.6

B success rate
iterations

23% 13% 84% 92%

997.1 1008.9 720.8 648.5

f4b(x) (2%) A success rate
unique comb.

62% 41% 100% 100%

634.5 523.1 138.0 103.1

B success rate
iterations

51% 26% 100% 100%

932.4 903.0 236.9 182.8

(5%) A success rate
unique comb.

75% 68% 100% 100%

610..2 468.0 231.1 150.9

B success rate
iterations

50% 25% 100% 100%

855.9 921.2 411.0 258.8

(8%) A success rate
unique comb.

86% 82% 98% 100%

525.8 430.1 314.2 215.9

B success rate
iterations

50% 24% 94% 100%

835.3 979.2 602.0 393.8

Table 6 Performance for optimizing the combination of five drugs in the presence of noise.

Noise
level

Search
type

Performance
metric

Gur Game
(simultaneous)

Gur Game
(sequential)

Previous search algorithm
[11](a = 1)

ARU algorithm
(proposed) (a = 1)

f5a(x) (2%) A success rate
unique comb.

8% 9% 100% 100%

2.1 4.4 139.3 122.5

B success rate
iterations

9% 11% 100% 100%

2.1 6.0 172.4 154.9

(5%) A success rate
unique comb.

9% 11% 100% 100%

3.9 7.9 142.1 129.1

B success rate
iterations

9% 12% 100% 100%

108.3 38.6 177.1 155.6
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Table 6 Performance for optimizing the combination of five drugs in the presence of noise. (Continued)

(8%) A success rate
unique comb.

10% 13% 100% 100%

7.1 20.2 144.5 131.4

B success rate
iterations

9% 13% 100% 100%

191.4 70.8 182.3 156.5

f5b(x) (2%) A success rate
unique comb.

89% 55% 100% 100%

917.9 1026.3 407.1 343.9

B success rate
iterations

90% 55% 100% 100%

999.8 1325.1 516.5 444.3

(5%) A success rate
unique comb.

90% 59% 97% 98%

932.8 1002.7 507.7 463.6

B success rate
iterations

90% 56% 99% 99%

1004.7 1332.7 656.9 562.4

(8%) A success rate
unique comb.

91% 59% 97% 98%

959.5 971.2 578.8 534.8

B success rate
iterations

90% 56% 99% 99%

1015.2 1341.0 735.0 668.6

Table 7 Performance for optimizing the combination of six drugs in the presence of noise.

Noise
level

Search
type

Performance
metric

Gur Game
(simultaneous)

Gur Game
(sequential)

Previous search algorithm
[11](a = 1)

ARU algorithm
(proposed) (a = 1)

f6a(x) (2%) A success rate
unique comb.

91% 43% 100% 100%

1280.0 1214.1 476.8 432.6

B success rate
iterations

90% 43% 100% 100%

1352.6 1662.6 531.4 503.6

(5%) A success rate
unique comb.

90% 44% 99% 99%

1262.3 1247.2 621.0 598.3

B success rate
iterations

90% 45% 100% 100%

1396.8 1675.9 763.7 736.1

(8%) A success rate
unique comb.

90% 46% 98% 98%

1204.7 1302.4 723.2 698.8

B success rate
iterations

90% 46% 98% 98%

1412.2 1681.9 875.2 834.3

f6b(x) (2%) A success rate
unique comb.

91% 43% 100% 100%

509.9 971.0 341.4 237.7

B success rate
iterations

94% 44% 100% 100%

1240.7 1646.0 436.5 293.5

(5%) A success rate
unique comb.

90% 42% 100% 100%
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ARU algorithm continued to substantially outperform
other stochastic search algorithms [9,11], demonstrating
that it is better suited for practical drug optimization
applications.
One interesting observation is that the performance of

the Gur Game algorithm is typically not very sensitive
to measurement noise. In fact, in some cases, its perfor-
mance even improves as the noise level goes up. The
main reason for this phenomenon is as follows. As dis-
cussed earlier, the Gur Game algorithm does not adapt
to the observed drug response function, and for this rea-
son, its overall performance crucially depends on
whether or not its predetermined FSA matches the drug
response function at hand. As a result, if the FSA does
not match the original drug response function well, iro-
nically enough, the measurement noise may perturb the
search process in such a way that improves the overall
performance. In this sense, the fact that the Gur Game
algorithm is not very sensitive to measurement noise
reflects its inaptitude for handling various types of drug
response functions, rather than its robustness to random
fluctuations and noise in the measured drug response.

Conclusions
In this paper, we proposed a novel stochastic search
algorithm, called the adaptive reference update (ARU)
algorithm, which can be effectively used for optimizing
the composition of combinatory drugs. The proposed
algorithm intelligently utilizes the drug response values
observed in the past to reliably predict how to benefi-
cially update the drug concentrations to improve the
drug response. As we demonstrated throughout this
paper, the proposed algorithm addresses several short-
comings of previous drug optimization algorithms
[9,11], thereby improving the overall search perfor-
mance. Numerical experiments based on various types
of multi-drug response functions show that the ARU
algorithm results in a higher success rate (i.e., higher
probability of identifying a potent drug combination)
while requiring significantly fewer drug response evalua-
tions. Furthermore, the proposed algorithm is robust to

random measurement noise, where its search perfor-
mance is not substantially affected in the presence of
noise and degrades gracefully as the noise level
increases. Throughout our experiments, we used a = 1
for the ARU algorithm as well as the previous search
algorithm [11]. As discussed earlier, the parameter a
controls the randomness of the search, by determining
how much weight we should give to the drug response
values that we observed in the past. In general, unless
the observations are very noisy or the underlying drug
response function is assumed to be extremely nonlinear,
it would be best to set the parameter to the largest
allowed value (i.e., a = 1), so that we fully utilize the
past observations for making our best informed guess
about the beneficial drug update strategy. For compari-
son, we also repeated our simulations using a = 0.5 and
a = 0.75, whose results are summarized in Table S1 -
Table S7 (see Additional file 1). We can see from these
results that a = 1 indeed leads to the best performance
for the drug response functions and the noise levels we
have considered in this paper.

Additional material

Additional file 1: Performance of the ARU algorithm. Further
performance evaluation results of the proposed Adaptive Reference
Update (ARU) algorithm.
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