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Abstract

not linked to disease.

Background: Non-synonymous single nucleotide polymorphisms (nsSNPs) alter the protein sequence and can
cause disease. The impact has been described by reliable experiments for relatively few mutations. Here, we study
predictions for functional impact of disease-annotated mutations from OMIM, PMD and Swiss-Prot and of variants

Results: Most disease-causing mutations were predicted to impact protein function. More surprisingly, the raw
predictions scores for disease-causing mutations were higher than the scores for the function-altering data set
originally used for developing the prediction method (here SNAP). We might expect that diseases are caused by
change-of-function mutations. However, it is surprising how well prediction methods developed for different
purposes identify this link. Conversely, our predictions suggest that the set of nsSNPs not currently linked to
diseases contains very few strong disease associations to be discovered.

Conclusions: Firstly, annotations of disease-causing nsSNPs are on average so reliable that they can be used as
proxies for functional impact. Secondly, disease-causing nsSNPs can be identified very well by methods that predict
the impact of mutations on protein function. This implies that the existing prediction methods provide a very
good means of choosing a set of suspect SNPs relevant for disease.

Background

Evolution leads to genetic diversity

The selection of survival under changing conditions
guides the cell’s genetic makeup (“genotype”) that is
dynamically fit for retaining important cellular functions
(“phenotype”). Today’s genetic landscape represents the
current state of a sampling process that continuously
creates new phenotypes. This process yields genetic var-
iation across and within species. In human, single
nucleotide polymorphisms (SNPs) are essential for
genetic diversity [1,2]. Non-synonymous SNPs (nsSNPs)
alter the amino acid sequence. Some of these mutations
affect protein structure and/or function and could
increase susceptibility to disease.

* Correspondence: schaefer@rostlab.org

'TUM, Bioinformatics - 12, Informatics, Boltzmannstrasse 3, 85748 Garching/
Munich, Germany

Full list of author information is available at the end of the article

( BioMVed Central

Do disease-causing mutations impact protein function?
Disease-causing mutations occur often inside the protein
(buried) and at hydrogen-bonding residues [3-5]. Protein
function is often associated with evolutionarily conserved
residues [4,6-9]. Most known disease-related nsSNPs in
proteins of known 3D (three-dimensional) structure
appear to affect structurally important residues and sites
relevant for function [4]. For instance, disease-associated
mutations can affect protein interactions [10]. In protein
kinases, they have been shown to cluster into the function-
ally important catalytic core [11,12]. The above trends
confirm the expectation that mutations cause disease
because they damage important proteins.

Experts have established the above trends by laboriously
inspecting small sets of well-curated proteins. Could less
well-versed experts with better algorithms have established
valid trends about disease-causing mutations for large data
set by automatically extracting data set of disease-related
mutations and their predicted functional effects? At
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OMIM’s infancy, a few years ago, we failed to accomplish
this; i.e. observed trends did not differ much from random.
This has changed. Here, we provide data that strongly sug-
gest an affirmative answer to the question and demon-
strate that we have a large repository of disease-causing
mutations. To pick the most important practical result of
our work: today’s disease-causing mutations can serve as
an excellent proxy for “change of function”.

Methods

Data sets

We used SNPdbe [13] as the underlying source for amino
acid substitutions, functional effect annotations and dis-
ease relations. This comprehensive new resource inte-
grates variants from dbSNP [14], Swiss-Prot [15], PMD
[16], and OMIM [17] and annotations of functional effects
(from Swiss-Prot and PMD) and disease (from SwissVar
[18], PMD and OMIM). The term ‘genetic disease’ is
rather heterogeneous, covering Mendelian, monogenic dis-
orders and polygenic diseases, exhibiting more complex
genotypic patterns. Here, we do not differentiate between
the different disease-types. Instead we aim at analyzing all
disease-causing mutations.

We created the following five subsets from SNPdbe
(Additional file 2). (1) Set of disease-related + observed
effect mutations: We collected 1,105 human nsSNPs
(from 217 proteins) that were annotated to be both dis-
ease-causing and functionally non-neutral. (2) Set of dis-
ease-related mutations: We obtained a set of amino acid
substitutions in human proteins with disease-association.
We extracted 26,404 mutations (3,419 proteins) with dis-
ease annotations but no annotated functional effect. (3)
Set of observed effect mutations: We collected 36,317
mutants in 3,790 proteins with experimentally observed
effect. We excluded mutations with disease associations.
This set constitutes a part of the “functional effects” sets
annotated in PMD; it served as the positive training set
for SNAP [19]. Note that after our filtering the resulting
set of mutations with observed effect and the set of dis-
ease-related mutants did NOT overlap. (4) Set of muta-
tions with unknown disease relation: We extracted
251,414 variants (28,913 proteins) without known disease
associations. (5) Set of random mutations: We randomly
selected one mutation in each of the 28,913 proteins
from the set of mutants of unknown disease relation such
that the mutated position was maximally distant from
any other mutation observed in the given protein.

Prediction of effect

For the vast majority of point mutants (single amino acid
changes or nsSNPs) in human, the impact on protein
function remains unknown. For all mutations in the
above four data sets (disease-causing, disease-relation
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unknown, observed function-changing, and random), we
predicted their effects on function with SNAP [19] and
SIFT [20]. Both methods provide binary classifications
(effect/neutral) along with a more detailed score. SNAP
scores range from -100 (strongly predicted as neutral) to
100 (strongly predicted to change function); the distance
from the binary decision boundary (0) measures the relia-
bility of the effect. Essentially, stronger predictions are
also more reliable, i.e. the higher the score, the more
likely the mutation impacts function [19,21,22]. For a
small data set, we previously established that SNAP
scores correlate with the severity of change; i.e. high
(positive) SNAP scores relate to more severe functional
effects [19,21,22].

SIFT [20] scores range from O to 1 and aim at charac-
terizing the normalized probability of tolerable amino
acid substitution. Values <0.05 imply prediction of func-
tional change; all other values are considered neutral. As
with many other prediction methods, the distance to the
decision boundary (0.05) reflects the reliability of a parti-
cular prediction [23]. For many prediction methods
developed in our group (protein-protein binding [24-26],
protein-DNA binding [27], backbone flexibility [28]), the
strength of an effect correlated with prediction strength,
e.g. ISIS predicted binding hot spots stronger than other
residues involved in the interaction [26]. Although we
never used the strength of an effect to train our methods,
this correlation is intuitive: stronger effects are more con-
sistent and therefore become stronger carved into the
machine-learning model. Similarly, SIFT scores could be
used to prioritize amino acid substitutions [23]. In this
perspective, we consider the distance from the default
decision boundary (0.05) as the magnitude of the effect.

SNAP and SIFT aspire to solve the same problem with
different means. SNAP was trained on literature-derived
[16] mutants that are either functionally similar to the
wild-type (neutral) or alter function (effect) in either direc-
tion (decrease and increase of function). SIFT on the other
hand infers probabilities of functional change from residue
conservation in alignments of evolutionarily related pro-
teins. While SNAP operates on an experimentally substan-
tiated definition of change, SIFT uses conservation scores
of amino acids as a proxy for functional change. Although
both methods largely capture the underlying biological
meaning of functional change, their predictions disagree
often. Thus, the methods are likely orthogonal, picking up
different aspects of protein function.

In addition, we applied PhD-SNP [29] to predict
whether mutations in all five sets are disease-causing or
neutral. PhD-SNP offers several modes striking different
balances between runtime and performance. We used
the most accurate mode that uses both sequence and
evolutionary profiles.
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Box plots better on the training than on the testing set. This also
We represented our resulting distributions using box  holds for SNAP; hence, the distribution of SNAP scores
plots [30,31]. The lower and upper box edges depict the  for the training set of observed effect mutants is expected
first and third quartiles of the distributions, respectively.  to be closer to ‘more effect’ than for any other data set.
The length of the box is the interquartile range of the = We observed the opposite (Fig. 1B: red vs. dashed black
distribution. The bold bar inside the box represents the lines): effect predictions were stronger for the disease
median, while dashed lines reach to the most extreme related mutations than for our observed effect training
data points, that are no more than 1.5 times the inter-  set, e.g. while just over 40% of the training set reached a
quartile range away from the upper or lower box edge. score >40, 47% of the disease related mutations did. A

Note that each box covers half the distribution. difference of seven percentage points might not be per-
ceived as high, but the effect is significantly higher for

Results and discussion comparison to testing on the training set. SIFT overall

Disease-causing mutations strongly predicted to change also predicted the disease related mutations stronger

protein function than the observed effect data, but the difference was not

We applied SNAP and SIFT to the 26,404 annotated  significant (Additional file 1).

disease related mutants (Methods). At the default Do disease-related mutations with an observed effect

threshold, SNAP predicted over 86% of the disease alter function even more? We analyzed the predicted func-
related mutations to impact function (Fig. 1A, B, 2) and  tional effect of disease-associated mutations with observed
SIFT ~59% (Fig. 2, Additional file 1). SNAP predictions effect (disease-related+observed effect). About 90% were
were very strong: about half of the effect predictions predicted to impact function (4% more than for disease
had levels of severity of >40 (Fig. 1B, dashed black related), while over 53% had SNAP scores higher than 40
curve). (6% more than for disease related; Fig. 1A, B solid black

In our experience, SNAP scores >40 are exceptional line, Fig. 2). SIFT showed a similar trend: 66% in the set of
when applying the method to new data. To clarify this  disease related+observed effect compared to 59% in disease
point, the observed effect mutations were the very same  related mutations (Fig. 2, Additional file 1). This suggests
data set that trained SNAP. We ascertained that this set  that the most reliable source of impact mutations is by
had no overlap with the disease related mutations (Meth-  connecting disease relations and independent experimen-
ods). Usually, machine-learning methods perform much  tal observations.
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Figure 1 Disease-causing mutations have highest scores SNAP predicted the impact of function for five different data sets of point
mutations: disease related + observed effect and disease related mutants, mutations with observed effect, unknown disease relation, and random
mutations. For each set we display the predicted functional severity of mutations. (A) Scores above zero (horizontal line) correspond to effect,
scores below to neutral, the distance from 0 correlates to severity; lower/upper bound and bar in the box represent the lower/upper quartile
and median. 90% of disease related+observed effect and over 86% of the disease related mutations were predicted to effect function, compared to
only 51% in mutations of unknown disease relation. Effect predictions dominated the observed effect mutants less (76%) than the disease related
mutants (86%). The effect in random mutations (44%) provided an upper bound for effect mutations in proven non-disease related variants. (B)
Cumulative distributions of predicted functional severity; points on a curve correspond to fractions (y-axis) of mutations with SNAP scores (x-axis)
> this value. The vertical line separates neutral from effect. Disease-causing mutations were predicted to be most severe (black solid and dashed
lines above all others). These results suggest that change in function may explain most disease-related mutations.
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Figure 2 Effect most prevalent in disease mutants For each set
we show the fraction of mutants with predicted effect (SNAP, SIFT:
functional effect, PhD-SNP: disease). Disease predictions taken from
PhD-SNP (light blue bars) confirm the major observation found in
functional predictions (black+dark blue bars): observed effect mutants
have high impact on disease. More than 64% of these are predicted
to be disease-causing while only 27% of mutations of unknown
disease relation are predicted to cause disease.

As negative control, the predictions differed greatly for
the 251,414 mutants with unknown disease relation.
First, only about 51% of those were predicted to have an
effect by SNAP (Fig. 1A, B, 2), and only 39% by SIFT
(Fig. 2, Additional file 1). Second, only 12% of those had
a SNAP score larger than 40 (Fig. 1B, dashed green
curve).

Many mutations with unknown effect predicted to alter
function

SNAP and SIFT predicted much more effect for disease
related mutations than in mutants with unknown disease
relation. Still, many of those mutations were predicted
to change protein function. However, much fewer
mutants with unknown disease relation were predicted
to significantly change function than the disease related
mutations (Fig. 1B: strong effect for 14% of mutants
unknown disease relation - dashed green line - vs. 48%
of disease related mutations - dashed black line). Com-
paring the prediction trends between the two data sets
suggests that the mutations of unknown disease relation
will never become a ‘disease-rich’ set (i.e. through newly
discovered disease associations). Random mutations
were even less often predicted to have strong effect
(~7%, Fig. 1B, dashed blue line). This result suggests
that many experimental annotations of ‘functional
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impact’ remain to be determined/observed for the set of
mutations with unknown disease relation (roughly > 7%-
14%).

Same trend found in predicted disease mutations

If disease related can serve as a good proxy for (strong)
functional impact, then a method trained to predict dis-
ease-causing mutations should reveal the reverse and
thus confirm the same: predicted disease is expected to
be enriched in observed effect compared to mutations of
unknown disease relation. We analyzed the fraction of
predicted disease by applying PhD-SNP (Methods) to
our five data sets. PhD-SNP predicted >64% of the
observed effect mutations as disease related (Fig. 2),
while only 26% of mutations with unknown disease rela-
tion were predicted to be disease associated. Further-
more, we confirmed the other observations already
found in functional impact predictions: Random muta-
tions appear to have the lowest impact on disease (only
22%, Fig. 2).

PhD-SNP predicted both disease-related sets to con-
tain most disease mutants (86% in disease related
+observed effect and 74% in disease related, Fig. 2). This
was expected due to the important overlap between our
data and the training set of PhD-SNP [29]. Nonetheless,
the increase in predicted-disease mutations of 12% once
again suggested that observed effect mutants play a
major role in disease.

Our findings show that if a mutation leads to disease
then a change in function plays a major role in explain-
ing the cause (59%-86%). This finding cannot be
inverted due to the overlap of score distributions of dis-
ease related mutants and mutants with unknown disease
annotation (Fig. 1A, Additional file 1); i.e. strong effect
on function does not imply disease.

Our comparison between mutations annotated as dis-
ease related and those experimentally annotated function
changing (observed effect) does not imply that there is
anything special about disease-causing mutations.
Instead, our findings highlight differences in the severity
of functional effect. That is, on average, assuming that a
disease causing mutation has a functional effect is more
reliable than experimentally evaluating functional change.

Conclusions
We compared disease-associated single point mutations
(nsSNPs) predicted to change protein function with
those of unknown disease-association. Implicitly, we
tested the reliability of annotations that link mutations
to disease and the extent to which predictions of func-
tional effect overlap with disease causation.

As opposed to other studies addressing this question
[3-6,10-12], we used predictions of functional effect to
determine the fraction of deleterious point mutations in
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two different populations of human variants: disease
related (or disease-causing) mutations and mutations
without any knowledge of phenotypic effect. The major
findings were: (1) annotations of disease-causation pro-
vide a good approximation of functional effect. (2)
Methods developed to predict the impact of mutations
onto protein function clearly identify disease-causing
mutations as those that change function. In other
words, their predictions provide a valuable first step
towards the study of the molecular impact of disease.
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